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ABSTRACT 

The vast majority of studies on urban travel demand focus on the effect on the demand of 

one travel mode given a change in the characteristics of that same transport mode, e.g. own-

elasticities. Comparatively little is known about cross-elasticities of demand. In particular, 

there is a need for a better understanding of the underlying mechanisms of modal substitution, 

i.e. a better understanding of cross-modal diversion factors defined as the proportion of 

people who leave mode A that switch to mode B. The purpose of this paper is to investigate 

what factors explain variations in diversion factors across transport modes, submarkets and 

policy measures. Using a recently developed empirical travel mode choice model for the Oslo 

Area, we simulate over ten thousand different diversion factors by systematically changing 

the underlying transport modes, submarkets and policies (size, direction and type of change). 

With descriptive statistics, we show how the diversion factors vary on a general level. Most 

results are immediately intuitive, e.g. that car drivers mostly substitute to walk for short 

distance trips but that those diversion factors diminish rapidly with increasing distance. 

Interestingly, we find rather high diversion factors across different forms of public 

transportation. With successive regression analyses we show that the number of available 

alternatives and relative market shares significantly affect diversion factors.  
Keywords: diversion factors, cross-model substitution, nested logit model, sample enumeration 

1  INTRODUCTION 

It is safe to say that urban passenger cross modal substitution is not very well understood. 

Intermodal interaction was identified by Dodgson [1] back in 1991 as an issue in need of 

further research. This remains the case. It is widely accepted that it is difficult to generalize 

results and establish “rules of thumb” because – as opposed to direct effects (own-elasticities) 

– cross modal substitution (cross-elasticities) are very context dependent. This is because the 

availability and quality of travel alternatives differs greatly between study areas. A cross-

elasticity towards metro, say, may be very low in city A compared to city B, not just because 

travelers’ preferences may differ, but because the metro service may be relatively poor in city 

A. A related factor that adds to the variation across studies with regards to cross-elasticities 

is the fact that relative market shares (of altered and affected mode) directly affect the 

absolute value of cross-elasticities (see [2]). Surprisingly, market shares are seldom reported 

alongside cross-elasticities in the literature [3]. Without controlling for market shares, it is 

often difficult to explain variation in reported cross-elasticities.  

In this paper, we take a closer look at the underlying mechanisms of modal 

substitution by studying cross modal diversion factors (DF). The notion of DF is 

straightforward. For example, say 100 persons stop traveling by car as a result of a gas price 

increase and that 20 of them will walk instead, 10 switch to cycling, 30 to bus, 20 to metro, 



10 to rail, and 10 stay home and do not travel. The DFs factors will then be 10%, 30%, 20%, 

10%, and 10%, respectively.  

As opposed to cross-elasticities, DFs are independent of the relative markets shares 

of the altered mode – at least as a first order effect – and can therefore be expected to be more 

stable across studies [4]. Still, differences in availability and quality of alternative travel 

modes across studies remain a challenge when aiming for generalizable results. Also, the 

composition of trips (distribution of trip distance, trip purposes etc.) in the empirical data is 

likely to affect overall results. E.g. in dense cities, travel distance will be shorter on average 

and that will, all else being equal, cause diversion factors towards walking to be higher than 

in more spread-out cities. 

Another element that can affect the comparison of evidence of cross modal 

substitution are differences in the methods of data collection and modeling used. Cross-

elasticities and diversion factors can be measured/predicted by different approaches 

including – among others – before-after studies [5], time series regression models [6]-[10] 

and cross-sectional choice modelling either based on stated preference (SP) [11]-[13] or 

revealed preference (RP) [14]-[17]. Little is known how the methodological approach may 

impact on study results. 

The literature on diversion factors is limited. Some key contributions include the 

following. Acutt and Dodgson [18] asked 25 experts and operators for their opinion on DFs 

between car and rail/metro/bus following fare reductions, i.e. the proportion of new 

rail/metro/bus passengers that previously used car. The DFs ranged from 1 percent (London, 

car to bus) to 25 percent (intercity, car to rail). Storchmann [19] estimated DFs from car to 

public transport resulting from changes in fuel taxes in Germany for various trip purposes. 

The DFs ranged from zero percent for business, holiday and leisure trips to 100 percent for 

education trips. Adler and van Ommeren [20] studied the effects of public transport strikes 

during 2003-11 in Rotterdam and found DFs from public transport to car and cycling of 27-

29 percent. Prud’homme et al. [21] did an ex-post survey among 1,000 passengers on a Paris 

tramline that had been converted from bus, coinciding with a capacity reduction on a parallel 

road link. Their results suggest that most tram passengers were diverted from other public 

transport (bus 57% and subway 38%). Only 3% of the tram passengers used car previously. 

Murphy and Usher [22] surveyed users of Dublin’s inner city bike sharing scheme and found 

that its users were diverted from walk (46%), bus (26%), car (20%), and rail (9%). The 

Norwegian empirical evidence is very limited. Fearnley and Nossum [23] evaluated the 

Norwegian Ministry of Transport’s 1990s urban public transport policy packages and found 

that 42.7 percent of passengers on new or improved bus services would otherwise have 

generated a car trip. Fearnley [24] reviewed experiences around the world with free local 

public transport and concluded that typically, a very low proportion of generated patronage 

stems from car. New passengers are more likely to be generated traffic and diverted from 

walk and cycle.  

