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Productivity Growth in Urban Freight Transport: An Index Number

Approach 

Abstract: Improvement of operational efficiency is a common goal of most governmental 

freight transport policies. While productivity and efficiency analysis consequently provides a 

sound knowledge base, applications to freight transport are scarce. This paper illustrates how 

axiomatic production theory can be applied to model road freight transport, and proposes a 

logistics efficiency measure as the function representation. Based thereon, a logistics 

productivity index that decomposes into technical, cargo mix, vehicle capacity, and efficiency 

changes is established to determine the rate and drivers of growth. Emphasizing urban 

logistics, the paper discusses the limited access to reliable data at the micro level and 

illustrates how local or regional freight transport can be evaluated applying pseudo panel 

techniques to national freight surveys. Correspondingly, the theoretical productivity index is 

implemented on a pseudo panel covering the 24 largest cities in Norway between 2008 and 

2012, when 12 of them entered a collaboration agreement to promote efficient transport. 

The results indicate a modest 0.6 percent average productivity growth. Efficiency change is 

the key driver of growth, countered by technical stagnation and regress. Negative productivity 

growth is expected if this trend continues. Moreover, the results do not reveal productivity 

gains from urban agglomeration or membership of the collaboration agreement, suggesting 

that prevailing transport and land use policies have so far been unable to foster productivity 

growth in urban freight transport. 

Keywords: Urban freight transport; Logistics efficiency measure; Productivity change 
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1. Introduction 

On the one hand, urban freight transport is a necessary condition for sustaining urban 

settlements and for maintaining the urban way of life. On the other, it produces a wide range 

of external costs such as noise, air pollution, accidents, and congestion. Because of high 

population densities in urban areas, these external costs are also typically very high1. With 

increasing urbanization and transportation, urban freight transport has therefore become an 

important issue on the political agenda worldwide; see e.g. European Commission (2011).   

There are several ways to tackle the negative impacts of urban freight transport, including 

establishing eco-zones, delivery time restrictions, and vehicle weight restrictions2. One of the 

most promising measures to reduce the negative impacts is to minimize the number of trips 

required for freight movements (Eidhammer & Jean-Hansen, 2008), i.e., to foster productivity 

growth and efficiency improvements in urban logistics. This approach to improving the 

sustainability of urban freight transport, by decoupling the movement of goods from 

transport activities, is the focus of my paper. More precisely, it develops and decomposes a 

Logistics Productivity Index (LPI) to identify the rate and drivers of productivity growth, and 

illustrates empirical implementation of the index in the context of urban freight transport. 

Thus, it establishes a management tool for freight transport policies in general, but pays 

special attention to urban freight transport. The availability of data for implementing the 

index at the city level is discussed.  

                                                           

1 See Quack (2008) for more on the pros and cons of urban freight transport. 

2 See Browne et al. (2007) for an overview and discussion of possible political measures to deal with the 

negative impacts of freight transportation.  
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Caplice and Sheffi (1994) distinguish between two types of logistics performance measures; 

productivity measures (i.e., the ratio of outputs to inputs; e.g., goods lifted per truck or trip) 

and utilization measures (i.e., the capacity used to the total capacity available). As noted by 

McKinnon (2015a), while ton kilometers per truck per annum have risen steeply in most 

countries as trucks have increased in size, weight, and power rating, this does not necessarily 

mean that trucks are on average running fuller than before. Consequently, he advocates the 

need for a separate set of utilization metrics in addition to productivity measures when 

assessing the operational efficiency of freight transport. A key objective of this paper is to 

illustrate that logistics performances need not be deduced from a set of indicators. Instead, 

an index that comprises productivity and utilization can be established and decomposed to 

identify their relative importance to intertemporal changes in logistics performances.  

This paper illustrates how axiomatic production theory can be applied to model road freight 

transport, when the number of trips (or vehicle kilometers) and vehicle carrying capacities are 

modeled as inputs and the tons lifted of various cargo types as outputs. The modeling 

approach has several merits. First, as noted by McKinnon (2015a), measuring the degree of 

utilization is a challenging task; for dense commodities, the vehicle weight limit is critical, 

while for low-density products with high “stackability” the main constraint is cubic capacity. 

The model proposed in this paper deals with the problem by modeling freight transport as a 

multi-output production process, in which different cargo types have different input 

requirements. Second, the model framework allows measuring logistics productivity and 

efficiency given vehicle capacities, and to disentangle the impact of changing vehicle 

capacities on productivity. Third, the model framework is adopted from the productivity and 

efficiency analysis literature, and is thus ideal for benchmarking road freight transport. The 
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proposed approach identifies best practices from identified practices, as opposed to 

comparing current practices to theoretical – and perhaps unattainable – maxima (cf., the 

lading factor)3. Fourth, production analysis is equipped to control for contextual variables that 

may influence logistics productivity, e.g., urban form (Allen et al., 2012).  

Based on the model framework, I propose a LPI that allows assessing intertemporal changes 

in logistics productivity. This index is preferred to traditional productivity indices such as the 

Malmquist (1953) index because the LPI is easy accessible to stakeholders in transport by 

reporting intertemporal changes in goods lifted per trip (or per vehicle kilometer). The index 

decomposes into frontier shifts and efficiency improvements, where the frontier shift 

component can be further decomposed into input-output mix and technical changes, and the 

efficiency component can be decomposed into pure and scale efficiency changes. The LPI thus 

allows pinpointing the sources of intertemporal changes in logistics productivity, and is 

consequentially highly useful for evaluating the outcomes of policies aimed to improve urban 

logistics performances. Frontier-based techniques to measure performances are particularly 

helpful to competition-based policies that distribute financial support among cities based on 

their previous efforts to and successes in promoting sustainable freight transportation. 

