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ABSTRACT 

Safety-in-numbers denotes a non-linear relationship between exposure (traffic 

volume) and the number of accidents, characterised by declining risk as traffic 

volume increases. There is safety-in-numbers when the number of accidents 

increases less than proportional to traffic volume, e.g. a doubling of traffic volume is 

associated with less than a doubling of the number of accidents. Hazard-in-numbers, 

a less-used concept, refers to the opposite effect: the number of accidents increases 

more than in proportion to traffic volume, e.g. is more than doubled when traffic 

volume is doubled. This paper discusses whether a safety-in-numbers effect and a 

hazard-in-numbers effect can co-exist in the same data. It is concluded that both 

effects can exist in a given data set. The paper proposes to make a distinction 

between partial safety-in-numbers and complete safety-in-numbers. Another issue 
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that has been raised in discussions about the safety-in-numbers effect is whether the 

effect found in some studies is an artefact created by the way exposure was 

measured. The paper discusses whether measuring exposure as a rate or a share, e.g. 

kilometres travelled per inhabitant per year, will generate a safety-in-numbers effect 

as a statistical artefact. It is concluded that this is the case. The preferred measure of 

exposure is a count of the number of road users. The count should not be converted 

to a rate or to the share any group of road user contribute to total traffic volume. 

 

Key words: safety-in-numbers; hazard-in-numbers; statistical artefact; co-existence of 

effects 
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1 INTRODUCTION 

Safety-in-numbers is a phenomenon that has been the focus of many recent studies 

of the risks faced by pedestrians and cyclists (see, for example, Pucher and Buehler 

2006, Elvik 2009, Vandenbulcke et al. 2009, Nordback et al. 2013). It refers to the 

tendency for the risk of accident faced by each pedestrian or cyclist to fall as the 

number of pedestrians or cyclists increase. There is, in other words, a non-linear 

relationship between the volume of pedestrians and cyclists and the number of 

accidents involving these groups of road users. The number of accidents increases 

less than proportional to traffic volume. This has been used as a basis for arguing 

that measures designed to stimulate people to walk or bike may not necessarily be 

associated with a large increase in the number of accidents involving pedestrians or 

cyclists. 

It is, however, not clear that such an interpretation of the safety-in-numbers 

phenomenon is fully justified (Bhatia and Wier 2011). It cannot even be ruled out 

that the findings of some studies claiming to support a safety-in-numbers effect are 

pure statistical artefacts (Brindle 1994, Knowles et al. 2009). Finally, the often partial 

nature of the safety-in-numbers effect has not been fully understood; one could 

argue that both a safety-in-numbers effect and a hazard-in-numbers effect could be 

found in the same data set. 

It is therefore important to get a deeper understanding of the safety-in-numbers 

effect, in particular if one wants to use this effect to argue that more walking or 

cycling can be encouraged without worrying about a large increase in the number of 

accidents. Such an argument can only be made if: (1) The safety-in-numbers effect is 



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2013.08.010.doc 4 

causal, not just a statistical association that may have other explanations, such as 

better infrastructure or differences with respect to who walks or cycles; (2) The 

safety-in-numbers effect is complete, not just partial (see section 2 for an explanation 

of the difference between a partial and complete safety-in-numbers effect); and (3) 

The safety-in-numbers effect is real, not simply a statistical artefact. 

The objectives of this paper are: (1) to explore whether there could simultaneously be 

effects that can be interpreted both as a safety-in-numbers effect and as a hazard-in-

numbers effect in the same data set; and (2) to explore whether an apparent safety-in-

numbers effect could be a statistical artefact. It is stressed that the analyses presented 

in this paper are exploratory and are only intended to demonstrate that certain effects 

are logically possible. This is not intended to suggest that these effects are actually 

common. 

 

2 COMMON FORMS OF ACCIDENT PREDICTION MODELS 

The most common form of accident prediction model in studies of the relationship 

between traffic volume and the number of accidents is: 

Expected number of accidents = =   (1) 

PED (alternatively CYC) denotes pedestrian (or cyclist) volume, MV denotes motor 

vehicle volume (usually in terms of AADT = Annual Average Daily Traffic), e is the 

exponential function, Xi (i = 1 to n) represents risk factors influencing safety, e.g. the 

mean speed of traffic, the number of travel lanes, the number of legs in junctions, 

etc. and βi are coefficients which are normally estimated by means of negative 
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binomial regression. Note that the following formulations are mathematically 

identical: 

        (2) 

It is therefore common to include variables representing traffic volume as natural 

logarithms in accident prediction models. This represents no restriction on the values 

of the estimated coefficients. Another form of model used in studies designed to 

investigate the safety-in-numbers effect is the following (Jacobsen 2003, equation 2, 

slightly re-written): 

Injury rate =   (3) 

This formulation represents the most common type of model in the data sets 

examined by Jacobsen. 