As seen from this brief literature review, the range of estimated DFs is substantial. 

It is likely that various factors relating to the context of the study and/or the applied method 

affect the empirical values. 

To tackle the challenge of producing transferable results, our general approach in 

this paper is laid out as follows: First, we control for the general context by keeping the 

analysis within one study area: the Greater Oslo Area. Second, we base our results on one 

general type of model: the travel mode choice model MPM23 [25]. Third, we simulate 

diversion factors for different submarkets and different policy measures with the aim of 

learning how a) availability of modes b) quality of modes c) trips distance d) trip purpose e) 



type of policy f) size of policy change affect the simulated diversion factors from and towards 

different transport modes (car, train, bus, metro/tram, walk and cycle).  

This analytical method can be referred to as “model-internal meta-analysis” as the 

same model is applied for a large range of policies and submarkets and subsequent regression 

analysis is performed on the simulated results in a similar way as in a typical (formal) meta-

analysis. Thus, the feature of “model-internal meta-analysis” (compared to regular meta-

analysis) is that the dependent variable in the regression models (the DFs) comings not from 

different studies found in the literature but from the same geographical context and modelling 

approach. Similar methodologic approaches have earlier been applied in analyzing the 

‘package’ approach to transport policy, whereby strategic or tactical models are run many 

times and the results then subject to further analysis (see [26]-[29]). 

2  THE DIVERSION FACTOR: SOME MEASURES, THEORY AND PROPERTIES 

In several studies, DFs are established based on survey data. They may take the form 

of direct questions on how respondents would behave if their current mode became 

unavailable (e.g. [30]), or of transfer time (and cost) questions on intended behavior of the 

form “How much would your journey cost have to increase before you switch to another 

mode / don’t make this trip?” (e.g. [31]). The DFs are calculated as the proportion who states 

that they would switch to each mode (or not travel). 

Another way to obtain DFs is to observe the change in demand for mode j and the 

proportion that diverts to mode i. Formally, this would be calculated as  

 DFji = (QT1 i – QT0 i) / (QT1 j - QT0 j) (1) 

Where Q is demand (number of passengers); T0 and T1 are time periods or scenarios. In 

typical scenario analysis (e.g. two model runs), j is the transport mode that is altered in 

attributes, while i remains unchanged. DFji is then referred to as diversion factor from mode 

j towards mode i (given a change in mode j). This is the standard procedure for deriving DFs 

from discrete choice models or transport models. A base scenario (T0) is compared to an 

intervention scenario (T1) where one (or several) attribute is (are) changed. The resulting Q’s 

are then plotted into the above formula in order to obtain DFs.  

DFs can also be calculated ‘backwards’ from known cross-elasticities, known own-

elasticities and known market shares. We have the following relationship, which defines 

cross elasticities of demand [2]: 
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When inserting the definition of linear-arc-elasticities in (3), it is straightforward to show that 

(3) is mathematically equivalent with (1). 

Note that the sum of DFs from mode j to all other transport modes i adds up to 100 

percent when travel mode choice is the only behavior dimension in the modelling framework. 

When trip generation is included (or the choice model includes an option for “not travelling”), 



the sum of DF towards a transport mode which is improved can be smaller than 100% when 

the improvement creates generated traffic (or a worsening leads to suppressed transport). 

When transport modes are substitutes (the usual case), DF are non-negative. For 

complementary modes DF can be negative. In this case, of two complementary modes, it can 

be that DF towards a third mode is above 100%. For example, consider a measure that yields 

an increase in train ridership of 100 persons. Assume that metro is - on average - a 

complement to train and every 10th new train user generates one additional metro trip. 

Assume this makes 110 fewer bus trips; then the diversion factor from train to bus would be 

110%. 

DFs are “directional”, i.e. DFji ≠ DFij in general. It is worth noting that, in the 

literature, diversion factors are sometimes defined interchangeably as “proportion of travelers 

that leave mode i that switch to mode j” on the one side, or as “proportion of new travelers 

on mode j that switched from mode i”. There is no reason at all for these to be the same 

quantum: To say that 20 percent of new bus passengers previously used car, is in fact 

essentially different from saying that 20 percent of motorists who leave the car would switch 

to bus. The fact that this is often treated as the same phenomenon in the literature may relate 

to a failure to understand Bayes’s Theorem and conditional probabilities. 

Note that DF may also be non-symmetric for a given altered mode j, for example 

can price increase of mode j make a higher proportion substitute to mode i, than a price 

reduction would attract from mode i. This is intuitive in real life and an important question 

relates to which methods would allow to preserve/capture such a non-symmetry. As a point 

estimate, DFAB should be the same quantum whether it be “the proportion of traffic lost to j 

which switches to i if j gets worse” or “the proportion of j’s new traffic which has come from 

i is j gets better”. For DFs that are calculated as in equation 1, this may not be the case when 

the underlying model is nonlinear in attributes. For instance, when quantities are predicted 

with logit models a certain non-symmetry is expected given the S-shape of the logit model. 

