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ABSTRACT 

Interactions characterise the relationship between use of amphetamines, cannabis 

and opiates as a driver and the risk of traffic injury associated with the use of these 

drugs. Inverse risk curves have been found for these drugs, meaning that the higher 

the proportion of drivers in normal traffic testing positive for the drugs, the lower is 

the increase in risk associated with them. The inverse risk curves can arise in many 

ways. The paper discusses ten different interpretations of the curves; seven of these 

are methodological and claim that the risk curves are statistical artefacts. Some 

support for these interpretations is found; however, this does not rule out that 

substantive interpretations, proposing causal mechanisms underlying the curves may 

also be correct. Unfortunately, there is insufficient evidence to assess the support for 
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the substantive interpretations. There is, accordingly, a large element of uncertainty 

about how the inverse risk curves arise and whether they can be modified. 

Key words: illicit drugs; risk of traffic injury; meta-analysis; methodological 

interpretations; substantive interpretations 

 

1 INTRODUCTION 

Many studies have been made to assess the risk of traffic injury associated with the 

use of illicit drugs. For a few drugs, there are enough studies to synthesise their 

findings by means of meta-analysis (Elvik 2013, 2015). Evidence from primary 

studies is then summarised in terms of a single, or a few, summary estimates of the 

risk of injury associated with using a drug. 

One of the problems in trying to synthesise the findings of studies of the risk 

associated with illicit drugs is that estimates vary enormously. When there is great 

variation in estimates of risk, it may not be very informative to summarise them in 

terms of a single weighted mean estimate. In any meta-analysis, it is recommended to 

perform an exploratory analysis in order to test whether the distribution of estimates 

in primary studies is “well-behaved”, i.e. unimodal, showing a bell-shaped 

distribution. A graphical tool, the funnel plot, can be employed to test whether the 

distribution of estimates of risk has this shape. In a funnel plot, estimates of risk are 

plotted on the abscissa and an indicator of their statistical precision on the ordinate.  

Figure 1 presents an example of a funnel plot. It shows estimates of the risk of fatal 

injury associated with the use of amphetamines. The abscissa shows the natural 
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logarithm of the estimate of risk (values greater than 0 indicate an increase in risk), 

the ordinate shows the standard error of each estimate of risk, with the scale inverted 

so that estimates with small standard errors are plotted on top of the diagram. 

Figure 1 about here 

The distribution of estimates of risk in a funnel plot should, ideally speaking, 

resemble a funnel turned upside down (i.e. with the narrow opening on top). The 

data points shown in Figure 1 are spread all over the place and do not show a 

distribution resembling a funnel. Five data points to the right in the diagram are 

trimmed away when the trim-and-fill method is applied to test for the possible 

presence of publication bias (Duval and Tweedie 2000A, 2000B; Duval 2005). Yet, 

even when these data points are trimmed away, no clear funnel shape emerges. Many 

analysts would conclude that the data points in Figure 1 are too widely and 

unsystematically dispersed for a summary estimate of risk to make sense.  

A completely different picture emerges in Figure 2. Figure 2 shows estimates of the 

risk of fatal injury as a function of the percentage of drivers testing positive for 

amphetamine in normal traffic. Figure 2 includes 10 of the 13 estimates shown in 

Figure 1. 

Figure 2 about here 

A clear negative relationship is found: The higher the percentage of drivers testing 

positive for amphetamines in roadside surveys intended to represent normal traffic, 

the lower is the increase in risk associated with the use of amphetamines. Thus, the 

wide and unsystematic dispersion of estimates of risk in Figure 1 hides a very clear 
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relationship: the lower the share of drivers testing positive for amphetamine, the 

higher is their risk. 

Similar patterns in the variation of risk have been observed for other illicit drugs, 

including cannabis and opiates (Elvik 2015). This suggests that the association 

between the use of an illicit drug and the risk of traffic injury is best summarised by 

means of a function describing the relationship between the share of drivers testing 

positive for a drug in normal traffic and the increase in risk associated with use of the 

drug. Unfortunately, curves like the one shown in Figure 2 can arise in many ways 

and may fully or partly be the result of statistical artefacts. One cannot propose 

substantive explanations of a relationship like the one shown in Figure 2 unless 

methodological interpretations can be ruled out, or at least shown not to contribute 

much to the observed relationship. 

A relationship like the one shown in Figure 2 is referred to as an interaction in 

epidemiology (Szklo and Nieto 2014). An interaction is found whenever the 

relationship between a risk factor (here: an illicit drug) and risk (here: risk of traffic 

injury) depends on a third factor or moderator (here: the share of drivers in normal 

traffic testing positive for a drug). The objectives of this paper are: (1) to give an 

overview of possible interpretations of interaction in estimates of the risk of traffic 

injury associated with the use of illicit drugs and (2) to assess the support for the 

various interpretations. 

 

2 AN OVERVIEW OF INTERPRETATIONS OF INTERACTION 
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A total of ten possible interpretations of interaction effects in estimates of the risk of 

traffic injury associated with the use of illicit drugs have been identified. These are: 

1. Differing statistical weights: A curve based on giving all data points equal 

statistical weights disappears when data points are weighted according to 

their statistical precision. 

2. Unequal variance in exposure estimates: Estimates showing a low percentage 

of control group drivers testing positive may be more uncertain than 

estimates showing a high percentage of control group drivers testing positive. 

3. Selective reporting: Studies reporting the share of control group drivers 

testing positive for a drug differ in estimates of risk from those that do not 

report the share of control group drivers testing positive for a drug. 

4. Unequal adjustment for confounding factors: There may be differences in 

how well estimates of risk adjust for confounding factors; poor control for 

confounding factors tends to be associated with higher estimates of risk. 

5. Different estimators of risk: Odds ratios may overstate relative risks; risk 

estimates based on culpability studies are (almost) consistently erroneous (see 

further explanation below). 

6. Small sample bias in estimates of odds ratios: This could arise if high 

estimates of risk are based on smaller samples than low estimates of risk. 

7. Publication bias: A curve like the one shown in Figure 2 is only one tail of the 

distribution of data points and will vanish when adjusted for publication bias. 

