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Abstract

On June 25, 2013, President Obama announced his plan to introduce carbon dioxide emission standards

for electricity generation. This paper proposes an efficiency analysis approach that addresses which

emission rates (and standards) would be feasible if the existing generating units adopt best practices. A

new efficiency measure is introduced and further decomposed to identify different sources’ contributions

to emission rate improvements. Estimating two Data Envelopment Analysis (DEA) models - the well-

known joint production model and the new materials balance model - on a dataset consisting of

160 bituminous-fired generating units, we find that the average generating unit’s electricity-to-carbon

dioxide ratio is 15.3 percent below the corresponding best-practice ratio. Further examinations reveal

that this discrepancy can largely be attributed to non-discretionary factors and not to managerial

inefficiency. Moreover, even if the best practice ratios could be implemented, the generating units

would not be able to comply with the EPA’s recently proposed carbon dioxide standard.

JEL classification: Q53, Q48, D24

Keywords: Emission standards; Carbon dioxide emissions; Materials balance condition;

Electricity generation; Weak G-disposability; Data Envelopment Analysis



1 Introduction

On June 25, 2013, President Obama announced his plan to curb U.S. carbon dioxide (CO2) emissions.

By sending a strong signal that the U.S. is willing to take the lead in preventing climate change

President Obama put climate change at the top of the international agenda and raised hopes for a

binding international agreement on climate change mitigation.

The electricity sector is the largest emitter of CO2 in the U.S., and accounts for about one-third of

all domestic emissions. Although regulations that curb other emissions such as sulfur dioxide (SO2)

and nitrogen oxides (NOx) were implemented decades ago, CO2 emissions from U.S. power plants

are currently not constrained. On March 27, 2012, the Environmental Protection Agency (EPA)

proposed a CO2 emission standard of 1000 pounds of CO2 per megawatt-hour for new plants, based

on the performance of the natural gas combined cycle technology. In his new initiative, President

Obama has directed the EPA to complete CO2 emission standards for both new and existing plants.

Understanding technological capacity is important for successful environmental policies. This paper

considers feasible emission standards for existing electricity generating units, given the current state of

their technology. The paper is thereby closely linked to a recent paper by Kotchen and Mansur (2014),

which analyzes how the EPA’s proposed emission standard of 1000 pounds of CO2 per megawatt-hour

compares to the emission rates of existing and proposed electricity generating units. We extend

the scope of Kotchen and Mansur’s analysis by taking efficiency improvements into account. More

specifically, we ask which emission rates would be feasible if all units operate at their technological

capacity and thus, how much the electricity generating units’ current emissions could be decreased

if the units adopt best practices. This information is useful for designing environmental regulations

that promote efficiency improvements (in the spirit of the so-called Porter hypothesis, see Porter and

van der Linde (1995)). A report by the National Energy Technology Laboratory (2008) suggests that

factors which are under control by the electricity generating units, e.g., operational practices and

maintenance, play large roles in determining the units’ efficiencies. In other words, it appears to be

possible to significantly reduce CO2 emissions by increasing the units’ managerial efficiencies.

To identify feasible improvements in current emission rates, this paper proposes a production analysis

framework for estimating the electricity generating units’ maximal feasible output-to-emissions ratios.

A new efficiency measure that compares the maximal feasible ratios to the generating units’ actual

ratios is proposed. The measure is decomposed into three components to identify the sources of

improvements. We illustrate the usefulness of our approach by calculating the maximal output-to-

emissions ratios and the corresponding efficiency scores for a sample of 160 bituminous-fired generating

units in operation in 2011; i.e., for existing coal-fired units that will face emission standards for

CO2 in the future. Data Envelopment Analysis (DEA) is used to model polluting technologies, i.e.

technologies that consume coal and other inputs and produce CO2 emissions jointly with electricity.

The properties of polluting technologies have recently received much attention in the production anal-

ysis literature. It is now well-known that some of the “standard” (neo-classical) axioms, in particular

free disposability of outputs, do not apply to pollutants (see Førsund (2009) for a detailed discussion).