However, if changes in attributes are small (e.g. 1% and -1% changes) results will tend to be 

close-to-symmetrical.  

In the introduction section, it was mentioned that diversion factors are independent 

of the relative market shares at a first order effect. That is, equation 1 does not involve market 

shares of i and j. However, it is likely that market shares represent the competitiveness of 

travel alternatives and are therefore likely to influence the changes in quantities in equation 

1. For instance, (QT1 i – QT0 i) is likely to be great in absolute terms when mode i is a highly 

competitive transport mode and therefore a likely substitute to mode j.  

Furthermore, when quantities in (1) are predicted on the basis of multinomial logit 

models we can establish a direct relationship (see the appendix for the derivation): 

DFij = Pj /(1-Pi). (4) 

where Pj, Pi are (individual) choice probabilities for mode j and i respectively.  

(4) holds true on an individual level, in which case DFji is interpreted by relative probabilities 

to switch from mode j to mode i. Aggregating over (heterogeneous) individuals (as done in 

this paper by means of sample enumeration), (4) does not necessarily hold on a market level, 

in which case P represent market shares. Note also that for nested logit models, (4) applies 

only for modes of the same lowest level nest. The relationship between market shares and 

diversion factors is empirically investigated in the later analysis of this paper. 

 

3  METHODOLOGICAL APPROACH 

Recently, Flügel et al [25] established a travel mode choice model, referred to as MPM23, 

for short distance trips within Norway’s capital Oslo and the surrounding county Akershus. 



MPM23 is a nested logit model that calculates choice probabilities of nine alternatives that 

are structured into 4 nests: car (includes choice alternatives: car driver and car passenger), 

walk, cycle and PT (includes choice alternatives: train, bus, metro/tram, combinations with 

train and combination of bus and metro/tram). Model parameters are estimated from travel 

surveys, where respondents reported trip diaries of the day before the interview was 

conducted. Respondents do only report their actual behaviors (chosen transport mode, trip 

purpose etc.), i.e. revealed preference data. The model includes the usual Level-of-Service 

(LoS) attributes as well as several dummy variables that calibrate the choice probabilities for 

different submarkets. Trip frequency is not modeled; nor is destination choice or traffic 

assignment. 

The estimated model is implemented in Microsoft-Excel with an intuitive user 

interface for stylized scenario analysis. Users can specify changes in LoS-variables in percent 

of the base values. The model predicts new market shares by sample enumerating choices of 

14947 observations (single trips). The method of sample enumeration has a long tradition 

(going back to at least Ben-Akiva and Atherton [32]). An attractive feature is that it preserves 

information at the individual level. This is important in the case of MPM23, among others 

because the model operates with choice sets defined at the individual level (see below).  

In theory, it would be possible to differentiate the full MPM23 model and extract 

(individual) diversion factors directly by equation 4. However, each individual in each 

submarket (trip purpose, geography, distance) faces different constraints and different 

availabilities of transport modes. There is simply not one effect on mode choice that applies 

to all individuals. As we are interested on results on a market (submarket) level, we must run 

MPM23, predict individual choice in behavior but calculate diversion factors on a market 

(submarket) level.  

For the analysis in this paper, nine choice alternatives in MPM23 are merged into 6 

travel modes as described in table 1. 

Table 1:  Travel alternatives in MPM23 and in this paper. 

Travel modes in MPM23 Shares going into new categorization 

Car driver 100% to Car 

Car passenger  100% to Car 

Walk 100% to Walk 

Cycle 100% to Cycle 

Train (without transfer to other PT) 100% to Train 

Bus (without transfer to other PT) 100% to Bus 

Metro/Tram (without transfer to other PT) 100% to Metro/Tram 

Combination with train 50% to Train, 25% to Bus, 25% to Metro/Tram 

Combination with bus and metro (not train) 50% to Bus and 50% to Metro/Tram 

 

Reducing from 9 to 6 choice alternatives eases interpretation, streamlines analysis and 

increases transferability of the results. A disadvantage with this procedure is that the category 

Bus (Metro/Tram) might include some trips which are actually made by train and metro/tram 

(bus). 

We use MPM23 to predict changes in ridership given policy scenarios and we 

calculate diversion factors applying equation 1. In total, we have calculated 11560 single 

diversion factors. Table 2 lists the variables by which the scenarios differ from each other. 



Table 2:  Underlying variables in scenario simulations 

Travel 
mode 
altered 

Policy variable Size of 
change 

Travel 
mode 
affected 

Trip 
dist-
ance 

Geography Trip purpose 

 Car 

 Train 

 Bus 

 Metro/ 
tram 

 In vehicle time  

 Out-of-pocket 
costs*  

 Access / egress 
time (not car) 

 Waiting time 
(not car) 

 Number of 
interchanges 
(not car) 

 -30% 

 -1% 

 +1% 

 +30% 

 Car 

 Walk 

 Cycle 

 Train 

 Bus 

 Metr
o/ 
tram 

 <5k
m 

 >5k
m 

 Urban 

 Suburban 

 Urban to/ 
from 
suburban 

 Commuting 

 School 

 Business 

 Grocery 

 Deliver / 
pick up 

 Other 
leisure 

* includes fuel and road tolls cost for car and single ticket prices for PT (users with season ticket have 
zero costs in the current version of MPM23).  

