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ABSTRACT 

This paper proposes a new definition of exposure to the risk of road accident as any 

event, limited in space and time, representing a potential for an accident to occur by 

bringing road users close to each other in time or space of by requiring a road user to 

take action to avoid leaving the roadway. A typology of events representing a 

potential for an accident is proposed. Each event can be interpreted as a trial as 

defined in probability theory. Risk is the proportion of events that result in an 

accident. Defining exposure as events demanding the attention of road users implies 

that road users will learn from repeated exposure to these events, which in turn 

implies that there will normally be a negative relationship between exposure and risk. 

Four hypotheses regarding the relationship between exposure and risk are proposed. 

Preliminary tests support these hypotheses. Advantages and disadvantages of 

defining exposure as specific events are discussed. It is argued that developments in 
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vehicle technology are likely to make events both observable and countable, thus 

ensuring that exposure is an operational concept. 

Key words: exposure; event; learning; risk; probability 

1 INTRODUCTION 

Exposure is a key concept in road safety studies and many definitions of the concept 

have been proposed. This paper reviews some of these definitions and identifies 

three main classes of definitions of exposure. Following the review, the paper 

proposes a definition of exposure as events that have the potential of becoming 

accidents. Some implications of this definition of exposure are discussed. The 

discussion is illustrative only and intended to suggest ideas that can be pursued in 

further research. The main research questions discussed in this paper are: 

1. What are the most common definitions of exposure? 

2. Have scientific views about how best to define exposure changed over time?  

3. What are the advantages and drawbacks of defining exposure as events? 

4. What are the principal implications, in particular for the relationship between 

exposure and the number of accidents, of defining exposure as events? 

 

2 REVIEW OF DEFINITIONS AND INDICATORS OF EXPOSURE 

In an early review, Chapman (1973) defined exposure as the number of opportunities 

for accidents of a certain type in a given time in a given area. He added that these 

opportunities include cars crossing each other’s path, cars following each other and 

cars travelling on a winding road. He illustrated studies of the relationship between 
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exposure and accidents for head-on collisions, rear-end collisions and intersection 

collisions. He suggested that a count of traffic conflicts could serve as a measure of 

exposure. Chapman’s definition of exposure, and his illustrations of it, has much in 

common with the event-based definition of exposure proposed later in this paper. 

Brown (1981) defined the accident potential of an intersection in terms of the 

conflict points between the traffic movements passing the junction. Conflict points 

are all points where two traffic movements cross or merge. When the potential for 

rear-end conflicts in the approaches are included, Brown identified 36 potential 

conflict points in a four leg junction with two-way traffic on all approaches and no 

restrictions on turning movements. Based on a small sample of junctions in 

Johannesburg and Pretoria, Brown estimated accident rates per million conflicts for 

the various types of conflicts. He found that some conflict types are associated with 

higher accident rates than others. Similar findings were reported by Johannessen and 

Heir (1974) in an early Norwegian study.  

Hauer (1982) discusses the relationship between traffic conflicts and exposure, and 

argues that the two concepts are distinct (although some definitions of exposure 

come close to making the concepts identical). He states that the concepts of 

exposure and risk can be defined by reference to the basic concepts of probability 

theory. Exposure can then be defined as a trial which has two possible outcomes: an 

accident or no accident. A trial will typically have a short duration. Exposure in a 

traffic system is the number of trials in that system in a given period of time. A trial, 

as defined and exemplified by Hauer, represents an event as defined later in this 

paper. 
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Risk and Shaoul (1982) discuss the common use of vehicle kilometres as an indicator 

of exposure. They note: “It is not possible to calculate a true accident probability 

using conventional mileage-exposure data, since no means exist by which the 

accident “trials” may be identified or counted. Accident rates for this reason alone 

cannot be taken as true probability values”. While not proposing a formal definition 

of exposure, the examples given are all encompassed by the following definition of 

exposure: Exposure is any hazard, fixed or moving, that has the potential of 

generating an accident. The examples given by Risk and Shaoul include access points 

along a road, potential conflict points in junctions and any location requiring a 

manoeuvre to be made. 

Wolfe (1982) defined exposure as the frequency of being in a given traffic situation, 

which number can be used as the denominator in a fraction with the number of 

accidents which take place in that situation as the numerator. This is intended as an 

operational definition of exposure. From the examples given, it is clear that Wolfe 

regards vehicle kilometres of travel as a useful operational definition of exposure. 