A popular modeling approach by Färe et al. (1989) therefore suggests to model pollutants as weakly

disposable. Among others, this approach has been extensively used to estimate environmental efficien-

cies and marginal abatement costs for U.S. power plants (see e.g. Mekaroonreung and Johnson (2012),
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Färe et al. (1996, 2007b), and Coggins and Swinton (1996)). However, the Färe et al. (1989) modeling

approach is criticized for not complying with physical laws, in particular with the materials balance

condition (see Førsund (2009), Coelli et al. (2007) and Hoang and Coelli (2011)). This is unfortu-

nate in our setting since the materials balance condition is highly relevant for modeling air pollutant

emissions from electricity generation. Some papers have suggested modeling polluting technologies

by combining the neo-classical production technology with a parametric specification of the materi-

als balance condition to overcome the physical inconsistencies (see e.g. Rødseth (2013) and Hampf

(2014)). Alternatively, the axioms of the neo-classical production model can be modified to secure

consistency between the economic model and the materials balance principle. The latter approach has,

to our knowledge, not been properly addressed in the literature. Recently, Rødseth (2014a) showed

that a “materials balance consistent” production model can be achieved by assuming that 1) inputs

and outputs are weakly G-disposable, and that 2) pollutants are output essential. Rødseth (2014a)

further showed that (despite the before-mentioned critique) the model by Färe et al. (1989) is consis-

tent with the materials balance condition under a very strong assumption, namely that reductions in

pollutants take place by end-of-pipe abatement only. This is not an appropriate assumption in our

case with CO2 emissions from electricity generating units since end-of-pipe technologies for CO2 are

currently not commercialized (see Rødseth and Romstad (2014) for a discussion). We therefore find it

useful to compare the results of Färe et al.’s model (hereafter, the joint production (JP) model) and

Rødseth’s model (hereafter, the materials balance (MB) model), to identify possible shortcomings of

the well-established joint production model in settings without end-of-pipe abatement. Our paper is

the first to implement the materials balance model empirically and the first to assess the differences

between the two production models using real data.

Our DEA results suggest that the average generating unit’s electricity-to-carbon dioxide ratio is 15.3

percent below the corresponding best-practice ratio. Unfortunately, further examinations by second-

stage regressions reveal that this discrepancy can largely be attributed to contextual factors and not

to managerial inefficiency. In particular, the age of the generating units has a significant impact

their efficiencies. Building upon the second-stage regression results we find that the lowest feasible

emission standard for the average generating unit is 1943 pounds of CO2 per MWh of produced

electricity, which is slightly lower than the current average emission rate of 1997 pounds per MWh

produced. Consequently, the coal-fired generating units are far from being able to comply with the

EPA’s suggested emission standard of 1000 pounds of CO2 per megawatt-hour.

Our paper is structured as follows. Section 2 describes the theoretical underpinnings of our analysis.

It presents the production models and our new efficiency measure. Section 3 describes the compilation

of the dataset and presents the results. Finally, section 4 concludes.

2 Theoretical foundations

We start by introducing the joint production and the materials balance approach to modeling envi-

ronmental technologies. Building upon the nonparametric estimation of these models we introduce

optimization methods to estimate the maximal ratio of a good to a bad output. This ratio is used to

construct and decompose a new efficiency measure. A discussion on the bias-correction of the esti-
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mates of the efficiency measure and the use of regression techniques to identify the effect of contextual

variables concludes this section.

2.1 Environmental production technologies

In the following discussion we focus on a production process where m inputs x ∈ Rm+ are used to

produce k good outputs y ∈ Rk+. We further assume that the m inputs can be split into m1 polluting

inputs andm2 = m−m1 non-polluting inputs, hence x =

[
xP

xNP

]
. The consumption of polluting inputs

leads to the unintended by-production of s bad (or undesirable) outputs b ∈ Rs+. The technology set

T of this production process is the collection of all technically feasible input-output combinations and

is defined by:

T = {(x,y, b) : x can produce (y, b)} . (2.1)

Several axiomatic approaches that account for bad outputs have been proposed in the literature on

microeconomic production theory (see e.g. Scheel (2001) for a survey). One of the most frequently

applied models in empirical analyses is the joint production (JP) model by Färe et al. (1989). This

model imposes the following axioms on the technology (see Färe and Grosskopf (2004) for further

discussions):

(JP1) T is nonempty.