 

 

The combination of the latter three categories yields 36 submarkets (2 trip distances * 3 

geographies * 6 trip purposes). Three of those submarkets had less than 30 observations in 

the data set and were merged together resulting in 34 submarkets. Table 3 presents sample 

size and baseline market shares of these submarkets. 

  



 

Table 3:  Sample size and base line market shares the 34 submarkets 

Index Characteristic of submarket* N 
Baseline market shares (%) 

Car Walk Cycle Train Bus 
Metro/ 

tram 

1 >5km; urban; commuting  983 32.7 2.0 8.9 6.9 18.0 31.5 
2 >5km; urban; school  103 8.1 1.1 5.3 5.2 22.3 58.0 
3 >5km; urban; business  73 50.6 1.0 3.5 4.3 15.4 25.1 
4 >5km; urban; grocery 354 56.3 2.4 4.4 3.9 11.9 21.1 
5 >5km; urban; deliver/pick up 135 75.2 2.4 4.2 1.6 6.7 10.0 
6 >5km; urban; other leisure 607 41.3 4.5 6.2 3.4 16.6 28.2 
7 >5km; suburban; commuting  517 86.0 0.5 2.6 4.5 6.0 0.4 
8 >5km; suburban; school  48 23.5 1.5 8.1 17.3 47.4 2.1 
9 >5km; suburban; business  31 91.3 0.4 1.1 3.4 3.6 0.2 
10 >5km; suburban; grocery 456 92.1 0.8 1.7 1.6 3.9 0.1 
11 >5km; suburban; deliver/pick up 193 97.1 0.4 0.8 0.4 1.2 0.0 
12 >5km; suburban; other leisure 514 87.4 1.1 2.0 3.0 6.2 0.3 
13 >5km; u to/from s; commuting  1423 54.0 0.3 3.6 16.2 18.4 7.5 
14 >5km; u to/from s; school  63 15.6 1.3 4.1 31.2 32.1 15.7 
15 >5km; u to/from s; business  96 67.5 0.1 1.1 9.9 15.9 5.5 
16 >5km; u to/from s; grocery 421 76.4 0.5 1.7 10.5 7.5 3.4 
17 >5km; u to/from s; deliver/pick up 236 92.1 0.5 1.2 1.9 2.6 1.7 
18 >5km; u to/from s; other leisure 771 67.8 1.2 3.0 10.2 12.6 5.3 

19 <5km; urban; commuting  839 18.3 32.9 14.0 0.3 14.0 20.5 
20 <5km; urban; school  96 5.7 27.4 9.9 0.7 24.5 31.9 
21 <5km; urban; business  83 27.6 28.9 6.2 0.3 9.1 27.8 
22 <5km; urban; grocery 1492 33.0 50.3 5.6 0.0 4.9 6.2 
23 <5km; urban; deliver/pick up 485 49.8 40.6 4.7 0.0 2.8 2.1 
24 <5km; urban; other leisure 1582 19.0 57.2 6.4 0.1 6.2 11.1 
25 <5km; suburban; commuting  213 60.5 25.6 8.4 0.2 5.3 0.0 
26 <5km; suburban; school  35 21.8 38.5 19.0 1.4 19.2 0.0 
27 <5km; suburban; grocery 773 70.2 24.0 3.5 0.1 2.1 0.0 
28 <5km; suburban; deliver/pick up 370 80.0 17.3 2.1 0.0 0.7 0.0 
29 <5km; suburban; other leisure 751 50.9 41.7 4.7 0.1 2.6 0.0 
30 <5km; u to/from s; commuting  139 56.9 20.7 10.2 1.1 9.3 1.8 
31 <5km; u to/from s; grocery 421 65.6 26.2 3.5 0.2 3.8 0.7 
32 <5km; u to/from s; deliver/pick up 213 79.6 16.0 2.7 0.3 1.3 0.1 
33 <5km; u to/from s; other leisure 393 45.1 44.6 5.1 0.2 4.1 0.9 
34 <5km; remaining 38 64.4 17.2 4.9 0.6 12.9 0.0 

* ”u to/from s” means “urban areas to/from suburban areas 

 

Overall, car has the highest market shares in the Greater Oslo Area. This holds true for most 

submarkets. Exceptions are school trips and most short distance (<5km) urban trips. 

Not surprisingly, the market share for walking varies considerable between short 

distance and longer distance trips. Cycling has higher market shares for commuting and 



school trips. Train is barely used for trips under 5 km and has its highest market shares on 

longer suburban and “suburban to/from urban” trips. Also, the market shares for bus varies 

greatly across submarkets; school trips are particularly often done by bus. Bus - and to an 

even higher degree metro/tram – has higher market shares for urban than for suburban trips. 

There are no short distance metro/tram trips within suburban areas since metro/tram is not 

available there. The market shares for metro/tram trip departing and/or ending in suburban 

areas are in reality trips made by combinations of transport modes but are coded as 

metro/tram with the applied method. 