There are five important differences between models of the type shown in equation 1 

and models of the type shown in equation 3. In the first place, the first type of model 

uses the number of accidents as dependent variable, the second uses injury rate 

(number of injured road users per unit of exposure) as dependent variable. In the 

second place, the first type of model represents exposure to risk as a count; the 

second type of model represents it as a rate (kilometres per inhabitant) or a share 

(percent of journeys to work on foot). In the third place, the first type of model 

represents the effects of exposure on accidents as (constant) elasticities, i.e. the 

coefficients in equation 1 show the percentage change in the number of accidents 

associated with a one percent growth in traffic volume, whereas in the second type of 

model the effects of exposure are modelled as risk elasticities. In the fourth place, the 
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first type of model normally includes a count of traffic volume for at least two 

groups of road users (pedestrians, cyclists, motor vehicles); the second type of model 

includes traffic volume for just a single group of road users. In the fifth place, the 

first type of model often includes a number of independent variables in addition to 

traffic volume; in the second type of model, a measure of exposure to risk tends to 

be the only independent variable. In sum, these differences are essential and make a 

direct comparison of the results obtained by the different types of models difficult, if 

not meaningless. 

It is generally regarded as evidence of a safety-in-numbers effect if both of the 

coefficients referring to traffic volume in the first type of model (equation 1) are less 

than 1. If a coefficient is less than 1, it means that the number of accidents increases 

by less than 1 percent when traffic volume increases by 1 percent. This implies that 

the risk per road user is lower when there are many road users than when there are 

few. Likewise, in the second type of model (equation 3), a negative risk elasticity is 

consistent with a safety-in-numbers effect. 

In models of the first type, it is important to understand that the coefficient 

estimated for each variable represents its effect on accidents controlling for all other 

variables included in the model. Thus, coefficients of, for example 0.5 for motor 

vehicle volume and 0.7 for pedestrian volume imply that the number of pedestrian 

accidents increases less than motor vehicle volume, keeping pedestrian volume 

constant, and less than pedestrian volume, keeping motor vehicle volume constant. 

These coefficients therefore only show a partial safety-in-numbers effect. When the 

sum of the coefficients is greater than 1, the number of accidents more than doubles 
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when the sum of pedestrian volume and motor vehicle volume doubles. If pedestrian 

or cyclist volume is highly correlated with motor vehicle volume, there will be no 

overall safety-in-numbers effect with respect to total traffic volume if the sum of the 

coefficients is greater than 1. 

 

3 EFFECTS FOUND IN A REAL DATA SET 

To show how both a safety-in-numbers effect and a hazard-in-numbers effect can 

occur in the same data, data for 159 marked pedestrian crossings in the city of Oslo 

will be applied. These data have been analysed by means of negative binomial 

regression and two accident prediction models were fitted to the data (Elvik, 

Sørensen and Nævestad 2013): 

1. One model used the total number of accidents as dependent variable. There 

were 316 accidents in total. 

2. One model used the number of accidents related to the pedestrian crossings 

as dependent variable. There were 149 accidents related to the pedestrian 

crossings. 

The total number of accidents includes all types of accidents occurring within a zone 

of 50 metres to each side of the pedestrian crossing (100 metres in total). Crossing-

related accidents include those that are related to use of the crossing, such as 

pedestrians hit when using the crossing, or rear-end accidents occurring because a car 

brakes hard to avoid hitting a pedestrian. 

The following independent variables were included in both models:  
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1. The natural logarithm of the total number of road users crossing at 

pedestrian crossings 

2. The natural logarithm of annual average daily traffic (AADT) 

3. The product of the number of road users crossing at pedestrian crossings and 

AADT 

4. The number of legs at the crossing location (an indicator of the number of 

directions from which traffic that may conflict with crossing pedestrians 

enters) 

5. The number of driving lanes at the crossing location (a count variable varying 

from 1 to 6) 

6. The type of traffic control (none or traffic signals; coded as 0 or 1) 

7. The percentage of road users crossing outside the marked crossing 

8. The mean speed of motor vehicles approaching a marked crossing (km/h) 

9. Whether formal warrants for the use of marked pedestrian crossings were 

satisfied or not (1 if satisfied, 0 otherwise). 