8. Dose-response curve: Some data points could be points on a dose response 

curve: higher doses of a drug may be taken more rarely (lower percentage 

testing positive), but associated with higher risk. 
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9. Learning curve: When a high share of control group drivers test positive for a 

drug, there could be more drivers who have used a drug for a long time and 

developed increased tolerance for it. 

10. Selective recruitment of drivers: In societies where few drive under the 

influence of drugs, those who do so are a more extreme group. 

Table 1 explains how each of these points will be evaluated and what findings will be 

regarded as supporting or contradicting the interpretation. 

Table 1 about here 

The first seven points represent methodological interpretations, i.e. they all claim that 

an apparent interaction is an artefact and will disappear once one or more of the 

seven points have been addressed. The final three points represent substantive 

interpretations, i.e. they identify causal mechanisms that produce an interaction and 

show that it is real. 

The ten possible interpretations of interaction in estimates of risk will be discussed 

for three illicit drugs for which there are enough studies to show interaction. These 

drugs are amphetamines, cannabis and opiates. Patterns of interaction will be 

discussed separately for fatal injury, non-fatal injury and property-damage-only. Five 

estimates of risk are regarded as the minimum number needed to detect interaction. 

Thus, in Figure 2, ten estimates of the risk of fatal injury are plotted for 

amphetamines. There are four estimates of the risk of non-fatal injury associated with 

the use of amphetamines, but these will not be discussed further, because they are 

too few to meaningfully assess the ten possible interpretations of interaction. 
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3 METHODOLOGICAL INTERPRETATIONS 

3.1 Statistical weighting 

The curve shown in Figure 2 was fitted by treating all estimates of risk as equally 

precise. However, the precision of the estimates varies. Will the inverse relationship 

be reproduced if estimates of risk are assigned statistical weights that are inversely 

proportional to their sampling variance? 

To test the robustness of curves with respect to statistical weighting, six different 

forms of curves have been fitted: linear, logarithmic, inverse, quadratic, power or 

exponential. If the curve fitted to weighted estimates is of a different form than the 

curve fitted to unweighted estimates, it will be concluded that the statistical weights 

make a difference. Likewise, if the coefficient describing the slope or curvature of a 

function is statistically significantly different for the simple and weighted estimates, 

statistical weighting makes a difference. 

Curves were fitted using SPSS and for each coefficient a standard error was 

produced. To test whether two coefficients were different, the difference between 

them and the standard error of the difference were computed: 

Difference = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 

Standard error (SE) of difference = �𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝑆𝑆𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡2  

As an example, an inverse function best fitted crude estimates of the risk of non-fatal 

injury associated with the use of cannabis. When data points were weighted 

statistically, the value of the coefficient changed a little. The difference is 0.029. The 

standard error of the difference is 0.186. Since the standard error of the difference is 
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considerably greater than the difference itself, it is concluded that there is no 

evidence of a real difference. The results of the analyses are presented in Table 2.  

Table 2 about here 

It is seen that the number of estimates of risk is by far greatest for cannabis. 

Statistical weighting was found to influence the risk curves in three of the six cases 

that were tested. For amphetamines, the crude risk curve was best described as a 

power function; the statistically weighted risk curve was best described as an inverse 

function. A plot of the functions found that they were located close to each other 

and had the same shape. With respect to the risk of fatal injury associated with the 

use of cannabis, a logarithmic function fitted best to the crude estimates of risk. A 

quadratic function fitted best to the weighted estimates. Since these functions are of 

different forms, comparing their coefficients does not make sense. The two curves 

are shown in Figure 3. The quadratic curve is quite flat in the range below 10 percent 

of control group drivers testing positive for cannabis. The quadratic curve implies a 

negative estimate of risk when the percentage of control group drivers testing 

positive for cannabis exceeds 40 percent, but is positive in the range of values 

represented in the data.  

Figure 3 about here 

The third case where the crude and weighted curves were found to differ was with 

respect to the risk of non-fatal injury associated with the use opiates. The curve 

fitting best to the weighted data points was quadratic; however, it was rejected as it 

implied negative estimates of risk when the percentage of control group drivers 

testing positive for opiates was between 5.6 and 7.4. A linear function fitted second 
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best and was preferred. Figure 4 shows the two curves that were found to best fit 

estimates of risk. 

Figure 4 about here 

The two curves are quite different. Although both are consistent with an inverse 

relationship between the prevalence of opiates in normal traffic and the risk 

associated with it, the weighted curve is a straight line, whereas the crude curve has a 

marked curvature. 

 

3.2 Unequal uncertainties in estimates of exposure 

Exposure to illicit drugs in normal traffic is generally stated as the proportion of 

control group drivers testing positive for a drug. Thus, for amphetamines (Figure 2), 

the proportion of control group drivers testing positive varies between 0.05 percent 

(0.0005 as a proportion) and 3.3 percent (0.033 as a proportion). Estimates of the 

proportion of control group drivers testing positive are uncertain. The question is 

whether some of the estimates are more uncertain than others. If, for example, an 

estimated proportion of 0.0005 is more uncertain than an estimated proportion of 

0.033, the distribution of data points could in principle be different from the one 

shown in Figure 2, and the curve fitted to the data points might have a different 

shape. 

The uncertainty of estimates is indicated by their standard error. The standard error 

of a proportion p is: 

Standard error of a proportion = �𝑝𝑝 ∙ (1−𝑝𝑝)
𝑛𝑛
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Thus, the standard error of the smallest of the proportions of control group drivers 

testing positive for amphetamines is: 

Standard error = �0.0005 ∙ (1−0.0005)
21917

= 0.00015 

In general, the standard error of a proportion, at a given sample size (n) is smallest 

when the proportion is close to zero, and greatest when it is 0.5. The standard errors 

of the proportions of control group drivers testing positive for amphetamines are 

small. Figure 5 shows the relationship between the proportions and their standard 

errors. 

