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ABSTRACT 

This paper proposes methodological guidelines for developing accident modification 

functions. An accident modification function is a mathematical function describing 

systematic variation in the effects of road safety measures. The paper describes ten 

guidelines. An example is given of how to use the guidelines. The importance of 

exploratory analysis and an iterative approach in developing accident modification 

functions is stressed. The example shows that strict compliance with all the 

guidelines may be difficult, but represents a level of stringency that should be strived 

for. Currently the main limitations in developing accident modification functions are 

the small number of good evaluation studies and the often huge variation in 
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estimates of effect. It is therefore still not possible to develop accident modification 

functions for very many road safety measures. 

Key words: accident modification function; methods; guidelines; road safety; 

evaluation studies 
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1 INTRODUCTION 

There is a growing understanding of the fact that the effects of road safety measures 

vary systematically (Hauer et al. 2012). It is therefore not always very informative to 

state these effects in terms of a single point estimate. An accident modification 

function can provide a more informative and precise description of effects, by 

statistically modelling variation in effects as a function of one or more independent 

variables. 

Developing accident modification functions is, however, not easy and requires 

careful attention to the quality of evaluation studies and to whether the distribution 

of estimates of effect in these studies displays a systematic pattern. The objective of 

this paper is to propose methodological guidelines for developing accident 

modification functions. The guidelines address the following questions: 

1. How should studies serving as the basis for developing an accident 

modification function be selected? 

2. What types of preparatory analyses are required before starting to develop an 

accident modification function? 

3. How can independent variables in an accident modification function be 

identified? 

4. How can outlying data points be identified? 

5. How can the most suitable mathematical form of an accident modification 

function be determined? 

6. How can one decide whether a single or more than one accident 

modification function best fits the data?  
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7. How can the quality of an accident modification function be evaluated? 

8. How can the effects of analytic choices made when developing an accident 

modification function be evaluated (in terms of sensitivity analysis)? 

9. How can heteroscedastic data best be analysed when developing an accident 

modification function? 

10. How can accident modification functions be updated? 

Ten guidelines addressing these issues are proposed. Each guideline is illustrated by 

an example showing how to use the guideline. All examples refer to studies of the 

effects on accidents of speed enforcement. The guidelines proposed are listed in 

Table 1. In the following sections, each guideline will be presented in detail. 

Table 1 about here 

 

2 CLASSIFY, CODE AND SELECT STUDIES 

The first step in developing an accident modification function is to identify the 

studies that will serve as a basis for developing the function. A systematic literature 

survey should be made to identify relevant studies. Once relevant studies have been 

identified, they should be classified according to study design and how well they 

control for potentially confounding factors. This is an essential preparatory step for 

analysis, because studies employing different designs do not control for the same 

potentially confounding factors and tend to produce different estimates of effect. 

Table 2 proposes a classification of study designs and identifies three levels of study 

quality for each design. Four common types of study design are listed in Table 2. For 



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2015.03.038.docx 5 

each study design, studies are classified as high, medium or low quality depending on 

how well they control for potentially confounding factors. 

Table 2 about here 

Whenever possible, one should avoid mixing studies using different designs, or not 

controlling for the same confounding factors, when developing an accident 

modification function. If there are enough studies to discard those of medium or low 

quality, doing so is recommended. If most studies are of medium or low quality, one 

should not try to develop an accident modification function, as there is a non-

negligible risk that it will be biased and misleading. 

An example of the selection of studies for use in developing an accident modification 

function is given in Table 3. The studies listed in Table 3 were, except for the most 

recent one, retrieved in an earlier study (Elvik 2011) that developed an accident 

modification function for speed enforcement. 

Table 3 about here 

Studies were only included if the following criteria were fulfilled: 

1. The study employed an experimental or observational before-after design. 

2. The dependent variable was accidents. 

3. For studies containing multiple estimates of effect, these should display an 

internally systematic pattern (see below). 

4. For studies containing a single estimate of effect, this should be consistent 

with theoretical predictions (see below). 
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The pattern of results in a study is internally consistent if it shows, allowing for 

random variation, a dose-response pattern. This means that increasing enforcement 

is associated with an accident reduction; reducing enforcement is associated with an 

increase of accidents. If only a single estimate of effect is provided, it is consistent 

with theoretical predictions if it shows that reducing enforcement is associated with 

an increase in the number of accidents and increasing enforcement is associated with 

a reduction of accidents. It might seem dubious to omit studies when their results are 

not, at least broadly, consistent with a theoretically expected pattern. It looks like 

omitting results we do not like. However, one might just as well argue that road 

safety evaluation research is too rarely guided by theory; that too few results are ruled 

out as theoretically implausible. 

A sensitivity analysis was made by including the studies that were omitted from the 

main analysis. For each study, the following independent variables were coded: 

1. Country where study was made 

2. Publication year 

3. Levels of enforcement studied 

4. Whether speed cameras were used or not 

Table 4 shows the final data table. There were 31 estimates of effect in total. The 

principal independent variable of interest is the level of enforcement. For this 

variable, 1 is the baseline level, 0 is no enforcement and 2 is twice the baseline level. 