Several previous studies apply index number theory to analyse freight transport. Some 

examples include Kveiborg and Fosgerau (2007) who use a Divisia index to decompose the 

relative contributions of economic activities, the composition of commodities, the weight to 

value ratios, the handling of commodities, and the average load and trip length to the 

                                                           

3 As noted by McKinnon (2015b), under-utilization of vehicle capacity may not be an indicator of inefficiency, 

but rather an indicator that logistics companies make rational trade-off among transport efficiency and other 

objectives. 
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development of road freight traffic and transport in Denmark, Sorrell et al. (2009) who 

decompose the contributions of eleven key factors including GDP to intertemporal changes 

in road freight energy use based on the log-mean Divisia index approach,  and Alises et al. 

(2014) who conduct a decomposition analysis to identify the drivers of the evolution of the 

road freight transport intensities of the United Kingdom and Spain. The approach introduced 

in this paper differs from these studies by being in the Malmquist (1953) index tradition4, 

using frontier analysis to disentangle technical and efficiency changes. While the author is 

unaware of previous attempts to evaluate the operational efficiency of freight transport using 

frontier-methods, they have been employed to assess the productivity and efficiency of 

transport companies. Cruijssen et al. (2010) use Data Envelopment Analysis (DEA) to assess 

the economic efficiency of 82 Belgium road transportation companies. Heng et al. (2012) 

account for air pollution emissions when assessing the efficiency and productivity growth of 

trucking in U.S. states between 2002 and 2005. Zhang et al. (2015) propose a Malmquist CO2 

emission performance index that is used for assessing the dynamic performance of the 

Chinese regional transportation industry.  

While the reviewed literature on index theory focuses on the development of freight 

transport at the national or sector level, this paper emphasizes urban freight transport. 

Betanzo-Quezada and Romero (2010) present an urban freight transport index, focusing on 

the attention of authorities in dealing with freight transport issues within cities. Their index 

ranks cities against a theoretical benchmark, while the index presented in this paper identifies 

                                                           

4 Grifell-Tatjé and Lovell (1996) argue that the main advantages of the Malmquist index over the Törnqvist and 

Fischer productivity indices are i) its weaker behavioural assumptions, ii) that its computation does not require 

price data, and iii) that it allows decomposing productivity changes into technical and efficiency changes.   
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best practices from observed practices. I illustrate the usefulness of the LPI by analyzing the 

intertemporal development in logistics performances of the 24 largest cities in Norway in a 

period when 13 of them entered a collaboration agreement with the central government to 

reduce greenhouse gas emissions and to make the cities a better place in which to live. The 

agreement, also known as the Cities of the Future agreement, became binding in 2008 and 

expired in 2014. Land use and transport is naturally one of the most important areas of the 

collaboration agreement. 

A major obstacle to monitoring logistics performances at the micro level is the limited 

accessibility to reliable data. This paper analyzes how local or regional freight transport can 

be evaluated using pseudo panel techniques based on the raw-data from national freight 

surveys. To that end, it utilizes DEA to empirically implement the LPI on a pseudo panel 

covering urban road freight transport in the 24 largest cities in Norway between 2008 and 

2012.  

This paper is structured as follows. The next section describes the theoretical foundations of 

the productivity index. Section 3 presents the dataset and the results, while section 4 

concludes.   

 

2. Methods 

Consider freight transport as a production process in which inputs (i.e., the number of trips 

and vehicle capacities) are used to produce outputs (i.e. the quantity or weight of the cargo 

throughput). Denote inputs by 2

x  and outputs by M

y . Assume that the production 

process is observed in s = 1,…,S time periods. The technological possibilities for freight 
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transport in period s may then formally be summarized by a technology set. In this paper I 

consider two contemporaneous references technologies; the variable returns to scale (VRS) 

technology 

  , :  can produce ,  1,..,s s s s s

VRST s S x y x y  [1] 

and the constant returns to scale (CRS) technology 

  , :  can produce ,    for all 0,  1,..,s s s s s s s

CRS CRS CRST T T s S    x y x y  [2] 

Following the usual convention, I assume that the technology sets satisfy the standard neo-

classical axioms. That is, T is a compact and convex set satisfying the no free lunch and 

inactivity axioms, and free disposability of inputs and outputs. See Färe and Primont (1995) 

for more details on these axioms.  

While the set theoretical representation of the technology is useful from an analytical 

perspective, it is insufficient for empirical analysis. Instead, function representations of the 

technology that can be estimated from data must be considered. In the case with only one 

output, the production function is a useful function representation that defines the maximal 

producible output for any given input vector. Distance functions are generally preferred 

function representations in cases with multiple inputs and outputs. These functions measure 

how far a given decision making unit is from the best-practice frontier by means of contracting 

inputs and/or expanding outputs, and are thereby useful measures of (in)efficiency. See Färe 

and Primont (1995) for more details on distance functions. 

The production- and distance functions do not take into account that the objective of a 

decision making unit may be to maximize a ratio rather than to minimize its input use and/or 
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maximizing production. Environmental standards are for example often defined by the 

maximal allowable amount of pollution per unit of good output produced. It may be more 

useful for governments and public agencies to evaluate the gross national product per capita 

(the ratio of net present value to the overall budget) rather than the gross national product 

(the net present value). The amount of goods transported per trip or per vehicle kilometer 

are also easily understandable measures of logistics performance, and they will therefore be 

considered in this paper.  

Hampf and Rødseth (2015) recently proposed using the ratio of a good to a bad output as a 

function representation of the technology, and introduced a new efficiency measure – the 

Ratio Efficiency Measure (REM) – based on this function representation. The current paper 

builds on and extends their contribution.  

 

2.1. Ratio function representations and efficiency measures 

Following Hampf and Rødseth (2015), a partial ratio measure (PRM) for the CRS technology – 

in our case maximizing the ratio of the tons lifted of a specific cargo type (yj) to the number 

of trips (xi) – can be defined:  

 
,

sup : , ,   1,..,
s s
i j

s

js s s s

CRS CRSs
x y i

y
PRM T s S

x

  
   

  

x y  
[3] 

Eq. 3 maximizes the ratio of one output to one input (e.g., wet bulk per trip), keeping vehicle 

capacities and other outputs (e.g., dry bulk; general cargo; containerized cargo) constant. 