Figure 5 about here 

With one exception, the standard errors all have a smaller value than the estimated 

proportion. For one estimate, the standard error is 1.42 times the estimate. There is a 

probability of 5 percent that this estimate, 0.0012, could be as high as 0.0046. 

However, even if the true location of the data point would be at a proportion of 

0.0046, this would by itself not alter the shape of the curve shown in Figure 2.  

As far as cannabis is concerned, a similar pattern was found. On the average, 

standard errors were much smaller than estimated proportions. Only two standard 

errors (out of 63) were larger than 50 percent of the estimate, suggesting that these 

estimates were not significantly different from zero. These two estimates are, 

however, too few to alter the shape of the risk curves relating risk to the proportion 

of control group drivers testing positive for cannabis. 

Findings for opiates were more complex. There were seven estimates of the risk of 

fatal injury for which the proportion of control group drivers testing positive for 
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opiates was known. One estimate of the proportion of control group drivers testing 

positive had a considerably greater standard error than the other six. This estimate 

indicated that only 0.25 percent of control group drivers tested positive and that the 

odds of fatal injury was 9.6. Given the standard error, and assuming that the 

proportion cannot be negative, the lower 95 percent confidence limit for this 

estimate is 0.01 percent and the upper 95 percent confidence limit is 0.73 percent. 

When the lower limit was assumed, the best fitting risk curve was an inverse 

function, which fitted the data much better than when the original value of 0.25 

percent was used. When the upper limit value was assumed, the risk curve changed 

completely and a power function with a positive exponent best fitted the data points. 

Thus, the large uncertainty in the estimate of the proportion of control group drivers 

testing positive for opiates had a decisive influence on the shape of the risk curve 

relating the risk of fatal injury to the proportion of control group drivers testing 

positive for opiates. One should therefore regard the risk curve as highly uncertain 

and perhaps artefactual. 

There were eight estimates of the risk of non-fatal injury for which the percentage of 

control group drivers testing positive for opiates was known. Three of these 

estimates had large standard errors. By inserting the lower or upper 95 percent 

confidence limits of these estimates, the risk curve was re-estimated. The shape of 

the curve was found to be robust with respect to the three uncertain data points. A 

quadratic function fitted best in all cases, but it was mostly illogical by implying 

negative estimates of risk. A linear function was second best. 
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3.3 Selective reporting 

In Figure 1, thirteen estimates of the risk of fatal injury associated with the use of 

amphetamines were shown. In Figure 2, the risk curve was fitted to only ten 

estimates of risk. Three estimates did not report the percentage of control group 

drivers testing positive for amphetamines and could therefore not be included. Even 

among cases, reporting of drug use is incomplete and variable, see for example the 

survey of drug involvement in fatally injured drivers reported by the National 

Highway Traffic Administration (US Department of Transportation 2010). Is it 

possible that these three data points could alter the risk curve shown in Figure 2 

(whose shape was confirmed when data points were weighted)? 

To try to answer this question, a procedure that may be called “worst case 

imputation” has been used. Worst case imputation means that the estimates of risk 

not stating the percentage of control group drivers testing positive for amphetamines 

were added to those stating this percentage in the way that would be most 

inconsistent with the distribution of the estimates stating the percentage of control 

group drivers who tested positive for amphetamines. 

The three estimates not stating the percentage of control group drivers testing 

positive for amphetamines estimated the odds ratio for fatal injury as 20.9, 2.7 and 

2.3. Based on the data points stating the percentage of control group drivers testing 

positive for amphetamines, one would expect the first of these estimates to be 

located in the left part of the diagram, in which the percentage of control group 

drivers testing positive is low. The other two estimates would be expected to be 

located further to the right in the diagram. The assumption was therefore made that, 
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unlike most other data points, for the three data points that did not report the 

percentage of control group drivers testing positive for amphetamines, there was a 

positive relationship between risk and the percentage of control group drivers testing 

positive. 

The three highest values found in the data set for the percentage of control group 

drivers testing positive for amphetamines were 3.30, 3.11 and 0.78. The three 

estimates of risk were therefore imputed as (20.9; 3.30), (2.7; 3.11), and (2.3; 0.78). 

These data points are marked by red squares in Figure 6. 

Figure 6 about here 

One may obviously not rule out that the estimates not reporting the percentage of 

control group drivers testing positive for amphetamines could have reported higher 

percentages than any found in the studies reporting the percentage of control group 

drivers testing positive for amphetamines. The data points should then have been 

imputed even further to the right in the diagram, but it was judged as too arbitrary to 

do so. The three percentages at which the estimates were imputed were at least found 

in the data set. 

With the three imputed estimates added to the data set, the curve fitting routine was 

run again. An inverse function was found to best fit the data points, reproducing the 

result based on the ten original data points. Based on this, selective reporting was 

judged to be unlikely to have an influence on the risk curve for fatal injury associated 

with the use of amphetamines. 

Four data points were imputed for studies of the risk of fatal injury associated with 

the use of cannabis. When these data points were added, the relationship between the 
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percentage of control group drivers testing positive for cannabis and the risk of fatal 

injury vanished completely. With respect to the risk of fatal injury associated with the 

use of cannabis, one therefore cannot rule out bias due to the fact that not all studies 

reported the percentage of control group drivers testing positive for cannabis. No 

missing data points were imputed for studies of the risk of non-fatal injury associated 

with the use of cannabis. Five data points were imputed for studies of the risk of 

property-damage-only accidents. A quadratic curve was found to best fit the imputed 

data set, indicating a high risk when a low percentage of control group drivers test 

positive for cannabis as well as when a high percentage of control group drivers test 

positive for cannabis. It is difficult to make sense of this relationship, but it had the 

same form as the relationship fitted to the original data set. 

There were seven estimates of the risk of fatal injury associated with the use of 

opiates that reported the percentage of control group drivers testing positive for 

opiates; three estimates did not report the percentage of control group drivers testing 

positive. When these estimates were imputed, a power function best fitted as a risk 

curve. This function was rising as the percentage of control group drivers testing 

positive for opiates increased. This risk curve had the opposite sign of the risk curve 

fitted to the original data points, which indicated a declining risk as the percentage of 

control group drivers testing positive for opiates increased. It therefore cannot be 

ruled out that the negative relationship was attributable to the fact that not all studies 

reported the percentage of control group drivers testing positive for opiates. 