(JP2) T is closed.

(JP3) For every finite x, T is bounded from above.

(JP4) No free-lunch: (0,y, b) /∈ T if (y, b) ≥ (0,0).1

(JP5) Convexity:

If (x,y, b) ∈ T and
(
x̃, ỹ, b̃

)
∈ T , then α (x,y, b) + (1− α)

(
x̃, ỹ, b̃

)
∈ T with α ∈ [0, 1].

(JP6) Inactivity: (x,0,0) ∈ T .

(JP7) Strong disposability of inputs: If (x,y, b) ∈ T and x̃ = x, then (x̃,y, b) ∈ T .

(JP8) Strong disposability of good outputs:

If (x,y, b) ∈ T and ỹ 5 y, then (x, ỹ, b) ∈ T .

(JP9) Weak disposability of good and bad outputs:

If (x,y, b) ∈ T , then (x, θy, θb) ∈ T with 0 5 θ 5 1.

(JP10) Null-jointness: If (x,y, b) ∈ T and b = 0, then y = 0.

The main differences between the conventional technology set that does not account for the production

of pollutants (see Shephard (1970) for an overview) and the joint production model are the axioms

(JP9) and (JP10). The weak disposability axiom (JP9) states that a reduction in the bad outputs is

costly since the production of good outputs must be reduced correspondingly, i.e. revenues must be

forgone. The rationale behind this assumption is that inputs are reallocated from the production of

the good outputs to the abatement of the bad outputs. The null-jointness assumption (JP10) states

1 Following the usual notational convention we use ≥ and ≤ if at least one element of a vector satisfies strict inequality
while = and 5 imply that each element can hold with equality.
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that no good outputs can be produced without some by-production of bad outputs. In the words of

Färe et al. (2007a, p. 1057), “there is no fire without smoke”.

While the joint production model provides a theoretically appealing approach to incorporate pollutants

as bad outputs, it is in general not able to account for the laws of thermodynamics (see Coelli et al.

(2007)). The literature on environmental economics (see e.g. Baumgärtner et al. (2001)) highlights

in particular the role of the first and second laws of thermodynamics in determining pollution from

conventional production processes. In line with previous studies (see Coelli et al. (2007)) we limit our

discussion on the first law of thermodynamics to the materials balance condition (MCB). The MBC,

which was introduced in the economic literature by Ayers and Kneese (1969), states that the amount

of materials bound in the inputs must be equal to the amount of materials bound in the intended

outputs and the production residuals, which in our case translates to the good and bad outputs.2

Given our above presented production process the MBC reads as equation (2.2)

Sxx = Syy + b+ a (2.2)

where Sx denotes the s×m matrix which indicates the amount of materials bound in the inputs (i.e.,

emission factors). Since the non-polluting inputs do not contain any materials the last m2 rows of the

matrix do only contain zeros. Sy denotes the s × k matrix which indicates the amount of materials

bound in the good outputs (i.e., recuperation factors), and a represents a s × 1 vector containing

the amount of abatement for each pollutant.3 In this definition of the MBC the amount of materials

bound in the inputs corresponds to the sum of the materials bound in the good outputs, the amount

of bad outputs, and the amount of abatement. In our empirical case study the matrix Sy is the zero

matrix since the good output (electricity) does not contain any materials. Moreover, a = 0 since no

abatement activities for carbon dioxide are present.4

While the MBC states that materials cannot vanish during the production process, the second law

of thermodynamics states that polluting inputs cannot be completely transformed into good outputs.

