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ABSTRACT 

Safety-in-numbers denotes the tendency for the risk of accident for each road user to 

decline as the number of road users increases. Safety-in-numbers implies that a 

doubling of the number of road users will be associated with less than a doubling of 

the number of accidents. This paper investigates safety-in-numbers in 239 pedestrian 

crossings in Oslo and its suburbs. Accident prediction models were fitted by means 

of negative binomial regression. The models indicate a very strong safety-in-numbers 

effect. In the final model, the coefficients for traffic volume were 0.05 for motor 

vehicles, 0.07 for pedestrians and 0.12 for cyclists. The coefficient for motor vehicles 

implies that the number of accidents is almost independent of the number of motor 

vehicles. The safety-in-numbers effect found in this paper is stronger than reported 

in any other study dealing with safety-in-numbers. It should be noted that the model 
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explained only 21 percent of the systematic variation in the number of accidents. It 

therefore cannot be ruled out that the results are influenced by omitted variable bias. 

Any such bias would, however, have to be very large to eliminate the safety-in-

numbers effect. 

 

Key words: safety-in-numbers; cyclists; pedestrians; pedestrian crossings; accident 

prediction model 
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1 INTRODUCTION 

A transport policy objective in many countries is to curtail growth in the use of cars 

and promote walking or cycling. Important reasons for adopting this policy objective 

are to reduce global warming and improve public health. Pedestrians and cyclists 

have a higher injury rate per kilometre of travel than car occupants (Bjørnskau 2015). 

If more people walk or cycle, one may expect the number of traffic injuries to 

increase. A counterargument is that the injury rate for pedestrians and cyclists is not 

constant, but subject to a “safety-in-numbers” effect, which means that the larger the 

number of pedestrians or cyclists, the lower the injury rate for each pedestrian or 

cyclist. If sufficiently strong, this protective effect may to a large extent counteract 

and perhaps eliminate the increase in the number of injuries that would otherwise be 

expected when there is more walking or cycling. 

Unfortunately, there are many problems in estimating the safety-in-numbers effect 

and particularly in determining the causality of the effect. In the first place, data on 

the number of pedestrians or cyclists tend to come from short-term counts that may 

be associated with considerable uncertainty (Kröyer 2015). In the second place, the 

reporting of accidents involving pedestrians or cyclists in official accident statistics is 

very low, in particular for cyclists (Lahrmann 2015). In the third place, nearly all 

studies of safety-in-numbers rely on cross-sectional data, which make it difficult to 

establish causal relationships. In a recent review, Elvik and Bjørnskau (2016) 

concluded that no studies of safety-in-numbers have controlled adequately for all 

relevant confounding variables and that one cannot conclude that these studies have 

uncovered a causal relationship. 
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A fourth problem is that there are many ways of developing and fitting the accident 

prediction models by means of which the safety-in-numbers effect is estimated 

(Hauer 2015) (note: the word “effect” is used as shorthand only and does not 

necessarily imply a claim of causality). Results may vary depending on, for example, 

which variables a model includes and how the statistical relationship between these 

variables and the number of accidents is modelled. 

While it is difficult to establish causal relationships in a single study, replication of 

studies may, as the number of studies grows, reveal consistent patterns that may at 

least suggest causality. Consistency in the relationship between a cause and its effect 

(same cause, same effect) is one of the oldest criteria of causality. If a safety-in-

numbers effect has been reproduced consistently in a range of countries and during a 

long period of time, that at least shows that it reflects a general tendency, which is 

robust with respect to the many differences between the individual studies. 

The main objective of this paper is to estimate the safety-in-numbers effect in a 

sample of pedestrian crossings in Norway. Part of the sample was used in a previous 

study (Elvik, Sørensen and Nævestad 2013), but it has now been enlarged as 

explained in the next section. The paper tries to implement the stepwise approach to 

regression modelling in road safety proposed by Hauer (2015). 
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2 DATA AND METHOD 

2.1 Sample of pedestrian crossings 

A data set consisting of 389 marked pedestrian crossings in and close to Oslo has 

been created by merging four data sets. The four data sets are described in reports by 

Amundsen and Sætre (2009), Sætre et al. (2010), Sørensen et al. (2010) and Sørensen 

and Nævestad (2012). These pedestrian crossings were selected for detailed safety 

inspections for one or more of the following reasons: 

1. Accident history: crossings with a history of accidents were selected. 

2. Accident severity: crossings where accidents were severe, in particular where 

there had been fatal accidents, were selected. 