However, considering that the throughput of different cargo types is measured in a weight 
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unit (e.g., tons), it is also useful to define a general measure that characterizes the maximal 

load in tons per trip. A general ratio measure (GRM) is defined by: 

 
,

sup : , ,   1,..,
s s
i

s
s s s s

CRS CRSs
x i

GRM T s S
x

 
   

 y

1 y
x y  

[4] 

where 1  is the unit vector5.   

Eqs. 3 and 4 both assume that inputs and outputs could simultaneously be adjusted in order 

to maximize tons lifted per trip. This may not be an appropriate assumption in several cases, 

including the one presented in this paper. It is more likely that logistics companies choose the 

mix of inputs and outputs to maximize profits rather than to maximize capacity utilization per 

trip; cf. Eq. 4. There may also be cases where the operators cannot freely choose their input 

or output mix. Of importance to this study, which later considers freight transport within the 

largest cities in Norway, is that the cities’ pattern of production and consumption will 

determine the volumes and types of cargo to be carried.  

Whenever the logistics operators’ objective function is inconsistent with the GRM, it may be 

a less relevant tool for evaluating logistics performances. In such cases, it would be more 

convenient to consider input-oriented (i.e., minimizing trips for given outputs) or output-

oriented (i.e., maximizing freight deliveries for given trips) ratio measures. Assuming that an 

input-orientation is suitable for evaluating logistics performances (i.e., treating cargo-flows as 

exogenously given to logistics companies or cities), I propose an input-oriented GRM (IGRM) 

that defines the minimal number of trips necessary for a given freight delivery: 

                                                           

5 Note one may convert equation 3 into a more traditional economic measure by replacing the unit vector by 

the corresponding freight price vector. The GRM would then maximize freight revenues per trip. 
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 

    ,

sup : ,

,   1,..,
,inf : ,

s
i

s
i

s
s s s s

CRS CRSs
x i

s s

s s ss s s s
i CRS ii CRS

x

IGRM T
x

s S
x xx T 

 
  

 

 
  



1 y
x y

1 y 1 y

yx y

 

[5] 

 where  , ,s s s

i CRS ix x y  is the minimal amount of trips needed to transport goods s
y , given 

vehicle capacities, s

ix , in time-period s. Note that the superscript s on the outside of the 

brackets of  , ,s s s

i CRS ix x y  refers to the time period for the contemporaneous reference 

technology while the superscripts inside the brackets refer to the time period when the data 

on inputs and outputs were observed.  For example,  , ,t t t

i CRS ix x y  corresponds to the 

minimal feasible number of trips for the period-t CRS technology using the data on vehicle 

capacities and outputs observed in period t s   (and thus,  1

, ,t t t

i CRS ix x

 y  denotes the minimal 

amount of trips needed to transport the goods, t
y , given the vehicle capacities, t

ix  – both 

observed in period t – for the t+1 CRS reference technology).  

Following Hampf and Rødseth (2015), the input-oriented ratio efficiency measure (I-REM) is 

defined:  

 

 ,

,

,
,   1,..,

,

s

s s ss
i CRS is i

s s

i

s s t

i CRS i

x xx
I REM s S

x

x x







   


1 y

y

1 y

y

 

[6] 

The input-oriented ratio measure is defined by the ratio of the actual amount of cargo 

transported per trip to the maximal amount of cargo transported per trip. Since the observed 

ratio always is smaller or equal to the optimal ratio, the I-REM is always smaller or equal to 
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one. When the measure takes a value of one it indicates that the decision making unit under 

evaluation is efficient.  

Figure 1 provides a graphical illustration of the GRM, the IGRM, and the I-REM in the case 

with one input and output. Note that I assume a piece-wise linear reference VRS technology 

for illustrative purposes.  

 

 

Figure 1: Ratio measures 

 

The reference technology is represented by the three bold lines. A given decision making unit 

(DMU) is allocated at the point A, indicated by a circle. The DMU’s current input consumption 

and production are indicated by the two dotted lines. The ratio of the two (i.e., DMU A’s 

productivity) is given by the slope of the ray which passes through point A.  

It can easily be seen from the figure that the DMU in question is inefficient, i.e., it operates in 

the interior of the technology set. Assume now that the DMU can move to the technology 

frontier in a way that maximizes the ratio of its output to its input consumption. If the output 

vector is assumed to be constant, the optimal allocation is at point B. The corresponding 
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optimal output-to-input ratio (i.e., productivity) is defined by the ray thought B, which is 

equivalent to the IGRM. The input-oriented ratio efficiency measure can be calculated by 

taking the ratio of the y/x-ray to the IGRM ray. If, on the other hand, the DMU could also 

reallocate the output, it could obtain maximal productivity at point C. The slope of the ray 

through C is exactly the GRM.  

Eq. 6 shows that the I-REM can be written as the ratio of the minimal number of trips (given 

the outputs and vehicle capacities) to the actual number of trips. It follows readily that the 

measure also has a traditional efficiency interpretation. Consider the short-run Farrell (1957) 

technical efficiency measure that minimizes the number of trips given the outputs and vehicle 

capacities: 

    , inf : , , ,   1,..,
s
CRS

s s s s s s s s s

CRS CRS CRS i i CRSTE x x T s S


    x y y  [7] 

    The technical efficiency measure shrinks the point s

ix  to the period-s technology frontier. 

Since only one input is minimized (i.e., the number of trips), the solution to Eq. 7 is 

consequentially: 

 
 ,

,

,
,

s s s

i CRS is s s s s s

CRS i i CRS i CRS s

i

x x
x x x

x
 



  
y

y  
[8] 

Comparing Eq. 8 to Eq. 6, it is clear that the I-REM is equivalent to the short-run Farrell 

technical efficiency measure. Pictorially, it means that the I-REM is equivalently represented 

by the distance from point B to point A in figure 1.  
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It is well-known that the Farrell (1957) technical efficiency measure is the inverse of 

Shephard’s (1953) input distance function. Thus, the I-REM is the inverse of the corresponding 

short-run input distance function.  