Eight estimates of the risk of non-fatal injury associated with the use of opiates 

stated the percentage of control group drivers testing positive for opiates; twelve 



\\saturn\felles\FILFLYTT\NFR - egenarkivering\Elvik_10.1016_j.aap.2018.02.004.docx 15 

estimates of risk did not state this percentage. Eight data points were imputed using 

the worst-case rule. The original relationship then vanished completely, showing that 

it cannot be ruled out that the negative relationship found between the percentage of 

control group drivers testing positive for opiates and the risk of non-fatal injury 

associated with the use of opiates, was attributable to the fact that many studies do 

not report the percentage of control group drivers testing positive for opiates. 

 

3.4 Unequal adjustment for potential confounding factors 

It is well known that the results of studies evaluating a certain risk factor are often 

greatly influenced by how well the study controls for other risk factors (Elvik 2011). 

Risk factors tend to be correlated. A study that examines only the simple bivariate 

relationship between a risk factor and the level of risk is therefore likely to 

overestimate the contribution of the risk factor. Numerous studies have found that 

when potentially confounding factors are controlled for, estimates of risk are usually 

adjusted downwards. Table 3 gives some examples of this. 

Table 3 about here 

The examples given in Table 3 all show that adjusted estimates of risk are lower than 

crude estimates, often by 40-50 percent. One can find examples of the opposite 

tendency, but they are far fewer than the examples of studies finding that adjusting 

for potentially confounding factors reduces estimates of risk. In principle, therefore, 

the risk curves found for illicit drugs could be the result of unequal adjustment for 

confounding factors. In particular, the highest estimates of risk might be the least 

well-controlled.  
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To test whether this is the case, estimates of risk were sorted according to the 

number of confounding factors controlled for in estimation. For amphetamines, for 

example, estimates of the risk of fatal injury were available that had controlled for 0, 

1, 2, 4 or 6 confounding factors. The weighted (fixed-effects model) mean estimate 

of risk for each number of confounding factors controlled for was estimated. Curves 

were then fitted to the data points in order to assess whether there was a relationship 

between how well studies controlled for confounding factors and estimates of risk. 

Estimates of the risk of fatal injury associated with the use of amphetamines were 

weakly positively related to the number of confounding factors controlled for, i.e. 

estimates of risk tended to be higher the more confounding factors studies controlled 

for. However, the best fitting curve, an exponential function, explained only 23.4 

percent of the variance and there were only five data points. 

For cannabis, estimates of the risk of fatal injury were found to depend weakly on 

the number of confounding factors controlled for. The summary estimate of risk was 

reduced from 1.82 when 0 confounding factors were controlled for to 1.21 when 6 

confounding factors were controlled for, and increased to 1.29 when 8 confounding 

factors were controlled for. The summary estimate of the risk of non-fatal injury 

declined monotonically from 1.86 when 0 confounding factors were controlled for to 

1.24 when 11 confounding factors were controlled for. For property-damage-only 

accidents a quadratic relationship was again found, with the summary estimate of risk 

first declining as more confounding factors were controlled for, then increasing 

again, but not to the same level as when no confounding factors were controlled for. 

These results suggest that there is a tendency for summary estimates of risk to 
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become lower as more confounding factors are controlled for. The data underlying 

the estimated relationships are, however, very noisy and the results are not 

sufficiently clear to undermine the negative relationship between the share of control 

group drivers testing positive for cannabis and the risk associated with the use of 

cannabis. 

There were few estimates of risk for opiates, but an attempt was nevertheless made 

to determine if there was a relationship between how well studies controlled for 

confounding factors and estimates of risk. A quadratic relationship was found 

between the number of confounding factors controlled for and estimates of the risk 

of fatal injury. The relationship was nonsensical, as it predicted negative estimates of 

risk when seven or more confounding factors were controlled for. Other functions 

fitted to the data (linear and exponential) indicated no relationship between the 

number of confounding factors controlled for and the estimate of risk. For non-fatal 

injury, a very clear negative relationship was found between the number of 

confounding factors controlled for and estimates of risk. Thus, the crude risk curve, 

showing a negative relationship between the percentage of control group drivers 

testing positive for opiates and the increase in risk associated with the use of opiates, 

would vanish completely if all studies had controlled as well for confounding factors 

as the best studies did. 

 

3.5 Choice of estimator of risk 

By far the two most common estimators of risk used in studies of the risk associated 

with the use of drugs is the odds ratio based on case-control studies, and the odds 
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ratio based on culpability studies. A few registry-based studies use standardised 

incidence ratio, which is the incidence of accidents in a population of users of a drug 

(often prescribed) divided by the incidence of accidents in a control population, 

adjusted for age and gender and possibly other confounding factors. 

Røgeberg and Elvik (2016) point out that the odds ratio based on culpability studies, 

as estimated in virtually all studies relying on this approach, does not show the odds 

ratio of accident involvement, but rather the odds ratio of being culpable in an 

accident. The difference between the two can be shown as follows: 

Odds ratio of being culpable = 
�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−

�

�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−
�
 

Culpable drivers are those who are held guilty or responsible for an accident, 

nonculpable drivers are those who are innocently involved in accidents and who are 

generally assumed to be representative of normal traffic. Subscript + denotes testing 

positive for a drug, subscript – denotes testing negative for a drug. Culpability studies 

in general estimate the odds ratio of being culpable. However, the odds ratio of 

becoming involved in an accident is: 

Odds ratio of accident involvement = 
�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐++ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−

�

�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−
�

 

As can be seen, the odds ratio of accident involvement will be lower than the odds 

ratio of being culpable, since accident involvement includes involvement both as the 

culpable driver and as the nonculpable driver. How large the difference between the 

two estimators is depends on the share of accidents involving nonculpable drivers. 