Hauer, Ng and Lovell (1988) discuss how best to estimate safety in signalised 

intersections. They argue that the potential for accidents (exposure) is generated by 

the various traffic movements in an intersection and identify 15 different traffic 

movements that may generate accidents. Accident prediction models based on 

negative binomial regression were developed for all 15 movements, but only four of 

them were associated with a sufficient number of accidents to be regarded as 

statistically reliable. The definition of exposure underlying the classification is 

potential conflicts between traffic movements sharing space in an intersection. 
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Hauer (1995) notes that estimates of exposure tend to be used for two purposes: (1) 

to control for differences in traffic volume, so that the number of accidents can be 

compared between locations with different traffic volume; (2) to identify locations 

that have a higher than normal number of accidents for a given traffic volume. In 

both these uses of exposure, it serves as the denominator when estimating an 

accident rate (number of accidents per million units of exposure; usually per million 

vehicle kilometres). These uses of exposure are correct only if the number of 

accidents is proportional to the amount of exposure: twice the exposure, twice the 

number of accidents. However, many studies have found that the relationship 

between exposure and the number of accidents is non-linear. This invalidates the 

traditional use and interpretation of accident rates. 

Persaud and Mucsi (1995) provide very clear examples of the non-linear relationship 

between traffic volume (average hourly volume) and the number of accidents. The 

shape of the relationship between hourly traffic volume and the number of accidents 

varies depending on the time of the day (day or night) and the type of accident used 

as dependent variable (single vehicle accidents or multi vehicle accidents). It is 

therefore clear that estimates of the relationship between traffic volume and the 

number of accidents based on averages or totals can be misleading. 

This point is further elaborated by Mensah and Hauer (1998). They discuss two 

problems of averaging arising in the estimation of the relationship between accidents 

and traffic flow. The first type of averaging is called argument averaging. An example 

of argument averaging is the use of AADT to measure traffic volume, rather than an 

estimate of the traffic volume at the time of the accident, which could be quite 
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different from AADT, since traffic volume varies throughout the day, week and 

months of the year. Mensah and Hauer develop closed-form estimators for the size 

of the bias associated with argument averaging for four of the most common 

functional forms used to relate accidents to traffic volume. The second type of 

averaging is called function averaging. It occurs when a single function is estimated 

for a relationship, which in reality is best represented by two or more functions that 

differ in shape. Using a single function will then generate bias. Mensah and Hauer 

illustrate the potential size of this bias, but do not develop closed-form expressions 

to estimate the typical size of the bias. The analysis of Mensah and Hauer constitutes 

a strong argument for using disaggregate measures of exposure, as well as using 

specific types of accidents as dependent variable. 

Qin, Ivan and Ravishanker (2004) develop exposure measures for various types of 

accident that are intended to be linear, i.e. the rate of accidents per unit of exposure 

will be independent of the amount of exposure. They identify four types of accident: 

single vehicle, multi vehicle same direction (rear-end), multi vehicle opposite 

direction (head-on), and multi vehicle intersecting direction (angle). For each type of 

accident, an exposure function was developed. The function had the same form for 

all types of accident: 

Exposure = 𝑉𝑖
𝛼𝑉𝑘  ∙  𝐿𝑖

𝛼𝐿𝑘  

Where V denotes traffic volume (AADT) on section i, L is the length of section i, αV 

and αL are estimated coefficients, and k is accident type k. The models developed 

clearly showed that the assumption that the number of accidents is proportional to 

section length, normally made when using vehicle kilometres of travel to measure 
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exposure, is not valid. The coefficients for section length where less than one for all 

types of accident. Thus, all else equal, short road sections may not have the same 

number of accidents per unit of length as long road sections. The study controlled 

for lane width, shoulder width and speed limit, but there could be other differences 

between short and long road sections, such as the number of intersections or access 

points, parking regulations, and pedestrian and cyclist volume. 

Oh, Park and Ritchie (2006) developed a measure of the risk of rear-end collision 

based on stopping distances. Based on data collected by inductive loop detectors that 

continuously monitor traffic, it is possible to estimate the distance between vehicles 

following each other in the same travel lane. When both distance and speed are 

known, stopping distance can be estimated, given a certain driver reaction time. It is 

then possible to estimate the proportion of vehicles keeping an unsafe following 

distance, i.e. a distance shorter than the estimated stopping distance. Drivers keeping 

such a short distance may, however, never discover the high risk involved in doing 

so: if the need to brake never arises, the driver may experience what Fuller (1991) 

referred to as a learning trap: risky behaviour is reinforced by the absence of 

feedback revealing the risk involved to the driver. 

Lassarre, Papadimitriou, Yannis and Golias (2007) develop a microscopic measure of 

pedestrian exposure to risk. The starting point is that pedestrians are principally 

exposed to risk when crossing the road. The possibility of crossing the road at an 

unregulated location depends on whether there are sufficient gaps in traffic or not. A 

closed-form solution is developed to assess the risk involved in crossing at a given 

location. The risk is a function of time taken to cross (which, in turn, depends on 
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lane width and walking speed), traffic volume, the length of vehicles and the speed of 

vehicles. When risk at each potential crossing location in a defined road network has 

been estimated, the next stage of analysis is to model pedestrian choice of crossing 

location. For this purpose, random utility functions are developed. Estimates made 

for Paris and Athens (Papadimitriou, Yannis and Golias 2012) indicate that the 

model makes sensible predictions, i.e. few pedestrians are predicted to cross the road 

at the most hazardous locations. 