3. Speed limit: crossings located on roads with a speed limit of 50 or 60 km/h 

were selected. 

4. Complaints: crossings for which the public had made complaints were 

selected. 

The pedestrian crossings are not representative of all pedestrian crossings in Oslo 

and its suburbs. In particular, the mean number of accidents per crossing is likely to 

be considerably higher than for a typical pedestrian crossing in Oslo and its suburbs. 

The variables recorded for each pedestrian crossing are listed in Table 1. 

Table 1 about here 

There are three groups of variables. The first group consists of dependent variables, 

i.e. variables whose values are influenced by the other groups of variables listed in 
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Table 1. These variables include the count of injury accidents and the counts of 

injured road users according to injury severity. 

The second group of variables describe traffic volume. Traffic volume is indicated 

both by means of estimates of the annual average daily number of cars, pedestrians 

or cyclists and by means of counts made when the pedestrian crossings were 

inspected. AADT is almost always estimated on the basis of short-term counts. As 

shown by Mensah and Hauer (1998), using an average value for traffic volume, rather 

than the volume prevailing at the time of each accident, may lead to bias when 

estimating the relationship between traffic volume and the number of accidents. 

AADT is, however, very often the only available data on traffic volume.  

In most of the pedestrian crossings, traffic counts were made when the crossings 

were inspected. These counts were typically made during daytime on weekdays and 

for a period of six hours. Based on the counts, the number of pedestrians and cyclists 

crossing the road during the maximum hour was estimated. One could argue that 

these estimates might be more strongly related to the number of accidents than 

AADT, since most accidents involving motor vehicles and either pedestrians or 

cyclists happen in daytime when hourly traffic volume is higher than at night. 

The third group of variables listed in Table 1 are various characteristics of the road 

layout and traffic control at the pedestrian crossings. This includes the number of 

directions from which vehicles may approach a pedestrian crossing (arms: an 

indicator of the number of traffic movements a pedestrian or cyclist must attend to 

when crossing the road), the number of lanes, the presence of a refuge, the presence 
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of traffic signal control, speed limit and the 85th percentile speed of approaching 

motor vehicles. 

2.2 Analytic choices 

Hauer (2015) emphasises the importance of making all analytic choices when 

developing an accident prediction model explicitly and stating the reasons for the 

choices that were made. Unless models are developed this way, one cannot know 

whether the final model was the best possible model, given the available data and the 

intended use of the model, or whether it was inferior. In this paper, the main analytic 

choices are: 

1. Are the independent variables so highly correlated that there could be co-

linearity problems in developing a model? 

2. Which set of variables describing traffic volume is most closely related to the 

count of accidents? 

3. Which of the other independent variables should be included in a model? 

2.3 Correlations among variables 

To help answer the first question, a correlation matrix (Pearson correlation 

coefficients) was estimated. It is shown in Table 2. Most of the correlations are 

minor or moderate. Only three correlations are quite strong. These are the 

correlations between the two measures of traffic volume, which are highlighted in 

bold italics in Table 2. 

Table 2 about here 
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Based on these correlations, a choice must be made between the two sets of traffic 

volume variables. To guide the choice, an analysis employing cumulative residuals 

plots (CURE-plots) (Hauer and Bamfo 1997, Hauer 2015) has been be made. 

2.4 Choice between variables indicating traffic volume 

Negative binomial regression models were developed in order to determine which of 

the two sets of variables describing traffic volume were best suited for analysis. To fit 

the models, traffic volume variables were transformed to natural logarithms. A value 

of 1 was added to pedestrian and cyclist counts to avoid taking the logarithm of zero. 

The first model was based on the counts made when the pedestrian crossings were 

inspected. Figure 1 shows the CURE-plot based on the fitted values of the model. 