Therefore, the bad outputs must be strictly positive if a strictly positive amount of the polluting

inputs is used (see Ebert and Welsch (2007)) if no abatement activities are present. If abatement

takes place (a > 0), then in theory the bad outputs might be zero when a strictly positive amount of

polluting inputs is consumed. However, the case of complete removal of the bad outputs in equation

(2.2) is rarely observed.

As described in the introduction to this paper, the joint production model is only consistent with the

materials balance condition if (end-of-pipe) abatement possibilities are present and can be adjusted

2 In the economy-wide perspective, all material inflows to economic processes will return to the environment. However,
the materials balance principle is additive, and the fundamental materials balance equation can easily be transposed
to narrowly defined systems, where inputs are intermediates instead of raw materials and where good outputs go
through a transformation chain before ending up as residual materials from the consumer sector (Lauwers 2009, p.
1606). Narrow system delimitation will inevitably impose rigorous consideration of the materials balance condition
(Lauwers 2009, p. 1611).

3 The term abatement is frequently used for all types of emission reducing efforts, including input substitution and
reductions in the scale of operations. In our setting, abatement primarily refers to end-of-pipe abatement, but
may also encompass various forms of change-in-process abatement. See Rødseth and Romstad (2014) for a detailed
discussion.

4 In the following theoretical discussions we will assume that a = 0. This is done for notational easiness in the
following formal derivations of the programming problems. However, note that these derivations can be easily
adapted accounting for a > 0.
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such that the materials balance condition is satisfied when inputs and good and bad outputs are

disposed. Rødseth (2014b) rewrote the MBC (Eq. 2.2) and multiplied the outputs with the scalar θ,

i.e., Sxx−a = θ (Syy + b), to show that the weak disposability axiom can only be consistent with the

materials balance condition if the abatement output can be increased proportionally to the reduction

in good and bad outputs by θ for a given input vector. Moreover, the null-jointness and inactivity

axioms of the JP model violate the second law of thermodynamics. To overcome these drawbacks

Rødseth (2014a) proposed a production model that is in line with both laws of thermodynamics. In

Rødseth’s paper the G-disposability axiom proposed by Chung (1997) is extended by a summing-up

condition to allow weak G-disposability, which can be defined to ensure that the production model

satisfies the MBC. Moreover, the concepts of input and output essentiality for the bad outputs are

introduced to provide a model which does not violate the second law of thermodynamics. The full

set of axioms of the materials balance (MB) approach reads as (see Rødseth (2014a) for a complete

discussion)

(MB1) T is nonempty.

(MB2) T is closed.

(MB3) For every finite x, T is bounded from above.

(MB4) Output essentiality for the bad outputs: If (x,y, b) ∈ T and b = 0, then xP = 0.

(MB5) Input essentiality for the bad outputs: If (x,y, b) ∈ T and xP = 0, then b = 0.

(MB6) No free-lunch.

(MB7) T is convex.

(MB8) Inputs and outputs are weakly G-disposable:

If (x,y, b) ∈ T and Sxgx + Sygy − gb = 0, then
(
x+ gx,y − gy, b+ gb

)
∈ T .5

Axioms (MB4) and (MB5) ensure that the second law of thermodynamics is not violated by stating

that it is not possible to completely transform polluting inputs into good outputs. The summing-up

condition in (MB8) states that the increases in pollution due to increases in the use of inputs (Sxgx)

and/or the reduction of good outputs
(
Sygy

)
must equal the increases in the bad outputs (gb) when

inputs and outputs are disposed. Hence, the MBC is satisfied. Since we assume zero abatement we

also assume zero changes (ga = 0) in abatement. If this is not the case, (MB8) could be modified to:

If (x,y,a, b) ∈ T and Sxgx+Sygy+ga−gb = 0, then
(
x+ gx,y − gy,a− ga, b+ gb

)
∈ T to allow

for disposal of the abatement output.

In the following we present a simple graphical example to demonstrate the differences between the

joint production model and the materials balance model. We consider a case with one polluting input

(x) and two outputs, one good (y) and one bad (b). Moreover, we assume that the emission factor for

the polluting input is 0.4 and that the recuperation factor for the good output is zero. In this setting,

we construct a dataset containing three (l = A,B,C) DMUs which is presented in table I.