 

2.2. Productivity index 

So far, I have treated logistics efficiency measurement for a given time period s. I will now 

simultaneously consider two adjacent time-periods  , 1t t s  , in order to develop a 

framework for evaluating intertemporal changes in logistics productivity. Eq. 9 defines the 

logistics productivity index:  

 
 

 

 

 
 

1 1
, 1

1 1

1 1 1 1 1 1 1 1

, ,

,

,

1 1 1 1

,

,

Frontier c

/

/

/

/ , / ,

// ,

/ ,

/ ,

/ ,

t t
t t i

t t

i

t t

i

t t t t t t t t

i CRS i i CRS i

t tt t t t
ii CRS i

t t t t

i CRS i

t t t t

i CRS i

t t t t

i CRS i

x
LPI

x

x

x x x x

xx x

x x

x x

x x

 


 

       

 





   












 
 










1 y

1 y

1 y

1 y y 1 y y

1 y1 y y

1 y y

1 y y

1 y y

1

Efficiency change
hange

t

CRS

t

CRS









 

[9] 

where the second equality follows by algebraic manipulation and the third equality follows 

from Eqs. 6 and 8.  

Eq. 9 shows that the intertemporal change in logistics productivity can be decomposed into 

two components that describe the contributions of intertemporal i) frontier changes and ii) 

efficiency changes to the overall capacity utilization changes. Both components take values 

greater than 1 when they contribute to better logistics performances in period t+1 than in 



 14 

period t, values equal to 1 when they contribute equally to logistics performances in both 

periods, and values less than 1 when they contribute to intertemporal regress in logistics 

productivity.  

Recall that the Farrell technical efficiency measure is the inverse of Shephard’s input distance 

function. The efficiency change component in Eq. 9 is thereby the inverse of the efficiency 

change component of the well-known Malmquist (1953) productivity index (assuming a short-

run specification of the input distance function in which only trips are minimized).  

By exploiting the relationship to the Malmquist index, the efficiency change measure can 

further be decomposed into pure efficiency changes and scale efficiency changes using the 

approach of Färe, Grosskopf and Margaritis (2008) 6:   

1 1 1 1

Pure efficiency change          Scale efficiency change

/

/

t t t t

CRS VRS CRS VRS

t t t t

CRS VRS CRS VRS

   

   

   

   
[10] 

where     , inf : , ,
s
VRS

s s s s s s s s s

VRS VRS VRS i i VRSTE x x T


   x y y  and ,  1,...,s s

VRS CRS s S   . The 

efficiency change sub-components take values larger than 1 when technical and/or scale 

efficiencies have improved between periods t and t+1 in s.  

Having decomposed the efficiency change component, I now turn to the frontier change 

component in Eq. 9. I aim to decompose it further, to evaluate the contributions of i) 

intertemporal changes along the technology frontier (due to intertemporal changes in the 

                                                           

6 Note that although the decomposition in Eq. 10 has been criticized by among other Ray and Desli (1997) and 

Lovell (2003), it is nevertheless a popular approach. See e.g. Walden et al. (2010) for a recent empirical 

application.        
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cargo mix and/or the vehicles’ carrying capacities) and ii) changes in the technology frontier 

(i.e., technical changes) to the observed changes in logistics productivity.   

In the productivity index literature, technical changes are often evaluated using “mixed 

period” estimates, e.g. by comparing the observed inputs and outputs in period t+1 to the 

contemporaneous frontier constructed from observations in period t.  However, this 

specification of the productivity index violates the index property known as circularity. To 

resolve the problem, I follow Pastor and Lovell (2005) and consider a global reference 

technology that is constructed based on data from all time-periods under evaluation:   

 1conv ...G S

CRS CRS CRST T T    [11] 

The minimum feasible number of trips given t

ix  and t
y  is in this case defined by  , ,G t t

i CRS ix x y

. Since ,  1,..., ,G s

CRS CRST T s S   by Eq. 11, it follows readily that    , ,, ,s t t G t t

i CRS i i CRS ix x x x y y .  

Having established the global technology, the frontier change component decomposes as: 

 
 

 
 

 
 
 
 

1 1 1 1

,

1 1 1 1 1 1 1 1 1 1

, , ,

, , ,

,

1

,

/ ,

/ , / , / ,

/ , / , / ,

/ ,

/

t t t t

i CRS i

t t t t t G t t t G t t

i CRS i i CRS i i CRS i

t t t t t G t t t t t t

i CRS i i CRS i i CRS i

t G t t

i CRS i

t G t

i CRS i

x x

x x x x x x

x x x x x x

x x

x x

   



         

  

  









  


  






1 y y

1 y y 1 y y 1 y y

1 y y 1 y y 1 y y

1 y y

1 y  
 

   
   

1 1 1 1 1 1 1

, ,

, , ,

Mix change Best practice gap

, , / ,

/ , , / ,

t G t t t t t

i CRS i i CRS i

t G t t G t t t t t

i CRS i i CRS i i CRS i

x x x x

x x x x x x

      

 

  


y y y

1 y y y y

 

[12] 

The best practice gap measures the intertemporal change in the gap between optimal ratios 

evaluated at the global and contemporaneous frontiers (equality 2 in Eq. 12) or equivalently, 

the intertemporal change in the difference between the minimal input requirements for the 

global and contemporaneous frontiers (equality 3 in Eq. 12), measured along rays 
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 , ,  , 1s s

ix s t t  y . In other words, it indicates whether the contemporaneous technologies 

are moving towards or away from the global frontier over time. The best practice gap 

component takes a value larger than 1 if the period t+1 frontier is closer to the global frontier 

than the period t frontier (indicating technical progress) and takes a value less than 1 if the 

frontiers are further apart in period t+1 than in period t (indicating technical regress).   

The mix change component indicates the contributions of changes in the cargo mix and 

vehicle carrying capacities to the overall frontier change. That is, it summarizes all frontier 

changes that relate to movements “along” the (global) frontier, and not to technical changes. 

The mix change component takes a value greater than 1 if the optimal ratio is higher in period 

t+1 than in period t.  