The competitive structure in the 34 submarkets can also be described by the 

available choice alternatives (table 4). Whether a travel mode is “available” or not, is defined 

by MPM23 on a trip level. Car is always available, as the model assumes that you can always 

be “car passenger”. For walk and cycle, availability is defined by the trip distance, with limits 

of availability of 10km and 40 km, respectively. Availability of PT is mainly defined by 

distance to the nearest station in a similar fashion (see [25] for details). 

For submarkets with shorter trips (< 5km), train (and to a lower degree: metro/tram) 

are seldom defined as available due to unreasonably long access/egress times to the nearest 

station. The availability for walk decreases rapidly for submarkets with longer trip relations. 



Table 4:  Average distance and availability of modes (averages over trips within 

submarkets)  

In-
dex 

Characteristic of submarket* 

Averag
e dist-
ance 
(km) 

No. of 
available 

travel 
modes 

Availability by mode (%)** 

Car Walk Cycle Train Bus 
Metro/ 

tram 

1 >5km; urban; commuting  9.0 4.9 100 73 100 30 97 90 
2 >5km; urban; school  9.1 4.8 100 71 100 17 93 95 
3 >5km; urban; business  8.6 5.0 100 82 100 27 97 89 
4 >5km; urban; grocery 8.2 4.9 100 83 100 24 97 85 
5 >5km; urban; deliver/pick up 8.8 4.8 100 73 100 22 96 88 
6 >5km; urban; other leisure 8.4 4.8 100 80 100 20 96 86 
7 >5km; suburban; commuting  19.8 4.1 100 25 90 62 96 39 
8 >5km; suburban; school  18.5 4.2 100 38 88 65 100 33 
9 >5km; suburban; business  17.8 4.0 100 32 87 61 87 32 

10 >5km; suburban; grocery 13.0 4.2 100 54 97 53 88 26 
11 >5km; suburban; deliver/p. up 19.3 4.1 100 51 88 50 90 32 
12 >5km; suburban; other leisure 18.9 4.1 100 43 88 55 88 33 
13 >5km; u to/from s; commuting  20.9 4.6 100 21 90 72 97 79 
14 >5km; u to/from s; school  18.7 4.8 100 29 95 81 98 81 
15 >5km; u to/from s; business  21.1 4.5 100 22 91 69 95 75 
16 >5km; u to/from s; grocery 18.9 4.7 100 35 91 76 98 73 
17 >5km; u to/from s; deliver/p. up 18.6 4.5 100 36 88 61 96 68 
18 >5km; u to/from s; other leisure 18.6 4.6 100 32 92 68 96 73 

19 <5km; urban; commuting  2.8 4.4 100 100 100 10 68 58 
20 <5km; urban; school  2.8 4.4 100 100 100 8 70 60 
21 <5km; urban; business  2.5 4.3 100 100 100 13 51 64 
22 <5km; urban; grocery 1.7 3.6 100 100 100 3 30 22 
23 <5km; urban; deliver/pick up 1.8 3.5 100 100 100 1 28 17 
24 <5km; urban; other leisure 2.0 3.8 100 100 100 5 38 34 
25 <5km; suburban; commuting  2.6 3.4 100 100 100 8 32 1 
26 <5km; suburban; school  2.6 3.5 100 100 100 6 40 3 
27 <5km; suburban; grocery 2.2 3.2 100 100 100 2 21 0 
28 <5km; suburban; deliver/pick up 2.3 3.2 100 100 100 1 16 0 
29 <5km; suburban; other leisure 2.2 3.2 100 100 100 3 18 0 
30 <5km; u to/from s; commuting  3.2 4.1 100 100 100 17 70 19 
31 <5km; u to/from s; grocery 2.3 3.6 100 100 100 8 40 12 
32 <5km; u to/from s; deliver/p. up 2.6 3.5 100 100 100 7 37 6 
33 <5km; u to/from s; other leisure 2.1 3.5 100 100 100 7 31 10 
34 <5km; remaining 2.9 3.7 100 100 100 13 50 3 

*”u to/from s” = “urban areas to/from suburban areas ** as defined on an individual trip level in 
MPM23 

 

The overall methodical approach of our analysis is briefly summarised in figure 1. 



 
Figure 1: Overall methodological approach  

 

4  DESCRIPTIVE STATISTICS 

In this section, we present some descriptive statistics from the results of the model 

simulations. Regression analyses are presented in section 5. 

As diversion factors have a close connection to cross-elasticities (see equation 2), 

we have also simulated own- and cross-elasticities of demand alongside diversion factors.  

All simulated own-elasticities are negative. This is expected given that all analysed policy 

variables are “bads”, e.g. an increase in Level-of-service variable as travel cost, in-vehicle 

time, waiting time, access-egress times and number of interchanges for mode j leads to a 

decrease in ridership of mode j. 

The simulated cross-elasticises are typically positive but some cross-elasticities that 

involve metro/tram are negative (but rather low in size). These are typically cases for 

suburban areas where metro/tram is only used in combination with bus or train. In these cases, 

metro/tram is a complement rather than a substitute to bus and train. This would be the case 

for, e.g., commuters who take a train or bus into central Oslo and from there take metro or 

tram to their final destination within Oslo. 