Zhang, Ivan and Ravishanker (2008) develop a new measure of exposure to the risk 

of rear-end collisions, vehicle time spent following. The time spent following is the 

time another vehicle is in front of a case vehicle and neither free choice of speed (i.e. 

choice not influenced by the speed chosen by other vehicles) nor overtaking is 

possible. The measure is therefore best suited for two-lane roads with a relatively 

high traffic volume. Zhang et al. find that the number of same direction collisions is 

proportional to vehicle time spent following, implying that this measure of exposure, 

at least in their data set, satisfies the linearity property required of accident rates. 

Elvik, Erke and Christensen (2009) criticise the use of summary measures of 

exposure, such as vehicle kilometres of travel, in road safety research and point out 

that summary measures of exposure cannot be interpreted as countable trials in the 

sense of probability theory. Thus, common operational definitions of exposure and 

risk bear no clear relation to the concepts of trials and probability that historically 

were the foundations of accident research. They introduce the concept of an 

elementary unit of exposure, defining it in terms of specific events that are limited in 

space and duration. Four such events are defined: encounters (vehicles passing each 
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other in opposite directions), simultaneous arrivals in junctions, lane changes, and 

braking events. Elvik (2010A) discussed the shape of the relationship between the 

number of these events and the number of accidents, suggesting that it will normally 

be negative. 

Miranda-Moreno, Strauss and Morency (2011) investigate the use of disaggregate 

exposure measures for accidents involving cyclists at signalised intersections. They 

define twelve traffic movements for motor vehicles in four-leg signalised 

intersections and four movements for cyclists. The product of the conflicting flows is 

estimated and negative binomial regression models developed in order to find the 

relationship between volume and the number of accidents involving cyclists and 

motor vehicles. A non-linear relationship was found, with the number of accidents 

increasing far less than proportional to the conflicting volumes, showing that there is 

a so-called “safety-in-numbers” effect for accidents involving cyclists and motor 

vehicles. 

Paefgen, Staake and Fleisch (2014) note that vehicle kilometres of travel is not a 

homogeneous measure of exposure. Kilometres driven in the dark involve a different 

risk from those driven during daytime, kilometres driven in urban areas involve a 

different risk from those driven in rural areas, and so on. Based on data recorded by 

in-vehicle-data-recorders, used as part of a pay-as-you-drive insurance experiment, 

they developed a logistic regression model to investigate how the probability of 

becoming involved in an accident depends on time of the day, day of the week, road 

type, speed, and monthly mileage. Unsurprisingly, they found that the probability of 

accident involvement did not depend only on the number of kilometres driven, but 
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also on characteristics of the environment (day/night, urban/rural, etc.). 

Unfortunately, the study did not control for driver characteristics. 

The main lessons that can be learnt from the studies reviewed above are: 

1. There are three main conceptions of exposure: activity-based (kilometres, 

entering vehicles), event-based (potential conflicts, turning movements), and 

behaviour-based (time spent following, pedestrian crossing behaviour). 

2. Activity-based definitions of exposure are the oldest and simplest in terms of 

data requirements. It is increasingly recognised that in their aggregate form, 

these measures of exposure are unsuitable for controlling for the effects of 

exposure on the number of accidents. 

3. Research has found that accidents are not proportional to AADT or road 

length, which are the principal inputs when estimating vehicle kilometres of 

travel. Accident rates based on an assumption of proportionality between 

vehicle kilometres and the number of accidents are highly likely to be biased 

and misleading. 

4. Recent research has increasingly focused on event-based or behaviour-based 

definitions of exposure. These are microlevel indicators, by which exposure is 

typically observed in a single junction or for a single trip. 

5. Advances in data collection technology make it increasingly realistic to 

observe and count events or choices of behaviour that represent a potential 

for accidents to occur. 

 

3 EXPOSURE AS EVENTS 
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Based on the previous studies of Elvik, Erke and Christensen (2009) and Elvik 

(2010A), the following definition of exposure to the risk of a traffic accident is 

proposed (Elvik 2014): 

Exposure is the occurrence of any event in traffic, limited in space and time, that 

represents a potential for an accident to occur by bringing road users close to each 

other in time and/or space or by requiring the road user to act to avoid leaving the 

roadway. 

An event involving more than one road user can be viewed as a potential traffic 

conflict (Laureshyn, Svensson and Hydén 2010), i.e. the event may develop into a 

conflict, but need not do so. Some factors that may influence the likelihood that an 

event develops into a conflict and subsequently to an accident are discussed later in 

the paper. An event involving a single road user is covered by the definition if the 

event requires the road user to take immediate action to avoid leaving the roadway. 