In the present context, it is the coefficients referring to pedestrian volume and motor 

vehicle volume that are of primary interest. 

Figure 1 shows that there is very little correlation between motor vehicle volume and 

pedestrian volume at the 159 marked crossings. Motor vehicle volume (AADT) 

varied from 500 to 19,500. Pedestrian volume was, in general, much lower, ranging 

from less than 10 to a little more than 5,000. There was, however, sufficient variation 

in both motor vehicle traffic volume and pedestrian volume to detect any safety-in-

numbers effect. 
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Figure 1 about here 

In the model using the total number of accidents as dependent variable, the 

coefficient for motor vehicle volume was 0.591; the coefficient for pedestrian volume 

was 0.312. These coefficients sum to 0.903, suggesting that there will be a safety-in-

numbers effect associated with any combination of motor vehicle and pedestrian 

volume. The number of accidents predicted by these coefficients was estimated for 

all 159 marked pedestrian crossings. Figure 2 shows the results. The lowest total 

traffic volume (500 vehicles; 43 pedestrians; total 543) was given the value of 1.0. 

The number of accidents predicted for this volume was likewise given the value of 

1.0. 

Figure 2 about here 

Figure 2 shows that there is, except for a few borderline cases at very low traffic 

volumes, a complete safety-in-numbers effect for the whole range of traffic volumes 

(sum of pedestrians and motor vehicles). In the model using accidents that were 

judged to be related to the pedestrian crossings as dependent variable, the coefficient 

estimates were 0.533 for motor vehicle volume and 0.761 for pedestrian volume. The 

sum of the coefficients is 1.294. The value of the coefficient for motor vehicle 

volume is close to that found when using the total number of accidents as dependent 

variable (0.591). However, the value of the coefficient for pedestrian volume (0.761) 

suggests that accidents related to the pedestrian crossings are considerably more 

sensitive to pedestrian volume than the total number of accidents (0.312). The 

coefficients were once more applied to estimate the predicted number of accidents in 

each pedestrian crossing. The results are shown in Figure 3. 
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Figure 3 about here 

The lowest traffic volume was again given the value of 1.0 and the number of 

accidents predicted for this volume given the value of 1.0. It is readily apparent that 

the results are very different from those shown in Figure 2. There is a safety-in-

numbers effect for 89 pedestrian crossings, a hazard-in-numbers effect for 69 

pedestrian crossings (these number add to 158; the first crossing is used as reference 

and therefore not counted). 

The coefficients are, however, consistent with partial safety-in-numbers effects with 

respect both to pedestrian and motor vehicle volume. One may wonder, however, if 

it is appropriate to speak of a safety-in-numbers effect when each pedestrian faces a 

higher risk of accident when both motor vehicle volume and pedestrian volume 

increase. As an example, the predicted number of crossing-related accidents 

increased by a factor of 4.72 when a crossing with 1,800 motor vehicles and 416 

crossing pedestrians was compared to a crossing with 900 motor vehicles and 88 

crossing pedestrians. Thus, the 416 pedestrians crossing at the busiest crossing each 

faced a risk more than twice as high as the risk faced by the 88 pedestrians crossing 

at the less busy crossing. 

 

4 SAFETY-IN-NUMBERS AS A STATISTICAL ARTEFACT 

It has been argued that some of the studies claiming to show a safety-in-numbers 

effect are likely to show a relationship that could be a pure statistical artefact (Brindle 

1994, Knowles et al. 2009). Recall that in some studies, pedestrian (or cyclist) risk 

was measured as the number of injured road users per kilometre walked (or cycled). 
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Exposure to risk was measured as the number of kilometres walked per inhabitant. 

In other words risk equals A/B and exposure equals B/C. 

It is obvious that defining exposure and risk this way can generate a spurious 

negative relationship between exposure and risk that looks like a safety-in-numbers 

effect. Consider what happens when B increases. All else equal, the value of A/B will 

decrease, i.e. risk is reduced. When B increases, the value of B/C also increases, i.e. 

exposure increases at the same time as risk decreases. There will thus, by definition, 

be a negative relationship between exposure and risk. 

To test if this relationship could be a pure statistical artefact, random numbers were 

generated for motor vehicle volume, pedestrian volume and the number of accidents. 