It is important to note that cross-elasticities are highly dependent on the relative 

markets shares between affected and altered transport mode. If the relative market share is 

high (the affected mode has a much higher market share than the altered mode) cross-

elasticities are typically very close to zero (Figure 2). This underlies the point made in the 

introduction section about cross-elasticities being context dependent and difficult to interpret 

without considering the underlying market shares.  

 



 
Figure 2: Simulated cross-elasticities and relative market shares 

 

Diversion factors are less affected by market shares, as shown in Figure 3. Even for high 

relative market shares we find a wide spread of diversion factors. However, there appears to 

be a positive relationship between relative market shares and diversion factors, which may 

relate to the theoretical properties of the underlying logit models (see equation 4). A positive 

correlation between markets shares and diversion factors does generally make sense because 

the market share of mode i is likely to be proxy for the competitiveness (or “level-of-service”) 

of mode i. 

 



 
Figure 3: Simulated diversion factors and relative market shares 

 

The following figures show how diversion factors vary by transport mode combination and 

for group of submarkets (aggregates of the 34 submarkets used for simulation). Figure 4 

shows average values of diversion factors when the car alternative is altered. Observations 

are weighted by the size of each submarket and the market share of car in these submarkets.  

Note that both -30%, -1%, 1% and 30% changes in attributes are included; i.e. 

potential asymmetry is not taken into account here (see later discussion). 

 



 
Figure 4: Diversion factors, total and by main categories, when car is altered 

 

Overall, bus and walk have the highest diversion factors for car travel. The diversion factor 

of 27.2% for bus and 29.6% for walk can be interpreted with a hypothetical scenario that 

leads to 1000 fewer (more) car trips. 272 would come from (go to) bus, while 296 would 

come from (go to) walk.  

Diversion factors vary with submarkets. Walk dominates for trips under 5 km. Bus, 

together with train, is the best alternative to car for longer trips. For urban trips, metro/tram 

has a relatively high diversion factor. This is directly related to availability (see table 4). For 

suburban trips its diversion factor is low. The opposite pattern is observed for train. 

Figure 5 shows the corresponding picture when bus attributes are altered. The 

highest diversion factors are found for car on longer trips and trips within suburban areas, 

and for metro/tram on shorter and urban trips. For suburban travel, metro/tram and bus seem 

rather to be complementary, as indicated by the slightly negative diversion factor. In total, 

close to 50% (33.1%+16.2%) of bus users divert to other PT options. This finding is discussed 

in section 6. 

 



 
Figure 5: Diversion factors, total and by main categories, when bus is altered. 

 

Figure 6 gives the results for simulations where train attributes are altered. Not surprisingly, 

the diversion factor for walk (and cycle) is very small. Bus and car are the main competitor 

for train as judged from the simulated diversion factors although a substantial diversion to 

metro/tram can be seen on short and urban trips.  

 

 
Figure 6: Diversion factors, total and by main categories, when train is altered 

 

Some interesting patterns are shown in figure 7, where DFs are calculated for attribute 

changes in metro/tram. For trips within suburban areas (where metro/tram has rather low 

market shares, and most of the ridership stems from trips where metro/tram is used in 

combination with PT modes), we find negative diversion to both bus and train. Fewer 

metro/tram passengers will also reduce bus and train patronage. In this market, there is 

therefore complementarity between metro/tram and bus and train. Apart from suburban trips, 



bus has high diversion factors when metro/tram is altered. Diversion to car is also significant 

in all submarkets, with the exception of short trips where diversion to walk is prominent. 

 

 
Figure 7: Diversion factors, total and by main categories, when metro/tram is altered 

5  REGRESSION MODELS  

In this section, we present regression analysis on the simulated data. The purpose is to obtain 

information about which explanatory variables have a significant effect on diversion factors 

after controlling for other explanatory variables. It is convenient to run linear regression 

models even though those types of models do not guarantee that diversion factors (over a 

given altered mode) do add up to 100%.  

It is important to note that simulated diversion factors for a given transport mode 

pair (altered and affected mode) are very similar within a given submarket. That is, the 

variation by type, direction and size of the policy change is very low. As a consequence, tests 

showed that the explanatory variables related to the direction and size (intensity) of change 

(if it is a -30%, -1%, 1%, or 30% change) and the policy variable (price, travel time, etc.) are 

highly insignificant. In the following regression analysis, we look therefore only at 1% price 

increases. This implies a substantial reduction in the size of the data set. Note that without 

this adjustment, t-values for the other variables would be inflated. We apply weights to the 

likelihood function given by the market share of the affected transport mode in the given 

submarket.  

We present two model versions (M1 and M2). In the former we include a generic 

coefficient for the number of available alternatives in the submarket. Diagnostic tests 

indicated a multicollinearity issue related to this variable (seemingly because of substantial 

correlation with some of the constant terms). After removing this variable (model M2) 

multicollinearity issue appears resolved. However, as models M1 give reasonable coefficient 

estimates, we opt to present results of M1 as well. 

Table 5 shows estimation results for models with simulated diversion factor as 

explanatory variables. The goodness-of-fit indicators of the estimation models are high, 

which is not surprising since many of the included explanatory variables were used to create 

the variation in simulated diversion factors in the first place.  



The variable “Number of available alternatives” has a negative and significant 

impact on diversion factors. This is intuitive, as the diversion factor towards a given mode 

should decrease – ceteris paribus – when more alternatives are available. 