Events have limited duration and spatial extent. Their beginning and end can be 

defined precisely enough to allow events to be counted. Risk is defined as the 

proportion of events that have an accident as the outcome. The following elementary 

types of events are proposed: 

1. Encounters, i.e. vehicles or road users passing each other in opposite 

directions of travel with no physical barrier to separate them 

2. Simultaneous arrivals at points where conflicts between road users may arise 

(junctions, pedestrian crossings, railway level crossings) 

3. Turning movements in junctions (involving conflicting traffic movements 

between road users who did not necessarily arrive at the same time) 
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4. Braking events 

5. Lane changes on multilane roads 

6. Overtakings, i.e. one vehicle passing another vehicle travelling in the same 

direction 

7. Negotiating horizontal curves 

8. Other events, such as an animal suddenly entering the road in front of a road 

user, or a weather event, which will typically last longer than other events. 

An event typically lasts a few seconds. For some of the events listed above, their 

number can be calculated from summary measures of exposure, like AADT. In the 

future, however, it is likely that motor vehicles will have technology that can 

recognise the events and be able to count them if technology for this purpose is part 

of the event-recognising systems. There is already on the market vehicle technology 

that monitors braking (intelligent cruise control), lane-keeping and blind spots when 

changing lanes. These systems are probably only the beginning of more 

comprehensive, integrated systems that can monitor most aspects of traffic. To 

redefine exposure in terms of specific events is therefore future-oriented and allows 

for a vastly more detailed study of exposure than current summary measures, like 

vehicle kilometres. 

 

4 LEARNING FROM REPEATED EVENTS 

When exposure is defined as events, it follows naturally to think about exposure as a 

process of learning. The shape of the relationship between exposure and risk is 

therefore influenced by the efficiency of learning that repeated experience of given 
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events provides. Developing hypotheses about this relationship can benefit from the 

insights gained in the study of learning curves (Ohlsson 1996, Ritter and Schooler 

2001, Duffey and Saull 2003, Anzanello and Fogliatto 2011, Howard 2014). 

It is reasonable to assume that events differ with respect to their potential for 

learning. In some cases, a single exposure to an unwanted event may be sufficient to 

prevent its repetition. Thus, a novice driver who neglects to check the blind zone 

when attempting to change lane, and to his or her great surprise discovers that there 

is a car in the blind zone, will probably find the experience so unpleasant, and the 

nature of the mistake so obvious, that it is unlikely to be repeated. This is a case of 

single-trial learning. 

Other events are more subtle and give fewer clues about how to manage them. 

Judging speed and distance can be difficult and it may not always be clear whether 

there is time enough to turn left in front of an oncoming car or not. In general, the 

reliability of human task performance increases if a task is simple and performed 

often. Table 1, which is taken from Reason (1997), shows error probabilities for 

various tasks. 

Table 1 about here 

It is seen that reliability is very high (i.e. the probability of committing errors very 

low) for routine tasks performed frequently and at a pace permitting errors to be 

recovered before the task is completed. While a similar table of the reliability in 

performing tasks as a road user cannot be presented, it seems clear that the reliability 

of human performance is very high for many tasks encountered in traffic. Moreover, 

accident rates, however imprecise they may be as a measure of risk, tend to higher in 
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complex traffic environments than in simpler environments (Elvik 2006, 2010B). 

This suggests that learning from events is not equally easy for all events. Studies of 

learning curves (Anzanello and Fogliatto 2011) show that the shape of these curves is 

influenced by, among other things, individual motivation to learn, the number of 

times a task has been performed and task complexity. Based on this, it is suggested 

that at least the following characteristics of events (and possibly additional 

characteristics) may influence the potential for learning: 

1. The complexity of the event: Simple actions and tasks are easier to learn than 

more complex actions and tasks. 

2. The frequency of the event: Events that occur often give more opportunities 

for learning than events occurring rarely. 

3. The similarity of repeated instances of the event: Events that are completely 

identical each time are easier to remember and learn than events that differ in 

some of their characteristics. 

4. How quickly an event unfolds: Events that require very fast action are more 

difficult to manage successfully than those that develop more slowly.  

It is hypothesised that to the extent that road users learn from events how to prevent 

them from developing into accidents, there will be a negative relationship between 

exposure (the number of events experienced) and risk (the probability that an event 

results in an accident). 

  

5 A HYPERBOLIC RISK FUNCTION (PERFECT LEARNING) 
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Learning from traffic events can be fast or slow. Some road users will learn to 

perform certain tasks virtually without error, other road users will continue to have a 

high error rate (Bjørnskau and Sagberg 2005, Sagberg and Bjørnskau 2006). With 

respect to traffic exposure as a process of learning, it is proposed, as a benchmark, to 

define perfect learning as a hyperbolic risk function, i.e. a hyperbolic curve having 

exposure (number of events) as abscissa and accident rate per event as ordinate. 

Figure 1 shows such a curve. The hyperbolic risk function is termed perfect learning 

because it implies that the expected number of accidents is independent of exposure, 

i.e. larger exposure will always be perfectly compensated for by a lower accident rate. 

This is indicated by the numerical example given in Figure 1. 