Table 4 about here 
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3 PREPARATORY ANALYSIS 

Three issues should be addressed in the preparatory analysis. First, the contributions 

of random and systematic variation to the total variation in study findings should be 

determined. The I2 statistic in meta-analysis is a useful indicator of the relative 

contribution of systematic variation to the overall variation in estimates of effect 

(Borenstein et al. 2009). It is best stated as a percentage and should, as a guideline, 

have a value greater than 50 percent. 

Second, the distribution of estimates of effect should be tested for the possible 

presence of publication bias. Publication bias denotes a tendency not to publish 

findings that are regarded as difficult to interpret, or unwanted, like finding an 

increase in the number of accidents when the opposite was expected. All tests for 

publication bias are based on assumptions that cannot be tested directly (Rothstein et 

al. 2005). Nevertheless, if publication bias is indicated, an accident modification 

function should not be developed. 

Third, the effects of country and publication year on estimates of effect should be 

examined. Country and publication year are basically confounding variables, since the 

ambition of research is to develop knowledge that is internationally transferable and 

represents comparatively stable relationships. 

For the studies of speed enforcement listed in Table 4, the I2 statistic had a value of 

97.7, indicating that almost all variation in estimates of effect is systematic. The value 

of τ2 was 0.061. Thus, there is clearly a substantial systematic variation in estimates of 

effect. To test for publication bias, a funnel plot was developed and analysed by 

means of the trim-and-fill method (Duval 2005). There was no indication of 
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publication bias. The funnel plot indicated that even estimates of effect based on 

small standard errors varied considerably. It is reproduced in Figure 1. 

Figure 1 about here 

To test for the effects of country and publication year, meta-regressions were run 

using a macro for SPSS developed by Lipsey and Wilson (2001). Two runs were 

made, each time omitting one country; otherwise the dummies identifying countries 

will be perfectly collinear, leaving no degrees of freedom to fit model coefficients. 

Greece was omitted in the first run, the United States in the second. None of the 

country variables had statistically significant coefficients in the first run. In the 

second run, the coefficient for Australia was statistically significant, which it was very 

far from being in the first run. Publication year was not statistically significant in 

either run. The dummy variable identifying Australia is perfectly collinear with the 

dummy for use of a speed camera. The meta-regressions run to test the effects of 

country and publication year did not include the speed camera indicator. The 

coefficient estimated for Australia will include the effect of the speed camera 

dummy. It is concluded that neither country of origin nor publication year are likely 

to produce residual confounding in a model not including these variables. 

 

4 IDENTIFYING INDEPENDENT VARIABLES 

The independent variables of primary interest are of two types: 

1. Characteristics of the road safety measure, such as indicators of its quality or 

standard or extent of use. 
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2. Characteristics of the context for use of the road safety measure, such as the 

type of traffic environment it is used in. 

In the study of speed enforcement used to illustrate the guidelines, the following 

independent variables were used: 

1. Level of enforcement, a numerical variable stated with one decimal and 

ranging from 0.0 to 14.0. 1.0 is the baseline (current) level of enforcement. 

2. Use of speed camera, which is dummy variable taking the value of 1 if a 

speed camera was used. The extent of use is stated as camera hours and is 

included in the level of enforcement variable. 

 

5 IDENTIFYING OUTLYING DATA POINTS 

An outlying data point is a single data point that has a decisive influence on the 

summary estimate of effect in meta-analysis or on the functional form of an accident 

modification function. To identify outlying data points when developing an accident 

modification function, the following procedure is recommended: 

1. Develop an initial accident modification function including all data points. 

The mathematical form of this function may be subject to revision at 

subsequent stages of analysis. 

2. Examine a cumulative residuals plot for the initial function in order to 

identify sudden jumps that may indicate the presence of outlying data points. 
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3. Inspect a plot of the function and estimate standardised residuals. On the 

average, if 95 % confidence limits are applied, about 1 in 20 residuals should 

be above or below two standard errors from the fitted function. 

The following initial accident modification function was fitted to the data listed in 

Table 4: 

Ln(estimate of effect) = 𝛼 +  𝛽1𝑙𝑒𝑣𝑒𝑙 +  𝛽2𝑐𝑎𝑚𝑒𝑟𝑎𝑠 

A maximum likelihood meta-regression was run. The coefficient estimates were 

0.1490 for the constant term (α), –0.0581 for the level term (β1) and –0.2358 for the 

camera dummy (β2). All coefficients were highly statistically significant. A cumulative 

residuals plot (Hauer and Bamfo 1997, Hauer 2015) was developed it is shown in 

Figure 2. 

Figure 2 about here 

The cumulative residuals are well-behaved until the level of enforcement reaches the 

value of 9. The residuals then take a sudden jump up and go outside the 95 % 

confidence limits indicated by the dotted curves. This suggests the presence of an 

outlying data point. 