It is useful to further decompose the mix change component, to deduce the contributions of 

i) changes in the vehicles’ carrying capacities and ii) changes in the cargo mix to the overall 

mix change. The mix change component can be rewritten as: 
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[13] 

Summing up, I have showed that the productivity index can be decomposed as follows: 
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2.3. Nonparametric estimation 

The relevant function representations of the technology can be estimated from data using 

parametric or nonparametric techniques. I prefer the latter because they do not require me 

to choose a functional form a priori. Assume there are l=(1,..,L) urban areas in the dataset, 

each using inputs  , , , 2,l s l s l s
i ix x  x  to transport goods 

 , , ,
1 ,.., ,  1,...,l s l s l s M

My y s S  y . Let λl,s, l=(1,..,L), define intensity variables. The minimal 

feasible amount of trips in urban area l´ in period s, given this urban area’s observed deliveries 

of goods and its aggregate vehicle capacity in period s, is for the contemporaneous DEA VRS-

technology then defined as: 
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[15] 

Note that the left hand sides of the inequalities (the sum of the products of intensity variables 

and the observed period-s data) represent the frontier of the contemporaneous technology 



 18 

set, while the right hand sides define the data which is compared to this frontier (more 

specifically, the period s data on outputs and vehicle capacities for area l´). The minimal trip 

requirement for the CRS technology is obtained by omitting the summing-up condition 

,

1

1
L

l s

l




 from Eq. 15.  

The minimal trip requirement for the global technology is calculated in a similar fashion, by 

including observations from all periods under consideration in the estimation of the boundary 

of the technology set (i.e., the left-hand sides of the inequalities): 
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3. Dataset and results 

3.1. Compiling the dataset 

The dataset contains information about urban freight transport in 24 Norwegian 

municipalities – in which Norway’s largest urban areas are situated. I limit the dataset to 

include deliveries that are internal to the urban areas (i.e., the origin and destination of any 

given delivery is one and the same). There is a fundamental technological difference between 

urban freight distribution and long haul, both in terms of the vehicle types used and in 
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efficiencies and capacity utilization (Hovi and Andersen, 2010). Thus, this step is taken to 

ensure that the units under comparison are homogenous.  

The dataset is extracted from Statistics Norway’s database on road freight transportation. 

Statistics Norway reports the data on a quarterly basis, and the municipality level is the lowest 

level of subdivision. The data is based on survey responses from freight transport companies. 

New surveys are issued every week, and in total about 1800 surveys – each related to a 

specific truck – are issued every quarter. The overall population is classified into four strata 

before randomly drawing the survey participants. Moreover, the register of vehicles is used 

to append information about the vehicles (e.g., on their carrying capacities) to the dataset.  

After collecting the survey responses, Statistics Norway extrapolates the results to the strata 

level and, thus, to the overall population of trucks. While this approach produces a useful 

overview of freight transport at the country level, it does not result in representative statistics 

at the municipality level – which is my primary concern. Consequently, I find it more 

appropriate to base my analysis on the survey responses (i.e., on the micro or raw data). 

Preliminary studies of municipalities’ logistics productivity based on the extrapolated data 

support this claim, as the growth rates are fluctuating and “inappropriately” high or low for 

several observations.  On the one hand, Statistics Norway extrapolate the survey results to 

the strata level in five steps that include adjusting for attrition biases and underreporting of 

the cargo weight. Using the survey data as is, these adjustments are not considered and the 

results may therefore be vulnerable to the measurement biases. On the other, the index 

decomposition approach laid out in this paper is based on benchmarking, comparing each city 

to a benchmark constructed based on their best-practice peers. Unless the measurement 

biases are expected to vary systematically across urban areas and over time, the results are 
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likely to provide useful information about the rate and direction of changes in logistics 

performances.    

The number of survey responses obtained for each of the 24 municipalities under 

consideration do – of course – only cover a small share of the total number of trips taking 

place within these municipalities (i.e., the cities) each year. The question is, however, if the 

sample is representative for the overall annual freight transportation taking place within the 

selected cities. In total, my dataset comprises 25,830 trips taking place in the 24 municipalities 

between 2008 and 2012. This implies an average of 215 trips per municipality per year. The 

minimum number of annual trips recorded at the municipality level is 12, while the maximum 

is 1809 trips. There is a clear relationship between the number of annual survey responses 

per city and the city size (proxied by the population size); the Pearson correlation coefficient 

is 0.92 and the Spearman correlation coefficient is 0.76. Both are statistically significant.    

In the case where proper panel data do not exist but a series of independent cross sections 

are available, Deaton (1985) proposes the construction of a pseudo panel by grouping 

individual observations with similar characteristics into several homogenous cohorts. In our 

case, this corresponds to averaging survey responses in like areas, i.e., for each of the 24 

municipalities under consideration. The analysis is thus at city (or municipality) level, which is 

suitable for our purpose of comparing the 24 cities in terms of their logistics performances. 

Verbeek and Nijman (1992) show that the pseudo panel approach is valid if the cohort sizes 

are sufficiently large, i.e., in the range of 100 to 200 individual observations. Aiming to meet 

this criterion, I group the data in two adjacent years into one period to boost the number of 

observations per cohort per period. The four periods under considerations are thus 2008-

2009, 2009-2010, 2010-2011, and 2011-2012. This grouping of data is generally referred to as 



 21 

Windows Analysis (Charnes et al, 1985) in the DEA literature, and is often used as a remedy 

when the number of decision making units are few but there are many relevant input and 

output variables. Windows analysis is based on moving averages, and is consequently useful 

for identifying performance trends. I prefer the windows approach because with the five 

years of data, the alternative will be to construct only two periods that do not overlap (e.g., 

2008-2009 and 2011-2012) for examining productivity changes. This approach masks the 

intertemporal performance development in the period under consideration7.   