\\saturn\felles\FILFLYTT\NFR - egenarkivering\Elvik_10.1016_j.aap.2018.02.004.docx 19 

As an example, consider data presented by Terhune (1992) concerning culpability 

and use of drugs. Thus, for amphetamines: Culpable and positive: 10; Nonculpable 

and positive: 2; Culpable and negative: 541; Nonculpable and negative: 258. The 

odds of being culpable (the usual estimator in culpability studies) is: 

(10/541)/(2/258) = 2.38. The odds of accident involvement is: (12/799)/(2/258) = 

1.94. 

To the extent that the highest estimates of risk are based on culpability studies, they 

may be inflated and therefore to some extent explain the negative relationship 

between the percentage of control group drivers testing positive for a drug and the 

risk associated with the drug. For amphetamines, all the highest estimates of risk 

were based on case-control studies, not culpability studies. One can therefore rule 

out that the inverse risk curve was generated by inflated estimates of risk based on 

culpability studies. 

A majority (20 out of 27) of the estimates of the risk of fatal injury associated with 

the use of cannabis were based on culpability studies. Risk curves fitted to estimates 

based on culpability studies and estimates based on case-control studies were similar, 

suggesting that the risk curve is unlikely to be an artefact of inflated estimates of risk 

in culpability studies. For non-fatal injury and property-damage-only, too few 

estimates of the risk associated with the use of cannabis were based on culpability 

studies to make a comparison with case-control studies meaningful. 

Four of seven estimates of the risk of fatal injury associated with the use of opiates 

were based on culpability studies. However, these four estimates were the lowest and 

could therefore not have generated the negative relationship between the percentage 
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of control group drivers testing positive for opiates and the risk of fatal injury 

associated with the use of opiates. No estimate of the risk of non-fatal injury 

associated with the use of opiates was based on a culpability study. 

 

3.6 Small sample bias in estimates of odds ratios 

When the odds ratio of injury associated with the use of a drug is estimated by means 

of a maximum-likelihood logistic regression model, it will have an upward bias in 

small samples (Greenland 2000, Nemes et al. 2009). The size of the bias can be 

substantial. This is a potential source of error if the highest estimates of risk 

underlying the risk curves were based on logistic regression models fitted to small 

samples. The analysis in this paper does not aim to correct any bias, merely assess 

whether it is a potential source of error in the risk curves. 

To probe whether small sample bias in logistic regression models could be a source 

of error in the estimated risk curves, the statistical weights assigned to studies using 

logistic regression were compared to the statistical weights of studies not using 

logistic regression. Fixed-effects statistical weights indicate sample size. If the highest 

estimates of risk, associated with a low percentage of control group drivers testing 

positive for a drug, are based on logistic regression models developed in small 

samples (small statistical weights), the resulting risk curves could be partly artefactual. 

For each study, it was noted whether statistical analysis was based on logistic 

regression. It was found that logistic regression models are very widely used to 

estimate odds ratios that control for various confounding factors. For amphetamines, 

three of the high estimates of the risk of fatal injury were based on logistic 
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regression. However, when these were removed, the remaining estimates still 

indicated an inverse risk curve, i.e. a curve showing the lowest risk for the highest 

percentage of control group drivers testing positive for amphetamines. Such a risk 

curve would emerge even if the estimates based on logistic regression were retained, 

but arbitrarily divided by 2 to adjust for a potential bias. 

A similar assessment was made for studies of the risk associated with cannabis. For 

fatal injury, a negative risk curve remained both when four high estimates of risk 

based on logistic regression were deleted and when the estimates of risk were divided 

by two. Biased estimates of risk do therefore not seem to explain the negative risk 

curve with respect to fatal injury. With respect to non-fatal injury, the inverse risk 

curve disappeared when five high estimates of risk based on logistic regression were 

removed, but re-appeared when these estimates were included but divided by two. 

This result is somewhat ambiguous, but suggests that it cannot be ruled out that the 

risk curve for non-fatal injury is to some extent influenced by biased estimates of risk 

based on logistic regression. As far as property damage is concerned, removing 

potentially biased estimates of risk did not change the relationship to the percentage 

of control group drivers testing positive for cannabis, which remained quadratic. 

For opiates, there were no high estimates if the risk of fatal injury based on logistic 

regression. There were two high estimates of the risk of non-fatal injury based on 

logistic regression; however, removing these or dividing them by two did not change 

the inverse risk curve. 

 

3.7 Publication bias 
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To assess the possible presence of publication bias, the trim-and-fill technique was 

applied (Duval and Tweedie 2000A, 2000B, Duval 2005). As already noted, five data 

points were trimmed away in studies of the risk of fatal injury associated with 

amphetamines. For four of these data points, the percentage of control group drivers 

testing positive for amphetamines was reported. When these four data points were 

filled in, to represent non-published results, an inverse risk curve was still found. 

Thus, publication bias does not explain the inverse risk curve for the risk of fatal 

injury associated with amphetamines. 

For cannabis, an analysis adding two missing data points for fatal injury reproduced a 

quadratic function, suggesting that publication bias did not influence the form of the 

relationship between the percentage of control group drivers testing positive for 

cannabis and the risk of fatal injury associated with the use of cannabis. The risk 

curve for non-fatal injury associated with the use of cannabis, adjusted for 

publication bias, was an inverse function. This is the same functional form as found 

without adjusting for publication bias. The risk of property-damage-only, adjusted 

for publication bias, was a quadratic function of the percentage of control group 

drivers testing positive for cannabis. This functional form was the same as found 

without adjusting for publication bias. On the whole, publication bias does not 

appear to influence the risk curves for cannabis very much. 

The risk of fatal injury associated with opiates, adjusted for publication bias, was best 

described as an exponential function of the share of control group drivers testing 

positive for opiates. Estimated risk was increasing as a function of the percentage of 

control group drivers testing positive for opiates. This risk curve was very unlike the 
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inverse function found when publication bias was not considered. It may therefore 

not be ruled out that the inverse function originally found can be influenced by 

publication bias. The risk of non-fatal injury associated with the use of opiates, 

adjusted for publication bias, was best described as a quadratic function of the 

percentage of control group drivers testing positive for opiates. This function was 

not the same as found without considering publication bias, again suggesting that it 

may have influenced the risk curve found initially. 