The fitted function is shown in Figure 3. It consists of two parts. The upper curve is 

the function fitted to data points that did not involve the use of speed cameras (i.e. 

the speed camera dummy had a value of 0). The lower curve is fitted to data points 

involving the use of speed cameras. Since the two curves differ only by the inclusion 

of an additional coefficient in the lower curve, they run in parallel. An examination of 
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the standardised residuals is very informative. Standardised residuals were estimated 

as follows: 

Standardised residual = 
(𝐸𝑖 − 𝑀𝑖)

(
1

√𝑊𝑖
)

 

Ei is the i-th estimate of effect (i = 1, 2, …, 31). Mi is the corresponding model 

estimate of effect according to the preliminary accident modification function. Wi is 

the fixed-effects statistical weight of the i-th estimate of effect. 

Figure 3 about here 

The function fits very poorly to the data points involving the use of speed cameras. 

There are ten of these data points. In terms of level of enforcement (camera hours) 

they range from 0.7 to 7.1. For all data points from 0.7 to 1.3 (five data points) the 

standardised residuals are highly positive ranging from 3.17 to 5.72. For all data 

points from 2.3 to 7.1 (five data points) the standardised residuals are negative, 

ranging from –0.26 to –7.18. This suggests that separate functions should be fitted to 

the data points with and without speed cameras, and that these functions need not 

have the same mathematical form. 

Turning to the function fitted to the data points not involving the use of cameras, 

estimation of standardised residuals confirms that the data point located at level 9 for 

enforcement is indeed outlying (standardised residual 2.93). The data point located at 

level of enforcement 3.5 looks suspicious, but is strictly speaking not outlying. It is 

nevertheless located so far from the other data points that including it when 

developing an accident modification function hardly adds information of any value. 

The function fitted to the non-camera data points in figure 3 passes below most data 



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2015.03.038.docx 12 

points located to the right of about 6 for the level of enforcement, suggesting that a 

function with a stronger curvature would fit the data better. 

 

6 IDENTIFYING THE BEST FITTING FUNCTIONAL FORM – 

CONVENTIONAL SPEED ENFORCEMENT 

The analysis of Figure 3 suggested that the initial accident modification function 

could be improved, both with respect to the data points not involving the use of 

speed cameras and with respect to the data points involving the use of speed 

cameras. Some commonly used functions can be tested on an Excel spreadsheet, in 

particular linear, exponential, logarithmic, power and polynomial. By testing these 

functions, one may gain an impression of whether one of them is clearly superior. 

Tests made in Excel for the data points not involving the use of speed cameras, 

including the two data points labelled as outlying in Figure 3, indicated that neither a 

linear, an exponential nor a polynomial function were clearly to be preferred. All 

these functions fitted the data quite poorly. The logarithmic and power functions 

could not be fitted as one of the data points had the value of zero. It was decided to: 

1. Omit the two data points identified as outlying in Figure 3. 

2. Define a new variable, level of enforcement squared. 

A function was then fitted using ln(estimate of effect) as dependent variable and level 

of enforcement and level of enforcement squared as independent variables. 

Inspection of a cumulative residuals plot indicated that residuals became highly 

negative at a value of about 1 for level of enforcement (i.e. the current level) and 
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strayed outside the 95 % confidence limits of the plot. To try to remedy this 

problem, three data points, all referring to the current level of enforcement (level 1.0) 

were merged into a single data point. The three data points were all from the same 

study (Shoup 1973). The estimate of effect for the merged data point was 0.986, 

which is close to the theoretically expected value of 1.0. The function was the fitted 

again. 

The cumulative residuals plot improved a little, but did still not look ideal. However, 

as other criteria of model quality are used in addition to the cumulative residuals plot, 

the function was provisionally accepted. Its quality is assessed more systematically in 

section 8 of the paper. Figure 4 shows the function and the data points to which it 

was fitted. 

Figure 4 about here 

 

7 IDENTIFYING THE BEST FITTING FUNCTIONAL FORM – USE OF 

SPEED CAMERAS 

As far as the data points referring to the use of speed cameras are concerned, tests in 

Excel, see Figure 3, indicated that an exponential function would fit the data quite 

well. An exponential accident modification function was therefore fitted to the data. 

Figure 5 shows this function and the data points it was fitted to. 

Figure 5 about here 

The function appears to fit the data quite well. A more formal assessment is reported 

in the following section. 
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8 ASSESSING MODEL QUALITY 

The following criteria are proposed regarding the quality of accident modification 

functions: 

1. Overall goodness-of-fit assessed in terms of a cumulative residuals plot and 

the value of the residual systematic variation (τ2). 

2. Unbiasedness of model predictions: the model should not, on the average 

predict a larger or smaller effect than the data points serving as its basis 

3. Normality in the distribution of standardised residuals 

4. Heteroscedasticity in the standardised residuals 

5. Autocorrelation of residuals 

These statistics are reported in Table 5 for the two accident modification functions 

developed for speed enforcement. 