The variable “Relative market share of affected mode” (i.e. relative to altered mode) 

is positive, meaning that a transport mode with a relatively high market share within a 

submarket attracts relative more travelers from the affected mode. This is expected given that 

the relative market share may capture the competitiveness of the affected mode in a given 

submarket and as such be an indicator of quality (that is, a proxy for the underlying level-of-

service of the affected mode).  

The coefficient estimates for distance, urban and work-related trip purpose resemble 

the general pattern that we already saw in section 4. Trip distance plays the most prominent 

role in explaining differences in diversion factors across affected modes. Clearly, the 

diversion factor towards walk reduces with increased trip distance. The dummy for urban 

trips is, as expected, significantly negative for diversion factors towards car and significantly 

positive for diversion factors towards metro/tram. The dummy for urban trips is also 

significantly negative for walk trips. This may be surprising at first glance but it must be 

noted that this result is after controlling for trip distance. The results for work-related trips 

are not significant. We observe a tendency towards cycling having higher diversion factors 

for work related trips. This is likely to relate to the fact that cycling is impractical/ 

inconvenient for some other trip purposes such as grocery shopping and escorting children. 

The constant terms for the transport mode pair (altered --> affected mode) resemble 

diversion factors given trip distance of zero and applies for the normalized segment (no-work 

suburban trips). The constant terms towards walk are naturally high, as walking is an 

attractive mode for very short distance trips 



Table 5: Estimated models 
Model index M1* M2 

N   622 622 
adjusted R^2   0.925 0.925 

Variable Type of variable value t-stat value t-stat 

Generic coefficients 

No. of available alternatives Continuous (count) -0.0289 -2.32     

Relative market share of affected mode Cont. log-

transformed 

0.0064 2.49 0.0054 2.10 

Coefficients for diversion factor towards car  
Distance (car) Continuous (km) 0.0160 4.99 0.0146 4.62 

Urban (car) Dummy -0.1184 -2.48 -0.1451 -3.12 

Work-related (car) Dummy -0.0067 -0.26 -0.0088 -0.34 

Coefficients for diversion factor towards train  

Distance (train) Continuous (km) 0.0168 13.01 0.0162 12.76 

Urban (train) Dummy 0.0144 0.72 -0.0057 -0.31 

Work-related (train) Dummy -0.0188 -1.17 -0.0195 -1.21 

Coefficients when diversion factor towards bus  

Distance (bus) Continuous (km) 0.0151 12.68 0.0145 12.43 

Urban (bus) Dummy 0.0563 2.80 0.0431 2.23 

Work-related (bus) Dummy -0.0074 -0.44 -0.0078 -0.46 

Coefficients when diversion factor towards metro/tram  

Distance (metro/tram) Continuous (km) 0.0068 4.93 0.0063 4.62 

Urban (metro/tram) Dummy 0.2812 11.11 0.2791 10.99 

Work-related (m/t) Dummy 0.0004 0.02 0.0011 0.07 

Coefficients when diversion factor towards walk  

Distance (walk) Continuous (km) -0.0338 -17.89 -0.0370 -28.72 

Urban (walk) Dummy -0.2584 -12.78 -0.2806 -15.71 

Work-related (walk) Dummy -0.0056 -0.36 -0.0089 -0.57 

Coefficients when diversion factor towards cycle  
Distance (cycle) Continuous (km) -0.0008 -0.55 -0.0028 -2.51 

Urban (cycle) Dummy 0.0013 0.06 -0.0203 -1.13 

Work-related (cycle) Dummy 0.0285 1.83 0.0273 1.75 

Constant terms for mode pair (altered mode --> affected mode)  
car --> train Dummy 0.1012 2.57 0.0297 1.21 

car --> bus Dummy 0.1804 5.59 0.1195 6.37 

car --> metro/tram Dummy 0.0881 2.00 0.0122 0.41 

car --> walk Dummy 0.8055 38.51 0.7743 48.19 

car --> cycle Dummy 0.2155 9.23 0.1793 10.31 

train --> car Dummy 0.3908 5.64 0.3467 5.18 

train--> bus Dummy 0.1322 2.75 0.0586 1.62 

train --> metro/tram Dummy -0.0316 -0.61 -0.1076 -2.68 

train --> walk Dummy 0.7590 19.57 0.7240 20.20 

train --> cycle Dummy 0.1268 3.23 0.0874 2.46 

bus --> car Dummy 0.4444 7.17 0.3884 6.78 

bus --> train Dummy 0.0291 0.65 -0.0491 -1.67 

bus --> metro/tram Dummy 0.1176 2.27 0.0248 0.75 

bus --> walk Dummy 0.7084 20.69 0.6579 24.82 

bus --> cycle Dummy 0.1742 4.92 0.1189 4.53 

metro/tram --> car Dummy 0.4763 7.30 0.4307 6.90 

metro/tram --> train Dummy -0.0037 -0.09 -0.0714 -2.27 

metro/tram --> bus Dummy 0.2665 5.62 0.1801 6.14 

metro/tram --> walk Dummy 0.7068 21.11 0.6643 23.64 

metro/tram --> cycle Dummy 0.1811 5.21 0.1338 4.74 

*To facilitate understanding of the model, consider a situation where petrol prices increase and the task is to provide 

an estimate of the DF from car to bus. Assume there are 4 alternative modes, that the relative market share bus/car 

is 0.666, travel distances are 10 km on average and we look at urban non-work trips. Using the model M3, we 

estimate DFcarbus = 4*(-0.0289) + 0.0064*LN (0.6666) + 10*0.0151 + 0.0563 + 0 +0.1804 =0.2695 or 26.95% 

.  