 

4 SUBSTANTIVE INTERPRETATIONS 

4.1 Dose-response curve 

An inverse function relating the risk of injury associated with a drug to the frequency 

of use of drug in normal traffic can, at least in part be a dose-response curve. It 

could, for example, be the case that low doses, associated with small increases in risk, 

are taken frequently and higher doses, associated with larger increases in risk, are 

taken more rarely. If the percentage of control group drivers testing positive for a 

drug indicates the frequency of use, an inverse risk curve could be a dose-response 

curve. 

Unfortunately, few studies of the risk associated with illicit drugs have tried to 

estimate a dose-response relationship. For amphetamines and opiates, no study has 

been found reporting a dose-response relationship between the dose taken of the 

drug and the increase in accident risk. For cannabis, a few studies have compared 

risks associated with different doses of the drug. Based on these studies, an attempt 

has been made to test whether an inverse risk curve for cannabis can arise as a result 
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of a dose-response relationship. Since the dose taken was not coded the same way in 

all studies, it was categorised as low, medium and high. 

In the study by Mann et al. (2007), use of cannabis at least once during lifetime was 

coded as “low”, and use within the last hour as “high”. In the study by Fergusson et 

al. (2008), self-reported cases of driving under the influence of cannabis 1-10 times 

per year was coded as “low”, 11-20 times per year as “medium” and 21 times or 

more per year coded as “high”. In the study by Pulido et al. (2010) weekly use of 

cannabis was rated as “low”, use 1-4 times per week as “medium” and use more than 

4 times per week as “high”. Gadegbeku et al. (2011) specified the concentration of 

tetra-hydro-cannabinol (THC) in blood as 1-3 ng/ml (“low”), 3-5 ng/ml (“medium”) 

or ≥ 5 ng/ml (“high”). A similar scale was used by Poulsen et al. (2014), with 

intervals given as < 2 ng/ml (“low”), 2-5 ng/ml (“medium”) or > 5 ng/ml (“high”). 

Using these codes, the curves shown in Figure 7 emerge. 

Figure 7 about here 

There were five estimates of risk at a high dose, four at a medium dose and five at a 

low dose. At high or medium doses, risk is found to decrease as the percentage of 

control group drivers testing positive for cannabis increases. At low doses, no such 

tendency can be found. When all data points are considered as a whole, there is a 

clear negative relationship between the percentage of control group drivers testing 

positive for cannabis and the risk associated with the use of cannabis. Hence, an 

inverse risk curve may, at least to some extent, be the result of a dose-response 

relationship. 
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4.2 Learning curve 

An inverse risk curve could be a learning curve, if those who are located to the left 

are inexperienced and do not tolerate a drug very well, whereas those to the right 

have a long history of using a drug, tolerate it well and therefore are less at risk when 

taking the drug than less experienced users. To evaluate this hypothesis, one needs to 

know whether high-risk users of a drug are novice users of it and low-risk users of a 

drug are seasoned users of it. 

Unfortunately, data of this kind are completely absent from studies of the risk 

associated with drug use. These studies are almost exclusively case-control studies or 

culpability studies. Both these study designs are cross-sectional, i.e. they compare 

different individuals at a given point in time and do not follow the same individuals 

over time. Thus, if a group is identified in a case-control study as having a particularly 

high risk, it will consist of different individuals than a group identified in the same 

case-control study as having low risk. Even if drug use history was known for both 

groups, one cannot know whether the difference in risk was caused by differences in 

drug use history or another factor, since it is impossible to control for all factors that 

may explain differences in risk. Indeed, most case-control studies control for just a 

few confounding factors and are quite likely to be influenced by omitted variable 

bias. 

A few studies provide data and/or analyses that may shed a little light on the learning 

curve hypothesis. Fergusson et al. (2001) estimated a negative coefficient for 

cannabis use in logistic regression, suggesting that an increase in use was associated 

with a lower accident risk. The coefficient was not statistically significant. Gerberich 
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et al. (2003) found that males who reported using cannabis more than five years had 

lower accident risk than those who reported using cannabis less than five years. 

Among females, the opposite was found: the longer the use of cannabis, the higher 

the accident risk. Use of cannabis more than once per week among males was 

associated with lower risk than use of cannabis less than once per week. Again, 

however, the pattern was the opposite among females. 

Engeland et al. (2007) found a weak tendency for risk to be reduced after 14 days of 

using opioids prescribed as a painkiller, compared to the risk associated with 7 days 

of usage. Gibson et al. (2009) also found that prolonged use of opioids was 

associated with lower risk. Majdzadeh et al. (2009) found an increase in risk during 

the first few hours after consumption of opioids, then a decline. The study covered 

six hours after consumption. Romano et al. (2014) found a negative coefficient for 

use of cannabis in logistic regression, reproducing the finding of Fergusson et al. 

(2001). 

The results of these studies give, at best, a weak indication that long-term use of a 

drug may be associated with lower risk. The findings are, however, too few to 

support a claim that the negative risk curves can be explained in terms of habituation 

and increased tolerance of drugs. 

 

4.3 Selective driver recruitment 

The final hypotheses about how a negative risk curve can arise is that the high-risk 

end of the curve is associated with a selective recruitment of drivers; that the high 

risk found is the result not only, or perhaps primarily, of drug use, but of behaviour 
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which is socially deviant in many respects. Few, if any, studies present data or 

analyses that shed light on this hypothesis. Some studies, for example Gjerde et al. 

(2011, 2013), contain tables showing characteristics of cases and controls, like age, 

gender, place of residence etc. These are easily observable characteristics, and there 

are usually no dramatic differences between cases and controls with respect to these 

characteristics. 