Table 5 about here 

In both data sets, systematic variation in estimates of effect contributed to nearly all 

the variation (more than 90 percent). The accident modification functions fitted were 

able to explain more than 90 percent of the systematic variation in estimates of 

effect.  

The cumulative residuals plots were not ideal for any of the two functions, but did at 

least contain more than 80 percent of the data points inside the confidence limits. A 

visual examination of Figures 4 and 5 does not suggest that the functions fit the data 

poorly. Both models were found to be unbiased when model coefficients were used 
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to predict the mean effect, i.e. the fitted functions do not systematically predict too 

many or too few accidents. Standardised residuals were normally distributed for the 

function fitted to conventional speed enforcement, but more widely dispersed than 

normal for the function fitted to the use of speed cameras. All the data points for 

speed cameras had large statistical weights and therefore small standard errors. 

A potentially serious problem when developing accident modification functions is 

the heteroscedasticity of the data. This means that not all data points have the same 

sampling variance. Data points based on a low number of accidents will have a 

greater variance than data points based on a high number of accidents. This is an 

inherent characteristic of nearly all data sets used in meta-analysis of road safety 

evaluation studies and therefore likely to be a problem when developing accident 

modification functions. To test for heteroscedasticity of residuals, a graphical method 

has been applied. The logic of this test can be explained by reference to Figure 6. 

Figure 6 about here 

Figure 6 plots the standardised residuals for the accident modification function fitted 

to studies evaluating the effects of conventional speed enforcement. Separate trend 

lines have been fitted to the positive and negative residuals. If these lines are both 

horizontal, there is no heteroscedasticity. If, as in Figure 6, the lines converge to the 

right, there is what might be termed “negative heteroscedasticity”, meaning that the 

differences between the residuals become smaller as a function of the independent 

variable. Positive heteroscedasticity refers to the opposite situation; that the trend 

lines move apart. A T-test was applied to determine if the difference in slopes 

between the trend lines fitted to the positive and negative residuals was statistically 
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significant. First, the difference in slopes was computed. Then, the standard error of 

this difference was computed. The value of T was estimated as difference divided by 

standard error. The degrees of freedom was equal to the minimum number of data 

points minus 2. In Figure 6 there were eight positive data points; thus the T-test had 

six degrees of freedom. As can be seen from Table 5, the residuals for the accident 

modification function for conventional speed enforcement bordered on statistical 

significance for heteroscedasticity. The residuals for the speed camera function were 

clearly heteroscedastic. It is, unfortunately, difficult to avoid this problem entirely. 

Some options are discussed in a later section of the paper. 

Finally, autocorrelation of the residual terms refers to whether there are strings of 

positive or negative residuals terms. Such strings indicate that the function 

consistently fits poorly in a certain region of the data, which again suggests that 

higher order terms, like squares, roots, or interaction terms may need to be added to 

the function to improve goodness-of-fit. Autocorrelations of residuals were not 

statistically significant for the two functions developed. 

 

9 PERFORMING SENSITIVITY ANALYSIS 

Developing accident modification functions involves a number of analytic choices. 

Sensitivity analyses should be performed to assess how these choices influence the 

functions developed. The three most important choices made in developing the 

accident modification functions for speed enforcement were: 
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1. First, the decision not to include all the studies that were retrieved, limiting 

the analysis to studies whose results made sense from a theoretical point of 

view, 

2. Second, the decision to develop two accident modification functions rather 

than a single function, and 

3. Third, the decisions about the mathematical forms of the two functions that 

were developed. 

To test the sensitivity of results to these choices, an analysis was first made including 

the studies that were excluded from the main analysis, i.e. Andersson (1991), 

Newstead (2001), Chen et al. (2002), and Goldenbeld and van Schagen (2005). This 

increased the number of estimates of effect from 27 in the main analysis to 54. Meta-

regressions were run on all data points, data points referring to conventional 

enforcement and data points referring to the use of speed cameras. Estimated model 

coefficients were compared. The results are presented in Table 6. 

Table 6 about here 

The left half of the Table contains the results of the main analysis. The right half 

contains the results of the sensitivity analysis. The results are perfectly consistent as 

far as the sign of the coefficients is concerned. Not a single coefficient changed sign 

in the sensitivity analysis when compared to the main analysis. There is, however, a 

tendency for the coefficients to be attenuated, i.e. be closer to zero and associated 

with larger standard errors, in the sensitivity analysis. The results of the sensitivity 

analysis for the use of speed cameras were almost identical to the results of the main 
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analysis. A single study (Chen et al. 2002) was added in the sensitivity analysis, but it 

had very low statistical weight and contributed mainly by adding noise to the data. 

Based on this analysis, it is concluded that restricting the main analysis to studies with 

theoretically plausible findings did not fundamentally influence results, but served 

mainly to reduce noise in the data. Developing two accident modification functions 

rather than a single one also reduced noise in the data, as evidenced by the fact that 

the sum of residual variances for the two functions is smaller than the residual 

variance for the single function fitted to all studies. 