Series of 159 random numbers were generated to simulate a sample of the same size 

as the marked pedestrian crossings in the city of Oslo. Motor vehicle volume was 

random between 500 and 20,000; pedestrian volume was random between 10 and 

5,000 and the number of accidents was random between 0 and 10. These ranges are 

consistent with those observed for the 159 pedestrian crossings in Oslo. 

The risk of accident was measured as the number of accidents per 1,000 pedestrians. 

If there is safety-in-numbers, this risk should fall as a function of the number of 

pedestrians. Exposure to risk was measured as the number of pedestrians per motor 

vehicle. This measure of exposure, although uncommon, is not entirely meaningless. 

One could, for example, argue that pedestrians will more easily be able to “force” car 

drivers to comply with their duty to give way at pedestrian crossings the more 

numerous pedestrians are compared to the number of car drivers. A plot of 
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pedestrian risk against pedestrian exposure was generated. It is reproduced in Figure 

4. 

Figure 4 about here 

There is a remarkably strong negative relationship between pedestrian exposure and 

pedestrian risk. This suggests a very strong safety-in-numbers effect. However, as the 

relationship is based on random numbers, it must be a pure statistical artefact. There 

is no correlation between the three variables: motor vehicle volume, pedestrian 

volume and the number of accidents. The negative relationship emerges solely as a 

result of the way risk and exposure have been defined. 

As a further test, the analysis relying on random numbers was repeated, using the 

number of pedestrians as measure of exposure. Figure 5 shows the results. There is 

again a negative relationship between pedestrian risk and the number of pedestrians, 

suggesting a safety-in-numbers effect. The relationship is weaker and more noisy 

than the one shown in Figure 4. Still, it is clearly discernible. 

Figure 5 about here 

It is only when pedestrian volume is less than about 500 that the risk curve in Figure 

5 starts to rise rapidly. For higher pedestrian volumes, the curve is considerably 

flatter, although not perfectly horizontal as it ought to be when there is no safety-in-

numbers effect. There could be a very simple explanation for the negative 

relationship (given that it is based on random numbers). When a single accident 

occurs by chance at a low pedestrian volume, the denominator of the estimate of risk 

has a low value, so risk is estimated to be high. In real data, characterised by a partly 

systematic, partly random relationship between pedestrian volume and the number of 
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accidents, the occurrence of a single accident leading to an inflated estimate of risk at 

low volumes may be less likely than in the random data that serve as basis for Figure 

5. 

 
5 DISCUSSION 

Two questions motivated the research presented in this paper: (1) What do we mean 

by safety-in-numbers?; and: (2) How can we know that we have identified a real 

safety-in-numbers effect? These questions have not received the attention they 

deserve in recent studies of the safety-in-numbers phenomenon.  

In accident prediction models of the type shown in equation 1 in section 2 of the 

paper, the usual interpretation is that there is safety-in-numbers if the coefficients for 

traffic volume are less than one. A coefficient less than 1 implies that the risk of 

accidents declines as volume increases; thus each road user faces a lower risk. 

However, accidents involving pedestrians and cyclists depend both on the number of 

pedestrians or cyclists and the number of motor vehicles. If the gain in safety for 

each pedestrian and cyclist as they become more numerous is offset by the added risk 

posed by an increasing number of motor vehicles, there really is no safety-in-

numbers. This will be the case whenever the sum of the coefficients for the two 

volumes is greater than one. 

Table 1 shows coefficients estimated in a number of accident predictions models 

based on data for pedestrian volume, cyclist volume and motor vehicle volume. In 

most studies, the sum of the coefficients is greater than one, suggesting that the data 
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only contains a partial safety-in-numbers effect, i e. a safety-in-numbers effect 

observed for pedestrians or cyclists when motor vehicle volume is kept constant. 

Table 1 about here 

There could be a safety-in-numbers effect in parts of a data set where the coefficients 

add to more than one. However, such an effect would be contingent on a low 

correlation between pedestrian or cyclist volume and motor vehicle volume. Thus, 

for the pedestrian crossings in Oslo, a safety-in-numbers effect was found in 89 out 

of 159 crossings, even in the model with coefficient estimates of 0.761 for pedestrian 

volume and 0.533 for motor vehicle volume. 

As far as injury prediction models of the type shown in equation 3 in section 2 of the 

paper are concerned, these models cannot be trusted to reveal a real safety-in-

numbers effect. There are three principal reasons for this. First, the models tend to 

define exposure to risk in a way that entails a risk of creating an artificial relationship 

between exposure and risk which is consistent with a safety-in-numbers effect. 