Figure 1 about here 

It is seen that model predictions are quite poor. For long stretches of the predicted 

values, the residuals are consistently negative or positive and have large values. The 

CURE-plot shows that the model fits the data badly. A similar model based on the 

AADT-values for traffic volume is shown in Figure 2.  

Figure 2 about here 

The variables were again transformed to natural logarithms and the value of 1 added 

for pedestrians and cyclists. This CURE-plot shows that the model fits the data well. 

The cumulative residuals oscillate around the value of zero and do not stray as far 

away from this value as the residuals in Figure 1. It is therefore concluded that the 

model based on AADT-estimates for the traffic volume variables is satisfactory. 
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2.5 Variables to be included in the model 

Which variables to include in a model in addition to the traffic volume variables is 

decided according to whether the variables are safety-related and improve the 

precision of estimates of safety based on the model (Hauer 2015). The precision of 

estimates is assessed in terms of how well the model fits the data. The variables 

considered for inclusion in the model are: number of arms (number of directions 

from which vehicles can enter a pedestrian crossing), number of lanes, presence of 

refuge, presence of traffic signals, and either speed limit or 85th percentile speed. 

Figure 3 shows how the mean number of accidents per pedestrian crossing depends 

on the number of directions from which vehicles can enter the crossing. It is seen 

that the mean number of accidents increases as the number of directions vehicles can 

enter from increases. 

Figure 3 about here 

There are only three values for the number of directions variable: 2, 3 and 4.. A linear 

function fits the data very well and with only three values for the variable, there is no 

point in searching for more complex functions. 

Figure 4 shows the relationship between the number of lanes and the mean number 

of accidents per pedestrian crossing. When testing various functions in Excel, a 

second degree polynomial was found to best fit the data. As shown figure 4, this 

function does not fit the data very well. 

Figure 4 about here 
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It is clear that the relationship between the variables is not linear. In Figure 4, the 

data point to the right has a large influence on the shape of the curve. This data point 

is, however, based only on two pedestrian crossings. When fitting the model, the two 

rightmost data points in Figure 4 will have a small influence. It is still useful to test 

whether including the number of lanes squared improves the fit of a model, as even 

the data points for 1, 2, 3, and 4 lanes suggest a non-linear relationship. 

The presence of a refuge is a binary variable. The mean number of accidents in 

crossings without a refuge is 1.200. The mean number of accidents in crossings with 

a refuge is 1.374. This difference is not statistically significant. The presence of a 

refuge will nevertheless be included in order to test whether it improves the fit of the 

model. The presence of traffic signal control is also a binary variable. The mean 

number of accidents in crossings without traffic signals is 1.101. The mean number 

of accidents in crossings with traffic signals is 2.860. This difference is statistically 

significant. It is clear that the simple bivariate relationships between a refuge and 

accidents, and between traffic signals and accidents, are seriously confounded by, for 

example, traffic volume.  

The final variable to be considered is speed. This can be entered either as the posted 

speed limit, which has the values of 30, 40, 50 or 60 km/h, or as the 85th percentile 

speed of approaching vehicles. The vast majority of crossings have speed limits of 

either 50 or 60 km/h. There was no clear relationship between speed limit and the 

number of accidents, which suggests that each speed limit should be entered as a 

dummy variable. When 85th percentile speeds were compared for pedestrian 

crossings having 0, 1, 2, …, 11 accidents, no clear relationship emerged. Speed will 
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therefore be included in the model as a set of dummy variables for speed limit. The 

mean value for speed limit was 52.2 km/h and the mean value for the 85th percentile 

speed was 44.8 km/h. 

2.6 Fitting the model in stages 

The model was fitted in stages, in which the first stage included the traffic volume 

variables only. In the next stages, one new variables was added at each stage. The 

reason for developing the model in these stages, adding one new variable at each 

stage, is to assess the stability of the regression coefficients across the different model 

specifications. More specifically, any model will have omitted variables. Omission of 

a variable may cause bias in the estimates of regression coefficients. However, not 

including a variable believed to be relevant will not always cause bias. One sign that 

an omitted variable could cause bias is that the regression coefficients for the 

variables already included in a model change value when the omitted variable is 

added to the model. Thus, if regression coefficients remain unchanged as more 

variables are added to a model, this indicates that the omitted variables did not cause 

bias, since their addition to the model does not influence the values of the regression 

coefficients for the variables that were already included. This criterion is obviously 

quite weak, and it by no means ensures that a model is not affected by omitted 

variable bias. It does, however, weaken the argument for rejecting a model because it 

does not including everything that is known or believed to influence safety. 
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3 RESULTS 