It remains to test alternative functional forms. With respect to conventional speed 

enforcement, the following functional forms were compared: 

1. Linear: using effect as dependent variable and level of enforcement as 

independent variable. 

2. Exponential: using the logarithm of effect as dependent variable and level of 

enforcement as independent variable. 

3. Compound: using the logarithm of effect as dependent variable and level of 

enforcement and level of enforcement squared as independent variables (this 

was the functional form used in the main analysis). 

4. Power: using the logarithm of effect as dependent variable and level of 

enforcement squared as independent variable. 

The inverse function and the logarithmic function could not be tested, as the level of 

enforcement had the value of zero in one of the studies. As far as studies evaluating 

the use of speed cameras are concerned, sensitivity analysis tested a linear function, 

an exponential function, a logarithmic function (the  preferred function in the main 
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analysis) and an inverse function (using 1/camera hours as independent variable). 

The analyses comparing the different functional firms were made using both the 

studies selected in the main analysis and the full set of studies included in the 

sensitivity analysis. The results are reported in table 7. 

Table 7 about here 

The goodness-of-fit of the various functional forms is indicated by the squared 

correlation coefficient. The higher the value, the better the fit of the function. It is 

seen that the chosen functional form fitted better than the alternatives both for 

studies of conventional speed enforcement and for studies of the use of speed 

cameras. 

 

10 THE TREATMENT OF HETEROSCEDASTIC DATA 

The data used to develop the accident modification functions used for illustrative 

purposes in this paper were somewhat atypical of data from road safety evaluation 

studies by not displaying a clear heteroscedasticity. Heteroscedasticity means unequal 

variance, i.e. that the data points are more widely dispersed in a certain range of 

outcomes than in another. Figure 7 shows an example of this for studies that have 

evaluated the effects of bypass roads. 

Figure 7 about here 

Estimates of effect in studies with large standard errors (i.e. large sampling variance – 

small accident samples – bottom of diagram) vary much more than those in studies 

with small standard errors. This means that any function fitted to these data is likely 
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to fit poorly to the data points characterised by large standard errors. There are four 

options for dealing with heteroscedasticity: 

1. Transform variables to stabilise variance. For variables measured in natural 

units, a logarithmic transformation will often reduce heteroscedasticity. 

Experience shows, however, that even after such a transformation 

considerable heteroscedasticity may remain, as shown in Figure 7. 

2. Merge data points, in particular data points that are very widely dispersed, like 

the data points at the bottom of Figure 7. The drawback of this procedure is 

that information is lost, for example, when the merged data points referred to 

different countries or publication years. Moreover, it is difficult to offer 

definite guidelines on how far one should go in merging data points. Ideally, 

the practice should be avoided. 

3. Restrict the accident modification function to a limited range of the data. 

This means that the most widely dispersed data points are omitted when 

developing the accident modification function. Again, this procedure is not 

ideal since it wastes information. 

4. Develop more than one accident modification function. Developing more 

than one function is relevant when there is reason to believe that the effects 

of a measure vary in a more complex manner than a single function can 

represent. Heteroscedasticity as such does not indicate variation in effects 

and is therefore, by itself, not a sufficient reason to develop more than one 

function. 



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2015.03.038.docx 21 

None of these options for dealing with heteroscedasticity is ideal. One may have to 

accept the fact that the residual terms of an accident modification function fitted to 

heteroscedastic data will, to some extent, be heteroscedastic. 

 

11 UPDATING ACCIDENT MODIFICATION FUNCTIONS 

Accident modification functions should be periodically updated. When updating a 

function, it may be necessary to decide whether to retain the original functional form 

or change to a new functional form. The following procedure is tentatively proposed 

for updating an accident modification function. 

1. Enter the new data points and estimate predicted values for the entire data 

set, using both data points that were included before updating and the new 

data points. 

2. If predicted values are close to the original estimates of effect (before adding 

new data points), the model has been successfully updated. 

3. If predicted values fit the original estimates of effect poorer than the original 

accident modification function, but fit well to the new data points, consider 

changing functional form. 

4. If predicted values fit the original estimates of effect as well as the original 

accident modification function, but do not fit well to the new estimates of 

effect, examine more in detail the sources of the poor fit to new estimates of 

effect. Consider adding variables to the function to improve its fit to the data. 
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It is stressed that these guidelines are tentative only, as there is so far little experience 

in updating accident modification functions and few, if any, cases of it have been 

reported in the literature. 

 

12 DISCUSSION 

The case for modelling systematic variation in the effects of by means of accident 

modification functions has been convincingly made by Hauer et al. (2012). Yet, 

although it is clear that the effects of very many road safety measures vary 

systematically, it is by no means trivial to develop functions that describe this 

variation well and in a useful manner. It is important to emphasise that an accident 

modification should both be as methodologically rigorous as the data permit 

(describe variation well) and be applicable when predicting the effects of a measure 

(be useful). 