The pseudo panel data approach has very interesting implications in the DEA setting8, which 

to my knowledge has not been addressed in the literature. Let ,l sK
  denote the cohort size in 

city l´ in period s,  , , 2lk l s
 

x  denote the input of observation kl’ in city l´ in period s, and let  

, ,lk l s M
 

y  denote the cargo throughput of observation kl’ in city l´ in period s. The DEA 

model in Eq. 15 can then be restated as:   

                                                           

7 I am indebted to an anonymous referee for pointing this out. A potential drawback of the windows analysis is 

that adjacent periods, while being treated as independent, clearly are not because of the way the windows are 

constructed. To determine how this influences the statistical properties of the pseudo panel approach that is 

developed based on independent cross sections is beyond the scope of this paper. In general, I advise avoiding 

overlapping periods in future applications whenever possible.     

8 Application of DEA to a pseudo panel data can be found in e.g. Paul et al. (2004). 
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where I have harmlessly used the equality ,/ l s
i ix x K


  for the endogenous variable. Eq. 17 

shows that the pseudo panel data approach is equivalent to scaling the data prior to the 

estimation to adjust for differences in cohort sizes. More precisely, the approach scales the 

data such that the size of each cohort corresponds to the size of the cohort under 

consideration (i.e., unit l´). This means, for example, that the number of trips in each cohort 

are assumed to be equivalent to the number of trips observed taking place in city l´. The 

drawback of this approach is that since all units are assumed to undertake the same number 

of trips in a given time-period, the variable returns to scale model by definition assumes that 

the minimum number of trips needed to process the cargo throughput of city l’  in time-period 

s, given its aggregate vehicle capacities, is equivalent to the city’s actual number of trips. 

Hence, the approach does not allow detecting technical inefficiency, but attributes 

inefficiencies solely to differences in scale efficiencies.  

I consider operationalizing logistics productivity as the freight load per trip or per kilometer of 

transport. There are pros and cons to considering the number of trips or distances as inputs. 

Particularly, contextual variables that are outside of the logistics operators’ control are likely 

to influence vehicle kilometers. For example, the population density and the city size in terms 
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of land area are likely to play a direct role in determining the average trip length. Hence, using 

vehicle kilometers as input, city characteristics are easily mistaken for differences in logistics 

performances. This issue might be avoided by considering the number of trips instead. The 

model then compares the cities’ output per trip, which is an intuitive measure of logistics 

productivity. On the other hand, using the number of trips as the input variable, cities which 

have taken steps to reduce the vehicle miles travelled within their city limits are not explicitly 

rewarded for their actions by the logistics performance assessment.  

Since reducing the vehicle miles travelled by trucks is not an explicit goal of the Cities of the 

Future agreement, and since differences in the characteristics of urban areas in Norway may 

largely affect the miles travelled, I utilize the number of trips as a transport input in the 

subsequent empirical analysis. 

The raw-data classifies the cargo into eight aggregate categories: food and beverages, 

consumer goods, industrial goods, consolidated goods, chemical products, building materials, 

petroleum, and bulk and waste products. They are not homogenous with respect to their 

characteristics, e.g., heaviness. It is essential to control for weight characteristics of the cargo 

since the outputs (i.e., goods deliveries) are measured in a weight unit (i.e., kilograms) rather 

than in volume (Hovi and Andersen, 2010). This means that the capacity utilization for goods 

which are spacious, but which also are very light, will be regarded low when vehicle capacities 

are defined in terms of tonnage. I therefore prefer a multi-output approach, which allows me 

to control for differences in various cargo types input requirements.  

There is a trade-off involved in selecting the number of outputs. If I include 8 outputs (i.e., 

cargo types) in the analysis, the “degrees of freedom” in the DEA model are low and it 

becomes difficult to discriminate efficient from inefficient units. However, if I aggregate up to 
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one output I neglect weight differences between the goods categories, which in turn may 

result in biased efficiency rankings. I therefore prefer to aggregate the 8 goods categories up 

to 4 outputs that are used in the subsequent empirical analysis. These categories are also 

common aggregates in the logistics literature. Table 1 presents the four goods categories and 

their subcategories:     

 

Table 1: Aggregation of cargo types 

Aggregate (outputs) Specific goods types 

Dry bulk • Bulk and waste products 
Wet bulk • Petroleum 

• Chemical products 
General cargo • Food and beverages 

• Consumer goods 

• Industrial goods 

• Building materials 
Consolidated goods • Consolidated goods 

 

Summary statistics of the dataset is provided by table 2.  

Table 2: Summary statistics 

2008-2009 (average of 11,707 trips) 

 Capacity Dry bulk  Wet bulk General 

cargo 

Consolidated 

Mean 22346.7 

 

2108.1 630.7 2514.1 885.9 

St.dev 16312.2 5585.7 3830.3 6281.5 3567.5 

Min 3545.0 0.0 0.0 0.0 0.0 

Max 78040.0 35000.0 36000.0 40000.0 35000.0 

2009-2010(average of 10,810 trips) 

 Capacity Dry bulk  Wet bulk General 

cargo 

Consolidated 

Mean 23192.9 

 

1966.1 493.6 2641.7 765.1 

St.dev 16846.7 5354.7 3400.1 6519.5 3320.4 

Min 3525.0 0.0 0.0 0.0 0.0 

Max 73670.0 34338.0 36000.0 40000.0 34000.0 
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2010-2011 (average of 9,844 trips) 

 Capacity Dry bulk  Wet bulk General 

cargo 

Consolidated 

Mean 24704.9 

 

1891.4 644.0 2756.7 917.4 

St.dev 17691.8 5520.2 3894.6 6779.6 3702.5 

Min 3525.0 0.0 0.0 0.0 0.0 

Max 73670.0 32840.0 36000.0 37350.0 32000.0 

2011-2012 (average of 8,862 trips) 

 Capacity Dry bulk  Wet bulk General 

cargo 

Consolidated 

Mean 25538.7 

 

2199.3 813.9 2691.2 1007.8 

St.dev 17973.3 6007.2 4385.5 6688.5 3915.7 

Min 3505.0 0.0 0.0 0.0 0.0 

Max 61335.0 33220.0 39990.0 36700.0 32950.0 

• Vehicle capacities (including trailer capacities for all trips where trailers are used) and outputs are 
reported in kilograms 
 
 