Figure 1 about here 

This, obviously, is a limiting condition not likely to be observed in practice. One 

may, however, use the hyperbolic risk function as a benchmark for developing an 

estimator of the efficiency of learning. This is the primary use of the hyperbolic risk 

function. Perfect learning is represented by the hyperbolic risk function; actual 

learning is represented by the actual risk function, having the number of events as its 

argument (abscissa) and relative risk as the outcome (ordinate). The ratio of actual 

learning to perfect learning is an estimator of the efficiency of learning. 

To illustrate these notions, the accident prediction models developed by Persaud and 

Mucsi (1995) will be applied. These models were of the form: 

E(m) = αLTFβ  

E(m) is an estimate of the long-term expected number of accidents. L is segment 

length, T is period of the day (day, night or 24 hours), F is traffic flow (AADT), and 
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α and β are coefficients to be estimated. The model applying to multi vehicle 

accidents during 24 hours (coded model 111 by Persaud and Mucsi) will be applied. 

The coefficient for traffic volume in this model was 1.123. This implies that the 

number of accidents increases more than in proportion to AADT. 

There are many types of multi vehicle accidents, but for the purposes of the 

illustration below, the coefficient estimated by Persaud and Mucsi will be assumed to 

apply to head-on collisions. Head-on collisions are directly related to one of the 

events listed above, encounters. The number of encounters on a road is equal to: 

Number of encounters = (
𝐴𝐴𝐷𝑇

2
)

2
       

If AADT is known, the number of encounters expected to occur at any point on the 

road can be estimated for any period of time. If, for example, AADT increases from 

1,000 to 10,000 (a factor of 10), the number of encounters increases from 250,000 to 

25,000,000 (a factor of 100). This has major implications for the shape of the 

relationship between exposure and accident rate. If the rate of accidents (number of 

accidents divided by AADT) is plotted as a function of AADT, using the coefficient 

of 1.123, it will slope upwards. If, on the other hand, the rate of accidents is plotted 

as a function of the number of encounters (number of accidents divided by number 

of encounters), it will slope downwards. This is shown in Figure 2. 

Figure 2 about here 

If the number of head-on collisions expected to occur at the lowest AADT is set 

equal to 1, the relative rate of head-on collisions per encounter will decrease. At 

AADT 1,000, the relative rate of head-on collisions per encounter (250,000 
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encounters at AADT 1,000; 62,500 encounters at AADT 500) will be 0.545 

according to the accident prediction model, but 0.25 according to the perfect learning 

curve, since the number of encounters is four times greater. The ratio of actual risk 

reduction (1 – 0.545 = 0.455) to the risk reduction implied by perfect learning (1 – 

0.25 = 0.75) is the estimator of the efficiency of learning: 0.455/0.750 = 0.607. 

 

6 SOME PRELIMINARY HYPOTHESES 

Based on the discussion above, the following tentative hypotheses about the 

relationship between exposure and risks are proposed: 

Hypothesis 1: 

There is a negative relationship between the amount of exposure (the number of events of a given type 

experienced per unit of time) and the risk of accident (the number of accidents per unit of exposure). 

This is a general hypothesis. It describes a statistical regularity. It is, as such, similar 

to other relationships in accident research and exceptions from the relationship 

cannot be ruled out, as noted in the example of single-trial learning mentioned above. 

However, it is hypothesised that in the normal case, the relationship between 

exposure and risk is negative. The hypothesis is consistent with well-known learning 

curves showing that tasks are performed more quickly and with fewer errors the 

more times they have been performed (Ritter and Schooler 2001). 

Hypothesis 2: 
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Frequent events are associated with more effective learning than events occurring less often. More 

effective learning is evidenced in a more strongly negative relationship between exposure and risk than 

less effective learning. 

Perhaps the most frequent event of all those listed above is an encounter. It is also a 

very simple event. It does not require any particular action from the driver, except 

for staying within his or her driving lane. This implies that repeated events should be 

associated with a sharp decline in risk per event, which is tantamount to highly 

effective learning. 

Hypothesis 3: 

Complex events are associated with less effective learning than simple events. A complex event 

requires simultaneous attention to several information elements at the same time and must be 

performed within a short time. 

An example of a complex event is turning left into a main road in a four leg junction 

from a minor road with yield signs. In this situation, the driver entering the main 

road must give way to many other traffic movements and need to pay attention to all 

of these. Differences in accident rates between simple and complex turning 

movements in junctions have been found by Johannessen and Heir (1974), Brown 

(1981) and Hauer, Ng and Lovell (1988). 

Hypotheses 4: 

Events that have significant duration and/or require major behavioural adaptation to maintain a 

low level of risk, will have a less negative relationship to risk (accidents per event) than events not 

lasting long or not requiring major behavioural adaptation. 
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It may be to stretch concepts to refer to more long-lasting events as events. An 

encounter lasts a few seconds, turning left in a junction may last a few seconds, 

waiting for a pedestrian to cross the road may also take a few seconds. Most of the 

events that constitute exposure as defined in this paper last only a few seconds at the 

maximum. Adverse weather, on the other hand, may last for hours. Adverse weather 

is an event that makes driving more demanding and difficult, but drivers do not fully 

adapt their behaviour to adverse weather or slippery roads (Eisenberg 2004, 

Theofilatos and Yannis 2014). This is not a matter of not learning, but of deliberately 

trading off safety against mobility and accepting a somewhat higher level of risk, 

which costs less in terms of increased travel time than fully adapting to difficult 

driving conditions. 