To develop an accident modification function therefore involves more than a mere 

historical reconstruction of research. It is an exercise in regression modelling. As 

such, it faces all the challenges discussed by Hauer (2015) as far as regression 

modelling in road safety is concerned. Even if everybody can agree on the desirability 

of developing accident modification functions, this may still often be impossible if, 

for example: 

1. Primary studies employ different designs and are of variable quality. 

2. The sources of systematic variation in effects cannot be identified. 

3. There are sources of systematic variation in effects that do not produce a 

systematic pattern in estimates of effects. 
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It is nearly always the case that road safety evaluation studies differ in design and 

quality. These differences tend to be associated with systematic variation in estimates 

of the effects of road safety measures, but not necessarily because the true effects 

vary. It could, for example, be the case that one study controlled for regression-to-

the-mean and the other did not, and that the study not controlling for regression-to-

the-mean estimated a larger effect of the road safety measure than the study 

controlling for regression-to-the-mean.  

It is important to remember that systematic variation in effects simply means: “a 

larger variation than randomness alone can account for”. Variation in study quality 

may well produce systematic variation in this sense, but it is entirely without interest. 

It is merely a source of confounding, making it more difficult to know whether there 

really is systematic variation in the effects of road safety measures for reasons that it 

would be useful for the designers and planners of the measure to know. 

One should therefore not be surprised that developing accident modification 

functions involves many analytic choices. The guidelines presented in this are 

intended to support these analytic choices. It is hoped that the guidelines are 

sufficiently clear to give guidance, yet sufficiently “open-ended” not to prevent the 

exercise of professional judgement, which inevitably will be subjective and frequently 

open to discussion. It should be clear that developing accident modification 

functions is, to borrow a term used by Hauer (2015), an “art”, not an exact science 

that can proceed effortlessly by strictly adhering to a well-specified experimental 

protocol.  
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13 CONCLUSIONS 

Ten methodological guidelines for developing accident modification functions have 

been proposed and their use illustrated. The guidelines are: 

1. Classify, code and select studies that are used as the basis for developing an 

accident modification function. 

2. Perform preparatory analysis to determine the contribution of systematic 

variation to the overall variation in estimates of effect, to assess the possible 

presence of publication bias, and to determine whether estimates of effect 

vary systematically between countries and/or over time. 

3. Identify the independent variables of an accident modification function. 

4. Identify outlying data points. 

5. Identify the best fitting functional form. 

6. Determine if more than one function should be develop to describe variation 

in a data set. 

7. Evaluate the quality of the accident modification functions in terms of 

statistical criteria. 

8. Perform sensitivity analysis with respect to analytic choices made as part of 

the analysis. 

9. Assess how best to treat data characterised by heteroscedasticity. 

10. Establish a routine for updating the accident modification function. 
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Table 1: 

Guidelines Analysis required to comply with guidelines Justification of guidelines 

1. Classify, code and 
select studies 

Classify studies by study design (see Table 2). Do not mix 
studies employing different designs in the same AMF. 
Code all variables that may influence effect size. 

Studies employing different designs do not control for the same potentially confounding factors. An 
AMF based on studies employing different designs may be more influenced by confounding than 
an AMF based on studies employing identical designs. 

2. Perform 
preparatory 
analysis 

The potential presence of publication bias should be tested 
for. The relative contribution of systematic variation in 
estimates of effect to overall variance should be quantified. 
Effects of country and year of publication should be tested 
for. 

An AMF influenced by publication bias will be biased. AMFs should not be developed if publication 
bias is indicated. An AMF should explain systematic variation in estimates of effect; this only 
makes sense if systematic variation makes a predominant contribution to the overall variation in 
estimates of effect. Country and year of publication should be viewed as potentially confounding 
variables. 

3. Identify 
independent 
variables 

At least one independent variable should be identified. 
Independent variables may either refer to the measure 
itself or the context of its use 

An AMF should have at least one independent variable. Independent variables should describe 
characteristics of the measure or the context of its use. 

4. Identify outlying 
data points 

Plot data points in a cumulative residuals plot, based on a 
preliminary AMF,  to locate potentially outlying data points. 
Outlying data points should be omitted. 

An outlying data point may decisively influence the mathematical form of an AMF. It is not 
appropriate that a single data point should determine the shape of a function fitted to, for example, 
40-50 data points. 

5. Identify the best 
fitting functional 
form 

A systematic testing of various functional forms, such as 
linear, power, exponential etc. should be performed in 
order to identify the best fitting functional form 

An AMF can have different functional forms, such as linear, power, exponential, etc. Exploratory 
testing is needed to identify the best fitting functional form. 

6. One or more 
functions  

A careful examination of the residual terms of an AMF can 
give hints that two or more AMFs are needed to adequately 
summarise variation in the effects of a measure 

The effects of road safety measures may not always be adequately summarised by means of a 
single AMF. If a more precise description of effects can be obtained by developing more than one 
AMF, this should be done. 