6  CONCLUSIONS AND DISCUSSION 

Using our ‘model internal meta-analysis’ method, we have obtained the following results 

which conform with prior expectation: 

1. Diversion factors to walk are in general high but decrease rapidly with increasing 

distance 

2. Diversion factors to cycling tend to be higher for work-related trips 

3. Diversion factors to car and train increase with distance 

4. The public transport internal diversion factors (i.e. between public transport 

modes) are rather high (typically around 50%) 

5. Diversion factors are in general lower, the higher the number of available 

transport modes 

6. Diversion factors are in general higher to transport modes with a relative high 

market share 

 

While results 5 and 6 are of more of theoretical interest, results 1-4 may have interesting 

policy implications. Oslo has a political goal that all future passenger transport growth is 

facilitated by walk, cycle or public transport. This implies a strong need for cross-modal 

substitution from car to other modes, since Oslo is experiencing high population growth and 

the underlying trend is for continued growth in car use. Taking a closer look at results 1-4 we 

may suggest the following implications for policy: 

1. There is greatest potential to get car drivers to substitute to walk for short 

distance travel. The diversion factor from car to walk is found to be 64%. 

Policies which discourage short distance car use (e.g. parking fees) may therefore 

be effective. 

2. A rather high share of car trips seems to be substitutable with cycle. This appears 

especially true for work-related trips. In addition to restricting workplace parking 

availability and pricing, facilitating changing rooms, showers and safe bicycle 

parking at workplaces may be effective ways to encourage a shift away from car. 

3. For longer distance travel in the Greater Oslo area, train is clearly the best 

substitute to car. Improving train options would therefore result in a relatively 

high share of long distance car trips to be transferred to PT.  

4. To avoid a strong “cannibalization” between PT modes, it appears important to 

improve all public transport options. If only one PT option is improved, a 

relatively large share of new users will come from other PT alternatives. 

 

Our methodological approach was motivated by learning more about variations in diversion 

factors (which vary greatly across studies) by holding the general context (study area) and 

the data and modeling methods fixed. 

Important questions relate to the degree to which our results are method/model-

driven, and to which results may be specific for the Oslo area and therefore not generalizable.  

Result 1 is likely to be universally true. However, the degree is likely to vary between 

contexts. We regard our estimated values to be transferable as a proxy value for other cities. 

On the other hand, result and implication point number 4 (‘cannibalizing’) may be influenced 

by the nesting structure of the underlying choice models that have a rather high nest 

parameter for the PT nest [25]. The nesting structure is defined by the researcher and the 

value of the estimated nest parameter is (indirectly) conditioned on the specification of utility 

functions such that high diversion factors may partly be a consequence of model building. 

However, the applied nesting structure was the one that fitted the survey data best and should 

- at least to some extent - represent the “true” substitution pattern. Note that the high degree 



of substitutions between PT modes may also be specific to the Oslo Area and may only apply 

to similar cities with an advanced, frequent and wide-spread public transportation network 

where several PT options “overlap”. 

Our methodological approach has a few weaknesses that need to be kept in mind. 

The underlying choice model does not calculate generated (or suppressed) transport which 

may impact on the absolute size of diversion factors towards other transport mode. Another 

important limitation is that we simulate symmetrical diversion factors for both direction and 

size of change. I.e. our obtained diversion factors were close to identical for attribute changes 

of -30%, -1%, 1% and 30%, respectively. Furthermore, diversion factors with our method 

are widely unaffected by the type of attribute that is subject to change (price changes, travel 

time changes). This may or may not be the case in the real world. Despite these important 

caveats, we believe that this paper has thrown new and to some degree transferable and 

generalizable light on the under-researched area of diversion factors and modal substitution. 
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APPENDIX: DIVERATION OF EQUATION 4 

 

In multinomial logit models, we have: 𝑃𝑖 =
exp⁡(𝑉𝑖)

∑ exp⁡(𝑉𝑗)𝑗
  where the Vs are generalised costs of 

the form V = b0 + b1X1 + b2X2 + ….  and where the Xs are specific to the alternatives j, and 

the bs may be generic or specific. For simplicity, assume that V = a + bX without loss of 

generality. Recall that logit cross price elasticities (denoted ε) for mode i are defined as: εii = 

b.Xi.(1 – Pi) and εij = -b.Xj.Pj for a linear additive utility function (and similarly for j). Using 

the diversion factor relationship between own and cross elasticities, we have  ij  = - εjj 

(Pi/Pj)DFij and substituting in the formula for εjj and εij  we have -b.Xj.Pj = - b.Xj.(1 – Pj). 

(Pj/Pi)DFji  so that DFji  = Pi /(1-Pj). 

 