Using this graphical example we want to highlight how the different assumptions regarding the dispos-

ability of inputs and outputs influence the production possibilities, i.e. the output sets. To illustrate

5 gx, gy and gb are directional vectors which model changes in the inputs and outputs that satisfy equation (2.2).
Hence, they determine the direction in which inputs and outputs are disposable. The summing-up condition in
(MB8) constraints the choice of directions, hence the term weak G-disposability.
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Table I: Artificial data

Firm ID xl yl bl

A 10 4.5 2
B 10 5 4
C 20 5 8

the difference with regard to the disposability of outputs we compare the output sets for a fixed level

of polluting inputs (x = 10). The implications of the differences in the disposability of polluting inputs

are discussed by comparing the output sets for two levels of polluting inputs (x = 10 and x = 20).

We assume a variable returns to scale technology to highlight the role of the disposability axioms in

estimating production possibilities. Under constant returns to scale the output sets for the technology

T , P (x), satisfy the condition P (tx) = tP (x) , t > 0 which leads to a more complex figure as will be

described in more detail below.

Figure 1 presents the output sets for both models (joint production and materials balance) and two

different input levels (x = 10 and x = 20). Note that the figure thereby deviates from most graphical

representations in the literature on polluting technologies that usually depict one output set given a

fixed input vector.

y

b
0 1 2 3 4 5 6 7 8

1

2

3

4

5 A

B C

A′

Figure 1: Output sets of the joint production and the materials balance model

Since the DMUs A and B both consume 10 units of the input, the output sets for x = 10 are estimated

on the basis of these two observations. The output set for the materials balance model is bounded

by 2AB42, where the vertical line segments 2A and B4 are due to weak G-disposability of the good

output. Since we assume that the recuperation factor of y is equal to zero (sy = 0), the amount of

y can be freely reduced for fixed levels of x and b without violating the materials balance condition

(2.2). The line segment AB follows from the assumption of a convex technology which implies convex
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output sets. From this output set it is obvious that for the materials balance model the minimal

amount of b given x = 10 is 2.

In contrast to the materials balance model which is based on the assumption of weak G-disposability,

the joint production model assumes strong disposability of inputs and good outputs and weak dispos-

ability of bad outputs. Without any disposability of the bad outputs, the output set for the JP model

would be the same as the output set of the MB model due to the assumption of strong disposabil-

ity of good outputs. However, the weak disposability assumption states that if (y, b) ∈ P (10), then

(θy, θb) ∈ P (10) with 0 5 θ 5 1, implying that (0, 0) ∈ P (10) is feasible. This assumption extends the

output set by the area bounded by the line segment 0A. Hence, the output set of the joint production

model for x = 10 is bounded by 0AB40 and the minimal amount of b given x = 10 is 0.

By the above discussion we have demonstrated how the different assumptions about the possibilities

to dispose outputs shape the output sets and, thus, feasible output combinations given x = 10. To

show how different assumptions regarding the disposal of polluting inputs affect the output sets, we

include observation C which uses xC = 20 to produce yC = 5 and bC = 8.

The assumption of strong disposability of polluting inputs of the joint production model implies that

if (y, b) ∈ P (10), then (y, b) ∈ P (20). Therefore, the output set for the joint production model and

x = 20 contains all point of the output set for x = 10 and all points located on (due to convexity) or

below (due to free disposability of good outputs) the line segment BC (i.e., by combining the output

set for x = 10 with observation C). Hence, the output set is bounded by 0ABC80 and the minimal

amount of b given x = 20 remains 0 for the JP model.