7. Evaluate accident 
modification 
function 

AMF should be evaluated in terms of predictive 
performance, explanatory value, and distribution of residual 
terms 

Unless an AMF fits quite well to the data, it cannot be applied to predict the effects of a road safety 
measure. Several criteria should be applied to assess the quality of an AMF. 

8. Perform sensitivity 
analysis 

A sensitivity analysis should be made to assess the effects 
of analytic choices made when developing an AMF 

When developing an AMF analytic choices are made about which studies to include, whether to 
develop one or more AMFs, the mathematical form of the AMF, and possibly other items. A 
sensitivity analysis tests how results are influenced by these choices. 

9. Decide on 
treatment of 
heteroscedasticity 

Individual estimates of effect vary in statistical precision. 
This very often creates unequal variance 
(heteroscedasticity) across the range covered by the data. 

In heteroscedastic data, any function will often fit well to the part of the data characterised by small 
variance, but poorly to the part of the data characterised by large variance. One should assess 
options for minimising this problem, although it may be impossible to avoid it entirely. 

10. Update accident 
modification 
function 

A routine for updating AMFs should be established, 
enabling a decision to made as to whether an updated 
AMF should retain the original functional form or adopt a 
new functional form. 

AMFs should be periodically updated. When an AMF is updated, rules should be established for 
either keeping its original mathematical form or changing the mathematical form of the function. If 
new data points do not fit well to any function, possible reasons for this should be examined. 
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Table 2: 
 

Main category of study design Versions of study design by level of control for confounding factors Rating for study quality (within main group) 

Randomised controlled trials (experiments) Randomised controlled trial demonstrating pre-trial equivalence of groups 
and controlling for treatment implementation, attrition bias and unintended 
effects 

High 

 Randomised controlled trial demonstrating or controlling for some but not all 
of the factors listed above 

Medium 

 Randomised controlled trials with evidence of systematic differences 
between treatment group and control group 

Low 

Before-and-after studies (observational) Before-and-after studies controlling for regression-to-the-mean, long-term 
trends and changes in traffic volume not induced by the measure 

High 

 Before-and-after studies controlling for some, but not all of the factors listed 
above 

Medium 

 Simple before-and-after studies not controlling for any confounding factors Low 

Case-control studies Case-control studies controlling for self-selection of cases and/or controls 
and important known risk factors by means of multivariate analysis 

High 

 Case-control studies controlling partly for self-selection bias and for some 
but not all known important potentially confounding factors 

Medium 

 Simple case-control studies not controlling for potentially confounding factors 
or simple case-series 

Low 

Cross-sectional studies – multivariate models Multivariate models not known to be influenced by any of the following 
potential sources of error: small samples or low mean values; bias due to 
aggregation or averaging; outlying data points; inclusion of endogenous 
variables; co-linearity among independent variables; omitted variable bias; 
wrong functional form; inappropriate model form; inappropriate dependent 
variable 

High 

 Multivariate models not known to be influenced by most of the potential 
sources of error listed above 

Medium 

 Multivariate models known to be influenced by one or more of the potential 
sources of error listed above 

Low 
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Table 3: 
 

Study Study design Included in original study Included in current study Reason for inclusion or exclusion 

Munden (1966) Experimental before-after Yes Yes Internally systematic pattern 

Shoup (1973) Observational before-after Yes Yes Internally systematic pattern 

Nilsson and Engdahl (1982) Observational before-after Yes Yes Internally systematic pattern 

Andersson (1991) Observational before-after Yes No Not internally systematic pattern 

Waard and Rooijers (1994) Experimental before-after Yes No Did not use accidents as dependent variable 

Vaa (1995) Experimental before-after Yes No Did not use accidents as dependent variable 

Newstead et al. (2001) Observational before-after Yes No Not internally systematic pattern 

Chen et al. (2002) Observational before-after Yes No Not internally systematic pattern 

Papaioannou et al. (2002) Observational before-after Yes No Not appropriate dependent variable 

Cameron et al. (2003) Observational before-after Yes Yes Internally systematic pattern 

Newstead and Cameron (2003) Observational before-after Yes Yes Internally systematic pattern 

Goldenbeld and van Schagen (2005) Observational before-after No No Not internally systematic pattern 

Yannis et al. (2008) Observational before-after No Yes Estimate of effect consistent with theoretical prediction 

DeAngelo and Hansen (2014) Observational before-after No Yes Estimate of effect consistent with theoretical prediction 
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Table 4: 