The models were fitted by means of negative binomial regression with a log link 

function. Regression coefficients were estimated by means of the maximum 

likelihood technique. Table 3 presents the models that were developed. The models 

are based on data for 239 of the 389 pedestrian crossings, as data were missing on 

pedestrian and cyclist volume for 150 crossings. Goodness-of-fit is indicated by the 

overdispersion parameter listed at the bottom of the Table. If a model explains all 

systematic variation in the number of accidents, the value of the overdispersion 

parameter is zero. A positive value indicates that there remains systematic variation 

not explained by the model. 

Table 3 about here 

All coefficients have the expected sign, but are mostly not statistically significant. 

With a few exceptions, the coefficients change little as new variables are added to the 

models. The addition of number of lanes squared changed the value of the 

coefficient for number of lanes considerably, indicating that the relationship was 

non-linear as indicated by the exploratory analysis. The coefficient for motor vehicle 

volume dropped in value when speed limits were added to the model and again when 

traffic signals were added to the model. At stage 7, the coefficient for motor vehicle 

volume had a much smaller value than at stage 1. The coefficients for pedestrian 

volume and cyclist volume remained more stable across model specifications. The 

final value of the coefficient for motor vehicle volume suggests that the number of 

accidents is almost independent of volume, which is quite surprising. The 
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coefficients for pedestrian and cyclist volume are also quite small and suggest a 

dramatic safety-in-numbers effect. 

The models were, however, not successful in explaining systematic variation in the 

number of accidents. Figure 5 shows that the variables included in the model with 

the smallest value of the overdispersion parameter explained only about 21 percent 

of the systematic variation in the number of accidents. 

Figure 5 about here 

Traffic volume explained only a little more than 10 percent of the systematic 

variation in the number of accidents. The other independent variables, put together, 

explained slightly less than 11 percent of the systematic variation in the number of 

accidents. 

 

4 DISCUSSION 

The objective of this paper was to determine whether there is a safety-in-numbers 

effect at pedestrian crossings in Oslo and its suburbs. The results, if taken at face 

value, are striking and suggest a very strong safety-in-numbers effect. All the 

regression coefficients have smaller values than found in almost all other studies in 

the safety-in-numbers literature. 

Nevertheless, the estimated coefficients are not entirely unprecedented. Geyer et al. 

(2006) estimated a coefficient for motor vehicles of 0.15, which is within the range of 

values found in this study. Harwood et al. (2008), in one model, estimated a 

coefficient of 0.05 for motor vehicle volume. With respect to pedestrian volume, the 
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lowest coefficient reported in the literature is 0.18 (Hall 1986). For cyclist volume, 

Turner et al. (2006) reported a coefficient of 0.09 in one of their models. 

Although studies can be found that have estimated coefficients for traffic volume 

close to those found in this study, it is clear that the estimates are very low. It is 

therefore appropriate to examine if it is reasonable that the values should be so low, 

in particular the coefficient for motor vehicle volume. Figure 6 shows the 

relationship between AADT for motor vehicles and the number of accidents in the 

239 pedestrian crossings that were included in the final model. 

Figure 6 about here 

There is a very weak correlation between motor vehicle volume and the number of 

accidents. The empirical integration routine proposed by Hauer and Bamfo (1997) 

was used to identify a suitable function to describe the relationship between motor 

vehicle volume and accidents. The following function described the empirical integral 

well: 

Empirical integral function = 0.1746 ∙ AADT1.2451 (R2 = 0.9912) 

The implies that the function relating motor vehicle volume to accidents should be 

(the function is the first derivative of the empirical integral): 

Function for motor vehicle volume = 0.2174 ∙ AADT0.2451 

The exponent (0.2451) is close to the one found in the model including traffic 

volume variables only (0.190). This suggests that the value of the coefficient 

estimated in negative binomial regression is not wrong, but simply reflects the fact 

that there is a weak relationship between motor vehicle volume and the number of 
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accidents. Moreover, it is not uncommon that the estimated value of a regression 

coefficient is slightly attenuated as more variables are added to a model. 