Gjerde et al. (2011) note that “the use of illegal drugs, the abuse of psychoactive 

medicinal drugs, binge drinking of alcohol can all be related to risk taking behaviour, 

and subsequently careless or aggressive driving. This may have been a significant 

confounding factor that cannot be adjusted for in the calculations.” Indeed, a report 

prepared by the Traffic Police in Norway (Pasnin et al. 2009) found that a large share 

of drivers who were involved in fatal accidents had a criminal record. The criminal 

record included all types of offences – violence, burglary, rape, etc. – and not just 

traffic offences. Thus, in a society like Norway, where using drugs is still an offence 

and widely disapproved of by most people, those who take drugs and drive are a very 

atypical group. 

It requires extensive data collection to be able to statistically control for various 

forms of social deviancy. It is fair to say that none of the studies included in this 

paper have controlled very well for driver characteristics. It is, to be sure, not easy. In 

particular, when the groups of interest are so small as they probably are in Norway, 

one simply does not have statistical power to estimate the effects of more than a few 

driver characteristics, which, to make things even more difficult, are highly 

correlated. 
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It is therefore to a large extent unknown whether unmeasured driver characteristics 

may explain the high risk found when few drivers in normal traffic test positive for a 

drug.  

 

5 DISCUSSION 

An analyst preparing for meta-analysis will often develop funnel plots and examine 

them critically. Were one to do so for studies of the risk associated with the use of 

amphetamines, cannabis and opiates, the most logical conclusion would be not to 

perform a meta-analysis, because the estimates of risk are too widely and 

unsystematically dispersed for a weighted mean estimate of risk to make sense. 

Funnel plots, however, are not a perfectly reliable screening device to help decide 

whether to proceed with a meta-analysis or abstain from it. An untidy funnel plot 

may hide a very systematic pattern in results. For the drugs included in this paper, 

inverse risk curves were found to describe reasonably well the relationship between 

use of a drug and the risk associated with it. All these risk curves indicated that the 

less widespread the use of a drug is in normal traffic, the higher is the risk of traffic 

injury associated with it. Thus, rather than summarising the results of studies in terms 

of a single point estimate of risk, it would seem more informative to summarise the 

studies in terms of risk curves. 

However, summarising knowledge by means of curves makes sense only if the curves 

can be given a meaningful interpretation. While a risk curve may be a statistically 

more precise way of summarising knowledge than a single mean estimate of risk, the 

question that immediately comes to mind is how the risk curve arises. Unfortunately, 
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the inverse risk curves found for the illicit drugs discussed in this paper can arise in 

many ways. Ten interpretations were proposed; seven of them suggest that the 

curves are statistical artefacts. Should these interpretations be supported, it would in 

a sense create a knowledge vacuum: We found these curves, but we have no idea 

about how they arise and we are not even sure they are real. 

There are, to be sure, substantive interpretations of the curves, pointing out causal 

mechanisms that may produce them. In general, the review of studies in this paper 

found that most papers do not report the information needed to assess support for 

the substantive interpretations. These interpretations therefore remain speculative, 

although they all seem plausible. But plausibility cannot replace hard evidence. Table 

4 summarises the assessment of the various interpretations of the risk curves. 

Table 4 about here 

It is seen, that in the majority of cases, more than one interpretation is supported. 

Although there is some support for the methodological interpretations, this of course 

does not rule out that the substantive interpretations can be correct. The risk curves 

therefore show that there is deep uncertainty about the relationship between the use 

of illicit drugs and the risk of traffic injury. One cannot rely on the risk curves to 

predict the impact of policies designed to discourage the use of drugs when driving. 

Suppose, for example, that by means of targeted enforcement, one could reduce the 

share of drivers using a drug from 6 % to 3 %. Would the number of accidents be 

reduced correspondingly? Perhaps not. Perhaps the remaining 3 % of drivers would 

represent a higher risk than the original 6 %. But, then again, the remaining 3 % were 

included in the original 6 %, so perhaps there would be a net reduction of accidents 



\\saturn\felles\FILFLYTT\NFR - egenarkivering\Elvik_10.1016_j.aap.2018.02.004.docx 30 

after all. It would, however, most likely not be a linear function of the percentage of 

drivers taking the drugs. It is pure fantasy to try to use the risk curves to predict the 

impacts of any policy intervention. 

 

6 CONCLUSIONS 

The following main conclusions can be drawn from the study presented in this 

paper: 

1. A negative risk curve has been found for amphetamines, cannabis and 

opiates, meaning that the higher the proportion of drivers in roadside surveys 

testing positive for these drugs, the lower is the estimated risk of traffic injury 

associated with them. 

2. Negative risk curves can arise in many ways. Ten sources of such curves are 

identified. 

3. In general, it cannot be ruled out that the negative risk curves found for illicit 

drugs are statistical artefacts. 

4. There is insufficient evidence to assess the support for a substantive 

interpretation of the risk curves. 
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Interpretations of interaction in estimates of the risk of traffic injury associated with the use of drugs 

 

Table 2: 

Test of statistical weighting of risk curves 

 

Table 3: 

Studies comparing crude and adjusted estimates of risk of traffic injury associated with the use of drugs 

 

Table 4: 

Summary of support for interpretations of interaction in estimates of the risk of traffic injury associated with the use of drugs 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Figure 7: 
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Table 1: 

Interpretation of interaction Evaluation of interpretation Evidence for or against interpretation 
1 Statistical weighting of data points Compare curve fitted by giving all data points the same weight to 

curve fitted to data points with inverse-variance weights 
If the weighted curve is flatter than the crude curve or of a different form, the 
statistical weighting interpretation is supported 

2 Unequal variance of estimates of 
use in control group 

Compare variance of estimates of share of control group drivers 
testing positive across range of estimates 

If variance is larger when the share of control group drivers testing positive is 
low than when it is high, the unequal variance interpretation is supported 

3 Selective reporting of drug use in 
normal traffic 

Impute data points not reporting use of drug in normal traffic in a 
way that is maximally inconsistent with the pattern for data points 
reporting the use of a drug in normal traffic 

If the risk curve including both original and imputed data points differs from the 
original risk curve, failure to report the use of a drug in normal traffic may have 
influenced the risk curves 

4 Unequal adjusting for 
confounding factors 

Compare mean number of confounding variables controlled for 
between studies reporting a high share of control group drivers 
testing positive and studies reporting a low share of control group 
drivers testing positive 