3.2. Results 

Having established the dataset, I now turn to the empirical implementation of the theoretical 

index in section 2.2 using DEA. The LPI is transitive9, which means that the overall productivity 

change taking place in the entire period under consideration is defined by the product of the 

contemporaneous (i.e., adjacent period) productivity indices.  Figure 2 presents the 

contemporaneous productivity indices (the bars) for the period from 2008 to 2012 and the 

overall change from 2008 to 2012 (the dots). Note that the contemporaneous indices are 

listed with respect to the first years of the aggregates used for windows analysis. For example, 

2008-2009 refers to the productivity change between the two aggregate periods 2008-2009 

and 2009-2010.  The horizontal axis intersects the vertical axis at 1, which means that 

                                                           

9 The contemporaneous Malmquist index on the other hand is not transitive.  
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bars/dots above the horizontal axis indicate productivity growth, while bars/dots below the 

line indicate productivity decline. The productivities are sorted according to the cities’ 

population size, ranging from Molde with its 22,676 inhabitants to Oslo with its 608,013 

inhabitants. Population size is frequently perceived as a proxy for urban scale economies, and 

it is therefore useful to consider how productivity changes vary with this characteristic.    

 

Figure 2: The contemporaneous and overall productivity indices 

 

The figure shows that productivity changes fluctuate both across cities and within cities over 

the timespan under consideration. There is an immediate question as to whether fluctuation 

reflects the true intertemporal variation in productivities, or merely that our data is based on 

repeated cross-sectional surveys where different random samples are drawn from the 

population at different points in time. One the one hand, if the cross-sectional surveys are 

not generalizable to the entire population of trucks and the selection of trucks/trips change 

over time, fluctuations are expected. On the other, several steps have been taken to smooth 
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such effects. That is, the analysis is based on pseudo panel techniques and a windows analysis 

is used to ensure that the cohort sizes are sufficient large for the pseudo panel approach to 

be valid. This points to that the cities’ logistics performances do in fact varying across time 

and place, which is an interesting finding.  

The average LPI is 1.006 and only 14 of 24 cities show positive productivity growth for the 

entire period under consideration. 13 cities are found to have improved productivities in the 

last period (2010-2011) relative to the first period under consideration (2008-2009).  

While the four largest cities experience productivity growth in the period between 2008 and 

2012, there seems to be no clear-cut relationship among the population size and the logistics 

productivity change. There are several possible reasons for this. First, as previously suggested, 

vehicle kilometers travelled may be more sensitive to the urban form than the number of 

trips undertaken. Second, the city size may be more important for determining the relative 

performances of cities (i.e., logistics efficiencies) than for determining productivity changes. 

Third, a key factor is probably that the cities under consideration are quite small. In fact, 20 

of the cities have less than 100,000 inhabitants. Hence, there may be too little variation with 

regards to city size, and the cities could be too small to realize economies of scale in logistics 

operations.  

Having examined the rate of productivity growth, I now turn to its drivers. Figure 3 presents 

the average of the contemporaneous efficiency change (light grey bars), best practice gap 

(medium grey bars), and overall mix change (dark grey bars) components for each city. As in 

figure 2, the 24 cities are listed in ascending order based on their population sizes. The 

horizontal axis intersects the vertical axis at 1, which means that bars above the horizontal 
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axis indicate positive contributions to productivity, while bars below the line indicate negative 

contributions to productivity. 

 

Figure 3: The LPI and its components 

 

Except for Arendal, the average mix change is close to 1 for each city: On average, it is 1.006. 

Thus, changes in capacities and/or the output mix are not they key drivers of productivity 

changes. This is intuitively reasonable as for example commodity mixes depend on the cities’ 

consumption and production patterns, which are likely to be approximately constant over the 

short time span under consideration. The average best practice gap is 0.991 while the average 

efficiency change is 1.059 over the period under consideration. Consequently, efficiency 

improvement appears to be the most important driver of productivity change. This result 

becomes even clearer when productivity changes are evaluated relative to the first period in 

the dataset (i.e., 2008-2009). In this case, the average mix change is 1.000, the average best 

practice gap is 0.883, while the average efficiency change is 1.137. Thus, there is evidence of 

technical stagnation and even regress in the period under consideration. Under technical 
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regress, the units will appear more efficient even if their logistics productivities have not 

improved.  

While the overall mix change has little influence on the productivity growth, it is interesting 

to evaluate how capacity and output mix changes influence the overall mix change. Figure 4 

reports the average of the contemporaneous capacity mix change (dark grey bars) and output 

mix change (light grey bars) components. As with the previous figures, the 24 cities are listed 

in ascending order based on their population sizes.  

 

 

Figure 4: The overall mix change and its components 

 

Figure 4 shows that the effects of changes in capacities and outputs on the overall mix change 

counteract each other for most cities. This is intuitively reasonable, as the cities are likely to 
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increase their cargo throughput when the aggregate vehicle capacities increase. The only 

exceptions from this rule are Hamar and Porsgrunn10.  

Finally, I consider the implications of the Cities of the Future agreement on the LPI and its 

subcomponents. Several of the initiatives of the Cities of the Future agreement directly or 

indirectly affect urban freight transport. First, a major goal of the agreement is to reduce 

private car use in the cities, and a result-based financial compensation is granted annually to 

the cities that either can document success in reducing the use of private cars or which have 

implemented measures that are likely to result in declining car-use over time. By limiting the 

miles travelled by private cars in large cities, the accessibility of freight transport is likely to 

increase, thereby allowing freight companies’ costs to decrease. This, on the other hand, can 

contribute to a reduction in logistics performances as lower costs are likely to reduce the 

lower limit of capacity utilization for which a trip is economically viable. Second, the Cities of 

the Future agreement also includes initiatives that directly target logistics performances. One 

initiative is for the city authorities to establish cooperation with companies and organizations 

to develop more efficient urban freight transport. 