One difference between the models fitted in this paper and most previous studies, is 

that motor vehicle volume, cyclist volume and pedestrian volume were included in 

the same model. This is not common. Thus, Daniels et al. (2010) had data on traffic 

volume for light cars, heavy cars, motorcycles, mopeds, bicycles and pedestrians. In 

the models that were developed, however, only motor vehicle volume and cycle 

volume were included when cycle accidents was dependent variable and only motor 

vehicle volume and pedestrian volume when pedestrian accidents was the dependent 

variable (the models included additional variables not referring to traffic volume). A 

sensitivity analysis was therefore made, including only two terms for traffic volume 

(in addition to the other variables included in the most comprehensive model). In the 

model with motor vehicles and pedestrians, the coefficients were 0.04 for motor 

vehicles and 0.13 for pedestrians. The coefficient for pedestrians had a marginally 

larger value than when cyclist volume is also included (0.066; see Table 3). In the 

model including motor vehicles and cycles, the coefficients were 0.07 (motor 

vehicles) and 0.15 (cycles), again marginally larger values than when pedestrian 

volume is also included (0.048 and 0.12; see Table 3). The standard errors of the 

coefficients are too large to conclude that they really are different. 

Given the fact the final model explained only a little more than 21 percent of the 

systematic variation in the number of accidents, there must be important variables 

that have not been included in the model. Therefore, bias due to omitted variables 

cannot be ruled out. For example, none of the models fitted in this paper included 
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data on drinking and driving, which has been found to be more common on low-

volume roads than on high-volume roads (Vanlaar 2008). If drinking and driving is 

more common at pedestrian crossings with low traffic volume, not accounting for 

this will bias the regression coefficients for traffic volume, since they will partly 

include the effect of a factor that both varies according to traffic volume and 

influences the number of accidents. 

Another relevant variable that ought to have been included, is the volume of heavy 

vehicles. Prato et al. (2014) found a statistically significant positive coefficient for 

heavy vehicle volume using bicycle accidents as dependent variable. When a heavy 

vehicle is involved, injuries to cyclists and pedestrians are likely to be more severe 

than when it is not involved. 

 

5 CONCLUSIONS 

The main conclusions of the research reported in this paper can be summarised as 

follows: 

1. A very strong safety-in-numbers effect was found in a sample of 239 

pedestrian crossings in Oslo and its suburbs by means of negative binomial 

regression analysis. 

2. The regression coefficients were 0.05 for motor vehicle volume, 0.07 for 

pedestrian volume and 0.12 for cyclist volume. These values are lower than in 

nearly all other studies of the safety-in-numbers effect. 

3. The model explained only about 21 percent of the systematic variation in the 

number of accidents. It therefore cannot be ruled out that if more variables 
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could have been included in the analysis, estimates of the safety-in-numbers 

effect would have changed. 
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Figure 1: 
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CURE-plot for model including traffic volume indicated by counts only
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Table 1: 

Variable Definition and explanation Mean Minimum Maximum 

 Group 1: Dependent variables    

Accidents Count of police reported injury accidents during 5 years 1.296 0 11 

Slightly injured road users Count of slightly injured road users during 5 years 1.527 0 11 

Seriously injured road users Count of seriously injured road users during 5 years 0.082 0 3 

Fatally injured road users Count of fatally injured road users during 5 years 0.008 0 1 

 Group 2: Traffic volume variables    

Motor vehicle volume Annual average daily number of motor vehicles (AADT) 8181 145 28200 

Pedestrian volume Estimated annual average daily number of pedestrians crossing the road 233 0 5000 

Cyclist volume Estimated annual average daily number of cyclists crossing the road 35 0 589 

Count of cars Count of cars made during daytime when data were collected about each pedestrian crossing 7339 33 25863 

Pedestrians in maximum hour Count in pedestrians in the hour with the largest number (short-term count) 62 0 1571 

Cyclists in maximum hour Count of cyclists in the hour with the maximum number (short-term count) 8 0 252 