 

7 REVIEW OF SELECTED EMPIRICAL STUDIES 

The hyperbolic risk function depicting perfect learning can be written as a power 

function with an exponent of –1: 

Y = X–1 

By using power functions with negative exponents to model the relationship between 

exposure and risk, the value of the exponent can be compared in order to test the 

hypotheses proposed above.  

 

7.1 The relationship between driving distance and accident rate 
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Several studies have noted a negative relationship between the annual distance driven 

by a driver and his or her accident rate (Hakamies-Blomqvist et al. 2002, Fontaine 

2003, Langford et al. 2006, Alvarez and Fierro 2008). Figure 3 is based on these four 

studies and combines their results. Since the absolute accident rates are not likely to 

be comparable, they were converted to relative accident rates. In each study, the 

accident rate for drivers with the longest annual driving distance was set equal to 1. 

In all studies, drivers were divided into three groups with respect to annual driving 

distance: 

1. Short, which is less than 3,000 km per year. The typical mean distance of 

drivers in this group is around 1,500 km per year. 

2. Medium, which is between 3,000 and 14,000 km per year. A typical mean in 

this group is around 8,000 km per year. 

3. Long, which is more than 14,000 km per year. A typical mean in this group is 

around 22,000 km per year. 

Figure 3 about here 

There is a clear negative relationship between driving distance and accident rate. A 

power function best fits the data and indicates a risk elasticity of –0.681. Drivers with 

the shortest annual driving distance have an accident rate which is up to 10 times 

higher than drivers with the longest annual driving distance. The samples studied 

included both middle-aged drivers and older drivers. The tendency for accident rate 

to decline as driving distance increases therefore appears to be general. It applies to 

all drivers, not just to novice drivers (Sagberg 1998) for whom a risk curve like the 

one shown in Figure 3 could reasonably be interpreted as a learning curve. A similar 
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relationship, based on 250-mile bins for driving distance (i.e. 0-250, 251-500, etc.), 

was reported by Ferreira and Minikel (2012). Mannering (1993) gives further support 

for the non-linear relationship between distance driven and accident involvement. He 

found, among other things, that the longer male drivers have been driving without an 

accident, the lower is their probability of having an accident soon. 

It should be added, however, that kilometres driven per year, like all summary 

estimators of exposure is imprecise and likely to be confounded. Thus, it is known 

that older drivers tend to restrict their driving to easier situations, such as driving 

only in daytime, in light traffic and on familiar roads. Such a behavioural adaptation 

would tend to reduce their accident rate independently of the number of kilometres 

driven per year. It could, as an un-intended by-product also slow down their rate of 

learning, by reducing the frequency of involvement in events providing opportunities 

for learning. A power function like the one shown in Figure 3 fits well to the data in 

each of the four studies that were combined, but the value of the exponent varies 

substantially, suggesting that there are individual differences in learning. Ideally 

speaking the number of events drivers are involved in should have been used as the 

estimator of exposure. This number is not known, although it is reasonable to think 

that the number of events increases at a faster rate than kilometres driven.  

 

7.2 High efficiency of learning from simple events (encounters) 

Applying the accident prediction models developed by Persaud and Mucsi (1995), the 

efficiency of learning with respect to avoiding head-on collisions resulting from 
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encounters can be estimated. Figure 4 shows the results. A value of 1 indicates 

perfect learning, i.e. a hyperbolic risk function. 

Figure 4 about here 

It is seen that the efficiency of learning goes asymptotically to a value close to 1 as 

the number of encounters goes to infinity. This shows that an increased number of 

repetitions is associated with more reliable performance. Another mechanism likely 

to be operating here is the influence of traffic density on driver alertness. On roads 

with a dense traffic flow, the driver is constantly reminded of the presence of 

oncoming vehicles and pays attention to them more or less automatically. 

 

7.3 Low efficiency of learning from complex events (arrivals in junctions) 

Three-leg junctions and four-leg junctions differ greatly with respect to their 

potential for generating complex traffic situations. There are nine potential conflict 

points between the traffic movements in a three-leg junction; thirty-two potential 

conflict points between the traffic movements in a four-leg junction. All else equal, 

four-leg junctions will produce many more complex traffic situations than three-leg 

junctions. 

To test whether the efficiency of learning from potential conflicts is greater in three-

leg junctions than in four-leg junctions, a set of 732 junctions for which a number of 

accident prediction models have been developed was used (Elvik 2013). The best 

fitting model (i.e. the model with the smallest over-dispersion parameter) was 

selected. Based on the predictions of this model, empirical Bayes estimates of the 

long-term expected number of accidents were developed for each junction. The 
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empirical Bayes estimates are a weighted average of the recorded number of 

accidents in each junction (which in the majority of junctions was zero) and the 

model-predicted number. 