Obviously, a relationship that could arise as an artefact could also be real. It does not 

have to be an artefact. This ambiguity makes it almost impossible to interpret the 

results of models based on equation 3. The relationships revealed by such models 

could be real, but they could also be pure artefacts. Second, the models include data 

for a single road user group only, i.e. only pedestrians or only cyclists. However, as 

shown in the analyses of the data for marked pedestrian crossings in Oslo, the risk of 

accident is also influenced by motor vehicle volume. Hence, no model can reveal a 

complete (as opposed to partial) safety-in-numbers effect without including data on 
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both pedestrian or cyclist volume and motor vehicle volume. Third, models of the 

type shown in equation 3 do not, in general, control for confounding factors. 

For these reasons one should place considerably less trust in models based on 

equation 3 than in models based on equation 1. 

 
6 CONCLUSIONS 

The main conclusions of the research reported in this paper can be summarised as 

follows: 

1. Two different forms of accident prediction models have been applied in 

research aiming to determine if there is a safety-in-numbers effect, i.e. a 

tendency for the risk faced by each road user to decline as the number of 

road users increases. 

2. Only accident prediction models that include data based on counts of traffic 

volume for all relevant groups of road users (pedestrians, cyclists, motor 

vehicles) can reveal a true safety-in-numbers effect. Simpler models entail a 

non-negligible risk of showing relationships that are partly or entirely 

statistical artefacts. 

3. A distinction should be made between partial safety-in-numbers and 

complete safety-in-numbers. There is partial safety-in-numbers if the risk 

faced by each road user of type A declines as the number of road users of 

type A increases, keeping the number of road users of type B constant. There 

is complete safety-in-numbers if the risk faced by each road user of type A 
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declines throughout the range of combined volumes of road users of types A 

and B. 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Fictitious safety-in-numbers effect generated by combining random numbers 
(seven data points omitted to improve readability)

The relationship was generated by generating 159 random numbers between 500 and 20,000 for motor 
vehicle volume; 159 random numbers between 10 and 5,000 for pedestrian volume and 159 random 
numbers between 0 and 10 for the number of accidents

The curve was not fitted formally to the data and is only intended to 
indicate the shape of the relationship

Seven outlying data points are not shown in order to 
improve the readability of the figure

 

Figure 5: 
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Fictitious relationship between pedestrian volume and pedestrian accident 
rate generated by random numbers

The relationship was generated by generating 159 random numbers between 10 and 5,000 for 
pedestrian volume and 159 random numbers between 0 and 10 for the number of accidents

Four outlying data points have been omitted from the figure to 
improve readability

The curve was not formally fitted to the data but 
only indicates the shape of the relationship

 

Table 1: 
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   Estimate of exponent for traffic volume 

Study Country Sample size Motor vehicles Pedestrians Cyclists 

Brüde and Larsson 1993 Sweden (junctions) 285 0.50 0.72  

Brüde and Larsson 1993 Sweden (junctions) 377 0.52  0.65 

Leden 2002 Canada (junctions) 749 0.86 0.48  

Leden 2002 Canada (junctions) 126 1.19 0.33  

Lyon and Persaud 2002 Canada (junctions) 684 0.57 0.74  

Lyon and Persaud 2002 Canada (junctions) 263 0.40 0.41  

Lyon and Persaud 2002 Canada (junctions) 122 0.53 0.66  

Lyon and Persaud 2002 Canada (junctions) 123 0.58 0.71  

Jonsson 2005 Sweden (road sections) 393 0.83 0.38  

Jonsson 2005 Sweden (road sections) 393 0.76  0.35 

Zegeer et al. 2005 United States (marked crosswalks) 1000 1.01 0.38  

Zegeer et al. 2005 United States (unmarked crosswalks) 1000 0.30 0.60  

Geyer et al. 2006 United States (junctions) 247 0.16 0.61  

Harwood et al. 2008 United States (junctions) 450 0.05 0.41  

Harwood et al. 2008 United States (junctions) 1433 0.40 0.45  

Elvik 2013 Norway (marked crosswalks) 159 0.59 0.31  

Elvik 2013 Norway (marked crosswalks) 159 0.53 0.76  

Nordback et al. 2013 United States (junctions) 105 0.64  0.53 

Nordback et al. 2013 United States (junctions) 106 0.58  0.65 

Mean (unweighted)   0.58 0.53 0.55 

 

 