 Group 3: Other independent variables    

Arms to be observed The number of approaches (directions) from which vehicles enter a pedestrian crossing 2.666 2 4 

Number of lanes The number of lanes for vehicles 2.224 1 6 

Presence of refuge If there is a refuge for pedestrians or not (dichotomous variable; 1 if refuge, 0 otherwise) 0.550 0 1 

Signal control Presence of traffic signals (1 if present, 0 otherwise) 0.111 0 1 

Speed limit Speed limit in kilometres per hour (30, 40, 50 or 60) 52.237 30 60 

85-percentile speed The speed below which 85 percent of motor vehicles travel (km/h) 44.759 16 80 
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Table 2: 

  
Arms 

 
Lanes 

 
Refuge 

 
Signals 

Speed 
limit 

85th % 
speed 

AADT 
cars 

Count of 
cars 

AADT 
pedestrians 

Count of 
pedestrians 

AADT 
cyclists 

Count of 
cyclists 

Count of 
accidents 

Number of 
arms 

1 .063 .045 .080 -.100 -.447 .002 -.159 .090 .101 .156 .215 .279 

Number of 
lanes 

 1 .256 .559 .165 .097 .501 .283 .274 .207 .276 .109 .262 

Presence 
of refuge 

  1 .154 .173 -.076 .202 .199 .047 .143 .054 .063 .047 

Traffic 
signals 

   1 .112 .091 .423 .319 .174 .184 .141 .105 .299 

Speed 
limit 

    1 .461 .232 .303 -.278 -.076 -.170 -.084 .093 

85th % 
speed 

     1 .236 .377 -.232 -.151 -.232 -.195 -.065 

AADT  
cars 

      1 .739 .131 .118 .123 -.002 .274 

Count of 
cars 

       1 -.082 -.021 -.050 -.098 .143 

AADT 
pedestrians 

        1 .952 .322 .314 .166 

Count of 
pedestrians 

         1 .335 .296 .146 

AADT 
cyclists 

          1 .890 .153 

Count of 
cyclists 

           1 .191 

Count of 
accidents 

            1 
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Table 3: 

 Regression coefficients – negative binomial regression – standard errors in parentheses 

Variables Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 

Constant term -1.671 (0.773) -1.476 (0.790) -1.669 (0.871) -1.342 (0.875) -1.588 (0.909) -1.193 (0.927) -1.197 (0.927) 

Ln(AADTcars) 0.190 (0.088) 0.150 (0.095) 0.143 (0.096) 0.078 (0.101) 0.082 (0.100) 0.050 (0.101) 0.048 (0.101) 

Ln(AADTpedestrians) 0.062 (0.050) 0.054 (0.050) 0.054 (0.050) 0.075 (0.058) 0.071 (0.058) 0.061 (0.057) 0.066 (0.058) 

Ln(AADTcyclists) 0.138 (0.052) 0.132 (0.053) 0.135 (0.053) 0.136 (0.053) 0.126 (0.054) 0.127 (0.054) 0.120 (0.055) 

Number of lanes  0.089 (0.084) 0.279 (0.369) 0.262 (0.366) 0.263 (0.364) 0.243 (0.360) 0.225 (0.361) 

Lanes squared   -0.032 (0.060) -0.027 (0.060) -0.027 (0.059) -0.036 (0.059) -0.035 (0.059) 

Speed limit 60 km/h    0.280 (0.162) 0.294 (0.162) 0.287 (0.161) 0.274 (0.163) 

Speed limit 40 km/h    0.506 (0.267) 0.507 (0.266) 0.529 (0.264) 0.549 (0.266) 

Speed limit 30 km/h    0.285 (0.552) 0.218 (0.554) 0.281 (0.550) 0.286 (0.550) 

Number of arms     0.085 (0.088) 0.074 (0.087) 0.077 (0.087) 

Traffic signals      0.362 (0.203) 0.358 (0.203) 

Refuge       0.085 (0.145) 

Overdispersion 0.520 (0.111) 0.512 (0.110) 0.510 (0.110) 0.483 (0.107) 0.475 (0.106) 0.457 (0.104) 0.458 (0.104) 

 