The potential number of conflicts in each junction was estimated by applying the 

closed-form expressions given in Elvik, Erke and Christensen (2009). The estimates 

developed by these formulas are only approximately correct, as they are based on an 

assumption that all approaches to a junction have the same traffic volume. Risk was 

estimated as the empirical Bayes estimate of the number of accidents divided by the 

potential number of conflicts. This estimator indicates how successful road users are 

in managing the conflicts so that they do not develop into accidents. The higher the 

risk, the less the success. Risk was, unsurprisingly, negatively related to the potential 

number of conflicts. The higher the potential number of conflicts, the lower the risk. 

In keeping with the definition of perfect learning, the risk associated with perfect 

learning was defined as the inverse value of the potential number of conflicts. The 

closer the actual risk function is to the hyperbolic curve, the higher the efficiency of 

learning. 

The junctions were divided into groups based on the number of legs (3 or 4) and 

speed limit (50, 60, 70, 80 or 90 km/h). Three-leg junctions with a speed limit of 50 

km/h were assumed to represent the easiest situation. There are few conflict points, 

and the low speed limit will give road users more time to understand and solve the 

conflicts than higher speed limits. At the other end, four-leg junctions with a speed 

limit of 80 km/h were assumed to represent a more demanding situation. There were 

too few junctions with a speed limit of 90 km/h to use in the analysis. 
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If complexity makes effective learning more difficult, one would expect the efficiency 

of learning to be lower in the high-speed four leg junctions than in the low-speed 

three-leg junctions. Figure 5 shows that this is indeed the case. The circles represent 

three-leg junctions with a speed limit of 50 km/h, the triangles represent four-leg 

junctions with a speed limit of 80 km/h. The greater efficiency of learning in the 

three-leg junctions is apparent from two facts: 

1. The curve fitted to the data points is steeper than the curve fitted to the data 

points for four-leg junctions. 

2. At a high potential number of conflicts, the data points are closer to perfect 

learning in three-leg junctions than in four-leg junctions. 

Figure 5 about here 

The complexity of traffic events is therefore one of the characteristics that influences 

how much, and how well, road users learn from the events.  

 

7.4 Behavioural adaptation to winter conditions limit efficiency of learning 

A well-known case of a negative relationship between exposure and accident rate is 

the relationship documented in Sweden between the amount of driving taking place 

on roads covered by snow or ice and the relative accident rate on such road surfaces. 

Figure 6 shows this relationship, based on information given by Niska (2006). 

Figure 6 about here 

There is evidence that driving more on snow- or ice-covered roads is associated with 

a reduced accident rate. It is reasonable to interpret this as an effect of learning. 

Note, however, that the exponent in the power function is only –0.46. The risk curve 
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is therefore flatter than the one presented in Figure 3 for driver accidents rates, 

which had an exponent of –0.68. As mentioned earlier, this indicates that drivers do 

not fully adapt their behaviour to slippery roads, but make a trade-off by accepting a 

somewhat higher risk rather than add to travel time. It is worth noting that the 

degree of behavioural adaptation may vary between road users, as found by Morgan 

and Mannering (2011) 

 

8 DISCUSSION 

Traffic is the continuous movement of people and vehicles. It may therefore seem 

logical and natural to define exposure as a continuous variable. Vehicle kilometres is 

normally interpreted as a continuous variable, as opposed to a (discrete) count 

variable. The advantage of using vehicle kilometres as an estimator of exposure is 

that data are easily available and that the total number of vehicle kilometres produced 

in a traffic system can be interpreted as an indicator of the total volume of activity in 

that system. Vehicle kilometres is thus an activity-based estimator of exposure. 

While it makes perfect sense to view traffic as essentially continuous, in the sense 

that any partitioning of it into elementary units may be regarded as arbitrary, it is not 

meaningless to define specific traffic situations as countable events of a quite precise 

duration and spatial extension. The advantages of defining exposure as specific 

events are: 

1. Most traffic events have a well-defined beginning and end and are therefore 

countable.  
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2. Traffic events represent a potential for an accident to occur. Without the 

events, there is no such potential. Events are thus estimators of the 

opportunities for accidents to occur.  

3. There are many types of traffic events and some events can be logically 

linked to specific types of accidents. The type of exposure relevant for a 

specific type of accident can then be measured more precisely. 

4. By providing a concise typology of events, it is possible to obtain a much 

more detailed description of exposure to risk than summary estimators of 

exposure afford. 

5. Since events are opportunities for accidents to occur, any elementary event 

has two outcomes: accident, or no accident. This means that the probability 

of an accident can be defined simply as the proportion of events that have an 

accident as the outcome.  