 
Study 

 
Year 

Level of 
enforcement 

 
Odds ratio 

Standard 
error 

Speed 
camera 

Dummy 
GBR 

Dummy 
USA 

Dummy 
SWE 

Dummy 
AUS 

Dummy 
GRE 

Munden 1966 3.5 1.460 0.365 0 1 0 0 0 0 
Munden 1966 6.0 0.861 0.285 0 1 0 0 0 0 
Munden 1966 8.5 0.815 0.281 0 1 0 0 0 0 
Munden 1966 9.0 1.423 0.251 0 1 0 0 0 0 
Munden 1966 13.0 0.510 0.297 0 1 0 0 0 0 
Munden 1966 14.0 0.637 0.219 0 1 0 0 0 0 
Shoup 1973 0.0 1.160 0.193 0 0 1 0 0 0 
Shoup 1973 1.0 1.012 0.180 0 0 1 0 0 0 
Shoup 1973 1.0 0.870 0.181 0 0 1 0 0 0 
Shoup 1973 1.0 1.063 0.187 0 0 1 0 0 0 
Shoup 1973 1.1 0.945 0.224 0 0 1 0 0 0 
Shoup 1973 3.0 1.056 0.190 0 0 1 0 0 0 
Shoup 1973 3.7 0.808 0.213 0 0 1 0 0 0 
Shoup 1973 4.0 1.003 0.164 0 0 1 0 0 0 
Nilson and Engdahl 1982 0.6 1.091 0.110 0 0 0 1 0 0 
Nilson and Engdahl 1982 1.1 0.952 0.080 0 0 0 1 0 0 
Nilson and Engdahl 1982 1.8 0.961 0.062 0 0 0 1 0 0 
Nilson and Engdahl 1982 3.4 0.880 0.089 0 0 0 1 0 0 
Cameron et al. 2003 0.7 1.068 0.042 1 0 0 0 1 0 
Cameron et al. 2003 0.9 1.036 0.029 1 0 0 0 1 0 
Cameron et al. 2003 1.1 0.979 0.027 1 0 0 0 1 0 
Cameron et al. 2003 1.3 0.970 0.028 1 0 0 0 1 0 
Newstead and Cameron 2003 1.0 0.938 0.023 1 0 0 0 1 0 
Newstead and Cameron 2003 2.3 0.796 0.023 1 0 0 0 1 0 
Newstead and Cameron 2003 2.6 0.636 0.022 1 0 0 0 1 0 
Newstead and Cameron 2003 3.1 0.610 0.021 1 0 0 0 1 0 
Newstead and Cameron 2003 4.4 0.661 0.029 1 0 0 0 1 0 
Newstead and Cameron 2003 7.1 0.517 0.018 1 0 0 0 1 0 
Yannis et al. 2008 7.9 0.756 0.015 0 0 0 0 0 1 
DeAngelo and Hansen 2014 0.7 1.139 0.063 0 0 1 0 0 0 
DeAngelo and Hansen 2014 0.7 1.174 0.041 0 0 1 0 0 0 
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Table 5: 

 

 Accident modification functions with respect to 

Indicator of model quality Conventional speed enforcement Speed cameras 

Share of systematic variation in primary results (%) 90.3 99.1 

Share of systematic variation explained by function (%) 99.4 96.5 

Share of cumulative residuals within confidence bounds (%) 82.4 90.0 

Unbiasedness of model predictions (predicted/recorded) 1.001 1.005 

Normality of standardised residuals X2 = 2.003; p = 0.849 (normal) X2 = 32.722; p = 0.000 (not normal) 

Heteroscedasticity of standardised residuals Difference in slope of residuals: –0.123; SE: 0.069, p = 0.062 Difference in slope of residuals: 0.740; SE: 0.143, p = 0.018 

Autocorrelation of residuals Mean for lags 1-15: –0.033; Mean p-value = 0.477 Mean for lags 1-8: –0.063; Mean p-value: 0.172 
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Table 6: 

 

 Main analysis (selected studies) Sensitivity analysis (all retrieved studies)  

Models Term Estimate Standard error Term Estimate Standard error P value for T-test 

All studies Constant 0.1490 0.0529 Constant 0.0448 0.0492 0.1492 

 Level of enforcement -0.0581 0.0104 Level of enforcement -0.0319 0.0097 0.8968 

 Camera dummy -0.2358 0.0576 Camera dummy -0.1630 0.0586 0.7654 

 Residual variance 0.01481  Residual variance 0.02395   

Conventional Constant 0.1442 0.0351 Constant 0.0303 0.0527 0.1069 

 Level of enforcement -0.0711 0.0206 Level of enforcement -0.0376 0.0244 0.7981 

 Level squared 0.0022 0.0022 Level squared 0.0011 0.0019 0.3705 

 Residual variance 0.00000  Residual variance 0.00832   

Speed cameras Constant 0.9778 0.0244 Constant 0.9879 0.0264 0.5975 

 Level of use (hours) -0.2540 0.0249 Level of use (hours) -0.2498 0.0272 0.5401 

 Residual variance 0.00249  Residual variance 0.00318   
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Table 7: 

 

 Functions for conventional speed enforcement (R2)  Functions for use of speed cameras (R2) 

Functional form Main analysis Sensitivity analysis Functional form Main analysis Sensitivity analysis 

Linear 0.9120 0.1498 Linear 0.7424 0.1565 

Exponential 0.9338 0.1833 Exponential 0.7955 0.1787 

Compound 0.9398 0.1933 Logarithmic 0.9093 0.4603 

Power 0.8675 0.1368 Inverse 0.8860 0.4366 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Figure 7: 
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