If there is poorer control for confounding variables in studies reporting a low 
share of control group drivers testing positive, the unequal adjusting 
interpretation is supported 

5 Confounding by different 
estimators of risk 

Compare estimates of risk based on culpability ratio, odds ratio 
and relative risk across range of share of control group drivers 
testing positive 

If the culpability and odds ratio estimators are more common in studies 
showing a low share of control group drivers testing positive than in studies 
showing a high share of control group drivers testing positive, the bias by 
choice of estimator interpretation is supported 

6 Small sample bias in odds ratio Compare sample size serving as basis for estimating odds ratio 
across the range of share of control group drivers testing positive 

If studies finding high risk are based on smaller sample sizes than those 
finding low risk, the small sample bias interpretation is supported 

7 Publication bias Conduct a trim-and-fill analysis to test for publication bias; fit curve 
to trimmed data set 

If the curve fitted to the trimmed data set is flatter than the curve fitted to the 
complete data set, the publication bias interpretation is supported 

8 Dose-response curve Identify data points belonging to a dose-response curve and 
compare them to data points not belonging to a dose-response 
curve 

If a curve fitted to data points not belonging to a dose-response curve is flatter 
than a curve fitted to data points belonging to a dose-response curve, the 
dose-response interpretation is supported 

9 Learning curve Check if studies showing a high share of control group drivers 
testing positive provide evidence of tolerance or long-term drug 
use among these drivers more often than studies showing a low 
share of control group drivers testing positive 

If there is evidence of more tolerance or long-term drug use in studies showing 
a high share of control group drivers testing positive, the learning curve 
interpretation is supported 

10 Social deviance; selective 
recruitment 

Check if evidence of social deviance is found more often in studies 
indicating high risk than in studies indicating low risk 

If there is stronger evidence of social deviance in studies showing high risk 
than in studies showing low risk, the social deviance interpretation is supported 
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Table 2: 

 
Drug 

 
Injury severity 

 
Estimates 

Statistical 
weighting 

Best fitting 
curve 

 
Coefficient 

 
Standard error 

 
Difference 

Standard error 
of difference 

 
Conclusion 

Amphetamines Fatal 10 No Power -0.740 0.194    

   Yes Inverse 1.850 0.213 Not defined Not defined Difference 

Cannabis Fatal 27 No Logarithmic -0.377 0.093    

   Yes Quadratic 0.009; -0.001 0.004; 0.000 Not defined Not defined Difference 

Cannabis Non-fatal 22 No Inverse 1.427 0.159    

   Yes Inverse 1.398 0.097 0.029 0.186 No difference 

Cannabis Property damage 14 No Quadratic -0.119; 0.003 0.078; 0.002    

   Yes Quadratic -0.109; 0.003 0.004; 0.000 -0.010; 0.000 0.078; 0.002 No difference 

Opiates Fatal 7 No Inverse 2.290 0.422    

   Yes Inverse 1.311 0.361 0.979 0.555 No difference 

Opiates Non-fatal 8 No Inverse 0.466 0.238    

   Yes Linear -0.982 0.252 Not defined Not defined Difference 
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Table 3: 

 
 
Drug 

 
Injury or accident 
severity 

 
 
Study 

 
 

Crude estimate of risk 

 
Adjusted estimate of 

risk 

Number of 
confounding variables 

controlled for 

 
Percentage change in 

estimate of risk 

Amphetamines Fatal Gjerde et al. 2011 26.70 20.90 4 -22 % 

Cannabis Fatal Bedard et al. 2007 1.39 1.29 7 -7 % 

Cannabis Fatal Gadegbeku et al. 2011 2.26 1.53 4 -32 % 

Cannabis Fatal Gadegbeku et al. 2011 4.54 2.84 4 -37 % 

Cannabis Fatal Gadegbeku et al. 2011 3.51 2.01 4 -43 % 

Cannabis Fatal Gjerde et al. 2013 2.40 1.90 7 -21 % 

Cannabis Fatal Poulsen et al. 2014 2.40 1.42 8 -41 % 

Cannabis Fatal Poulsen et al. 2014 1.97 0.98 8 -50 % 

Cannabis Fatal Poulsen et al. 2014 2.95 1.61 8 -45 % 

Cannabis Non-fatal Blows et al. 2005 11.40 0.80 11 -93 % 

Cannabis Non-fatal Blows et al. 2005 12.70 9.50 11 -25 % 

Cannabis Property damage Mann et al. 2010 3.28 1.84 8 -44 % 

Cannabis Property damage Compton and Berning 2015 1.25 1.00 4 -20 % 

Opiates Injury Gibson et al. 2009 1.44 0.90 8 -37 % 

Opiates Injury Hels et al. 2013 2.40 1.18 4 -51 % 
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Table 4: 

 
Interpretation 

Amphetamines fatal 
injury 

Cannabis fatal 
injury 

Cannabis non-fatal 
injury 

Cannabis property-
damage-only 

Opiates fatal injury Opiates non-fatal 
injury 

Statistical weighting Not an issue Does matter Not an issue Not an issue Not an issue Does matter 

Unequal variance of exposure Not an issue Not an issue Not an issue Not an issue Does matter Not an issue 

Selective reporting of exposure Not an issue Does matter Not an issue Not an issue Does matter Does matter 

Unequal control for confounding Not an issue Weak effect found Weak effect found Weak effect found Not an issue Strong effect found 

Choice of estimator of risk Not an issue Not an issue Cannot be tested Cannot be tested Not an issue Not an issue 

Biased estimates of risk Not an issue Not an issue Maybe a problem Not an issue Cannot be tested Not an issue 

Publication bias Not an issue Not an issue Not an issue Not an issue Does matter Does matter 

Dose-response relationship Cannot be tested Cannot be tested Is supported Is supported Cannot be tested Cannot be tested 

Learning curve Cannot be tested Cannot be tested Weak tendency Weak tendency Cannot be tested Weak tendency 

Selective driver recruitment No relevant data No relevant data No relevant data No relevant data No relevant data No relevant data 
 