Since the program both targets reductions in the use of private cars in urban areas and 

increased freight transport performances, I hypothesize that the members of the program 

outperform the non-members in terms of productivity growth in the period between 2008 

and 2012. I test this assumption using four non-parametric tests; the Kolomogorov-Smirnov, 

                                                           

10 No results are reported for Arendal and Ålesund because the solutions to the trip minimization problem for 

the hypothetical datapoints  1,t tx
i




y  and  1,t tx
i



y are infeasible for all periods under consideration. The problem 

of infeasibility applies only to the sub-components of the overall mix change, and not to the efficiency, best 

practice gap, and overall mix change components.  
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ANOVA, Wilcoxon rank-sum, and Median tests. All tests examine the null hypothesis that the 

empirical results for members and non-members of the Cities of the future agreement are 

equal in terms of means and distributions. The test statistics and the corresponding P-values 

(in brackets) are reported in table 3.  

Table 3: Non-parametric tests. Test scores (P-values).  

Year Test LPI Mix  

change 

Best 

practice gap 

Efficiency 

change  

2008-2009 K-Smirnov 0.583 

(0.034) 

0.500 

(0.100) 

0.417 

(0.249) 

0.417 

(0.249) 

ANOVA 5.770 

(0.025) 

0.320 

(0.576) 

0.580 

(0.454) 

0.350 

(0.559) 

Wilcoxon 2.367 

(0.018) 

1.328 

(0.184) 

0.924 

(0.356) 

0.984 

(0.325) 

Median 4.167 

(0.041) 

1.500 

(0.221) 

0.167 

(0.683) 

1.500 

(0.221) 

2009-2010 K-Smirnov 0.500 

(0.100) 

0.333 

(0.518) 

0.417 

(0.249) 

0.167 

(0.996) 

ANOVA 1.850 

(0.187) 

2.180 

(0.154) 

1.430 

(0.245) 

0.030 

(0.860) 

Wilcoxon 1.328 

(0.184) 

-1.097 

(0.273) 

1.328 

(0.184) 

-0.087 

(0.931) 

Median 1.500 

(0.221) 

0.167 

(0.683) 

1.500 

(0.221) 

0.167 

(0.683) 

2010-2011 K-Smirnov 0.250 

(0.847) 

0.333 

(0.518) 

0.417 

(0.249) 

0.250 

(0.847) 

ANOVA 0.970 

(0.335) 

0.120 

(0.730) 

2.260 

(0.147) 

0.020 

(0.888) 

Wilcoxon -0.751 

(0.453) 

0.000 

(1.000) 

-0.693 

(0.488) 

0.116 

(0.908) 

Median 0.167 

(0.683) 

0.167 

(0.683) 

0.167 

(0.683) 

0.167 

(0.683) 

 

While the overall set of tests indicates differences in productivity changes in the period 2008-

2010 among members and non-members of the agreement, the tests do not produce 

conclusive evidence of performance differences in the long term. I thus conclude that the 

agreement does not appear to have fostered productivity and efficiency changes that are 

widely different from the general development of other cities.   
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4. Summary and conclusions 

Improvement of operational efficiency is a common goal of most governmental freight 

transport policies as inefficient freight operations impair business competitiveness and 

amplify the external costs of transport. Identifying potentials for improvements as well as the 

drivers of performance changes are thus of the essence. This paper has developed logistics 

efficiency and productivity measures and showed that they can be powerful tools for 

monitoring the development of urban logistics performances. The theoretical measures have 

been implemented on a dataset covering urban logistics in the 24 largest cities in Norway in 

2008 and 2012, when 12 of the cities entered a collaboration agreement with the Norwegian 

government to reduce private car use and to improve freight transport efficiency. The results 

show a modest average productivity growth of 0.6 percent in urban freight transportation in 

Norway in this period. Efficiency changes are found to be the most important promotor of 

productivity growth, but appear to be countered by technical stagnation and regress. Because 

this study evaluates productivity changes over a relative short time span, it cannot be 

determined whether this development coincides with the general productivity development 

of urban logistics in Norway in recent years. However, if the trend continues, negative 

productivity growth is expected in the long run. Its drivers and how it may be reversed should 

consequently be addressed in future research.       

The Cities of the Future agreement appears to have had limited impact on logistics 

productivity. This assessment illustrates the usefulness of the proposed method as a 

management tool for urban transport policies, allowing policy makers to monitor the 

development of urban freight transport and correspondingly to evaluate and adapt policies 

to achieve their objectives. However, one possible explanation for the agreement’s current 
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lack of success is that its impacts may become visible only in the long run, while the timespan 

under consideration in this paper is relatively short. Lags do in general constitute an obstacle 

to allocating funds to cities based on their past performances, which is currently on the 

agenda in Norway. 

Productivity changes are found to fluctuate across and within cities. This is likely to mirror 

fluctuations in the demand for freight transport services, which make it difficult for transport 

companies to match vehicle capacities and freight volumes on a day-to-day basis. Moreover, 

it may be reasonable for carriers to tailor vehicle capacities to expected peak loads rather 

than average loads, because operating smaller vehicles leads to additional driver costs. 

McKinnon (2015a) argue that there is a limited role for governments in correcting such 

failures, except for removing legal restrictions that prevent carriers from picking up 

backloads.  

Taken at face value, the results do not indicate a relationship between the city size and 

productivity growth. Thus, logistics companies appear to be unable to reap agglomeration 

benefits, which indicates that the prevailing land use policies have not been successful in 

promoting efficient freight transport. However, as both the current study and the Norwegian 

cities are limited in scope, this research question deserves further attention.  

This paper’s approach to model road freight transport using set theoretical production 

analysis – in which the number of trips and vehicle capacities are treated as inputs and the 

throughput of cargo as outputs – is, to my knowledge, novel. While this paper demonstrates 

its usefulness for productivity and efficiency analysis of freight transport, it could also be 

useful for the empirical examination of a wider range of research questions: The production 

analysis apparatus allows examining substitution possibilities for trips and capacity (for given 
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freight deliveries), and the estimation of shadow prices for inputs and outputs; see Färe and 

Primont (1995) for details. It can also be extended to examine the impacts of contextual 

factors such as urban characteristics and policy changes on productivity and efficiency11. This 

offers new tools for examining the economics of freight transport.      
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