There are also disadvantages in using events as elementary units of exposure. In the 

first place, it may not be possible to establish clear links between all types of accident 

and specific events. Driving off the road on a straight road section, for example, is 

not clearly related to any of the events defined in this paper. In the second place, the 

definition of some events may be somewhat arbitrary, such as the event of 

negotiating a curve. One has to specify where the curve begins and ends and how 

sharp it must be to count as a curve. In the third place, some events may be a 

compound of two or more elementary events. An encounter in a horizontal curve 

with the car in front of you braking could fit three of the event types listed in this 

paper. The issue is whether such an event is of type A, type B, type C or some 

compound type, like AB. In the fourth place, events, at least as defined in this paper, 



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2014.12.011.docx 27 

are not very well suited to studying driver characteristics and individual differences 

between drivers with respect to their ability to learn from events. There are no doubt 

differences between drivers in this respect, but merely observing and counting events 

tells very little about such differences. In the fifth place, exposure to the risk of 

accidents is more than simply the occurrence of specific events. There is a risk even 

when driving on an empty freeway where, essentially, no traffic events occur. The 

risk may not be related to traffic events, but could be the result of, for example, 

driver fatigue, a car in poor condition or any other factor not manifesting itself in the 

form of an event as defined in this paper. 

A sixth topic worth discussing is whether there are limits to learning, i.e. whether 

learning curves can become flat or even turn upwards, suggesting a decline in 

performance. Studies of learning curves (Howard 2014) suggest that this is definitely 

possible. Howard (2014) found that highly experienced chess players at the grand 

master level had learning curves that became flat and, for some players, even 

indicated declining performance. He suggests that the motivation to improve further 

may suffer when players have reached a high level at which competition is fierce and 

games highly complex. It is not difficult to think that similar mechanisms may 

operate in car drivers. Once drivers master common events at a satisfactory level, 

they may not be motivated to invest effort in further perfecting their skills. 

Forgetting skills that are rarely practised may also be a limit to learning. 

This paper has only introduced the idea of defining exposure in terms of events. It is 

clear that considerably more research is needed to test the fruitfulness of this idea. 
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7 CONCLUSIONS 

The main conclusions of the study presented in this paper can be summarised as 

follows: 

1. It is proposed to define exposure as the occurrence of any event, limited in 

time and space, that has the potential of generating an accident by bringing 

road users close to each other in time or space or by requiring a road user to 

take action to avoid leaving the roadway. 

2. Such events include: encounters (vehicles passing each other in opposite 

directions); simultaneous arrivals at points where road users enter from 

potential conflicting directions; turning movements in junctions; braking; lane 

changing; overtaking; negotiating curves. 

3. Each of these types of events can be counted and the total number of events 

can be regarded as a sampling frame from which accidents are sampled. Each 

traffic event has two possible outcomes: accident or no accident. 

4. The probability of accident occurrence is simply the number of accidents 

divided by the number of events having an accident as one of its potential 

outcomes. 

5. The probability of an accident is likely to be negatively related to the number 

of events. The reason for this is that repeated experience of events can be 

regarded as a process of learning, in which road user performance becomes 

more and more reliable. 

6. Examples are given of empirical studies showing a negative relationship 

between exposure and risk. These studies lend support to the basic 
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hypotheses proposed in the paper, but do not represent stringent tests of 

these hypotheses in terms of the new definitions proposed for exposure and 

risk. 
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Table 1: 
 

Task description Error probability 5th and 95th percentile bounds 

Totally unfamiliar, performed at speed with no idea of likely consequence 0.55 0.35 – 0.97 

Shift or restore system to a new or original state on a single attempt without supervision or procedures 0.26 0.14 – 0.42 

Complex task requiring high level of comprehension and skill 0.16 0.12 – 0.28 

Fairly simple task performed rapidly or given scant attention 0.09 0.06 – 0.13 

Routine, highly practised, rapid task involving relatively low level of skill 0.02 0.007 – 0.045 

Restore or shift system to original or new state, following procedures with some checking 0.003 0.0008 – 0.0070 

Completely familiar, well designed, highly practised routine task, oft-repeated and performed by well motivated, 
highly trained individual with time to correct failures but without significant job aids 

0.0004 0.00008 – 0.00900 

Respond correctly to system when there is an augmented or automated supervisory system providing accurate 
interpretation of system state 

0.0002 0.000006 – 0.000090 
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Figure 1: 

 

0

2

4

6

8

10

12

0 2 4 6 8 10 12

R
is

k

Exposure

Hyperbolic risk function

If the relationship between exposure and risk is 
hyperbolic, variation in exposure and risk will not be 
associated with systematic variation in the number 
of accidents

1/6 ∙ 6 = 1 (high red rectangle)

1/2 ∙ 2 = 1 (low red rectangle)



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2014.12.011.docx 38 

Figure 2: 

 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

R
e

la
ti

ve
 a

cc
id

e
n

t 
ra

te

Amount of exposure (AADT or number of encounters)

Relative accident rate as a function of how exposure is measured

Minimum (AADT = 500; encounters = 62,500)

Maximum (AADT = 20,000)

Maximum (encounters = 100,000,000)



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2014.12.011.docx 39 

Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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