In contrast, the MB model assumes weak G-disposability of inputs and outputs implying that if

(y, b) ∈ P (10), then (y, b+ 0.4 · 10) ∈ P (10 + 10) where sx = 0.4 and gx = 10. Pictorially, this means

that the output set of the MB model for x = 10 moves “to the right” when the input consumption

increases from 10 to 20. Hence, in contrast to the JP model the output combinations for x = 10 are

not technically feasible for x = 20. For example, the artificial observation A′ corresponds to DMU

A for x = 20, since at this artificial observation the good output is the same as for DMU A and the

bad output is increased to b + 0.4 · 10 = 4 + 4 = 8. Hence, the output set of the materials balance

model for x = 20 amounts to the set bounded by 6A′C86, and the minimal feasible amount of the bad

output is 6 for x = 20. Thus, it is larger than the minimal amount of 2 for x = 20, highlighting the

difference in the output sets for the MB and the JP model due to different disposability assumptions.

In essence, the MB model assumes a closer relationship between the consumption of polluting inputs

and emissions than the JP model which assumes that inputs are freely disposable.

Note that for this graphical discussion we have assumed a variable returns to scale technology. As-

suming constant returns to scale, the output sets for both models for x = 20 would also contain the

artificial points P
(
2 · xA

)
= 2 · (yA, bA) = (9, 4) and P

(
2 · xB

)
= 2 · (yB, bB) = (10, 8) which implies

an expansion of the output sets. Since this would lead to a less clear presentation of the effects of the

disposability assumptions, we restrict our presentation to the case of variable returns to scale which

does not allow for this expansion.
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2.2 Nonparametric estimation and ratio optimization

We apply nonparametric methods (Data Envelopment Analysis (DEA) proposed by Charnes et al.

(1978)) which do not rely on a specific functional form of the production function to estimate the

technologies. Given a sample of n decision making units (DMUs) with the observed input-output

combinations (xi,yi, bi) with i = 1, . . . , n the estimation of the joint production model assuming

variable returns to scale (VRS) reads as (see Färe and Grosskopf (2003))

T̂JP =
{

(x,y, b) : x =Xλ,y 5 Y λθ, b = Bλθ,1Tλ = 1, 0 5 θ 5 1,λ = 0
}
. (2.3)

In this formulation X denotes the m × n matrix of (polluting and non-polluting) inputs, Y denotes

the k × n matrix of good outputs and B denotes the s × n matrix of bad outputs. λ represents a

n× 1 vector of weight factors while θ denotes the scaling factor of the weak disposability assumption

(JP9). The inequality constraints on the inputs and the good outputs imply strong disposability while

the equality constraints on the bad outputs impose weak disposability. The technology exhibits null-

jointness of the good and the bad outputs if each DMU produces a strictly positive amount of at least

one bad output and each bad output is produced by at least a single DMU (see e.g. Färe (2010)) .

This technology can be modified to exhibit constant returns to scale (CRS) by removing the summing

up condition on the weight factors 1Tλ = 1. In this case the scaling factor θ can be set equal to one

(see Färe and Grosskopf (2003)).

The corresponding nonparametric estimation of the materials balance model (MB) reads as

T̂MB =
{

(x,y, b) : x = Xλ+ εx,y = Y λ− εy, b = Bλ+ εb,

Sxεx + Syεy = εb,1
Tλ = 1,λ = 0

}
.

(2.4)

In this estimation we have replaced the unspecified directional vectors of the weak G-disposability

assumption (MB8) by the specific slacks in the inputs and outputs εx, εy and εb. Hence, production

points that are neither observations in the sample nor convex combinations of the observations are only

part of the technology if their slacks satisfy the summing-up constraint Sxεx +Syεy = εb, hence the

materials balance condition. Note that other specifications of the directional vectors are also possible,

e.g. for evaluating substitution among polluting inputs for fixed levels of b (gb = 0). The technology

exhibits output essentiality for the bad outputs (MB4) if each DMU uses a strictly positive amount

of the polluting inputs and produces a strictly positive amount of the bad outputs.

Based on estimates of the two technologies, the purpose of this paper is to undertake an efficiency

analysis of U.S. power plants to, among others, examine whether the existing plants would be able to

comply with EPA’s proposed carbon standard by adopting best-practices. In most empirical studies

distance functions are applied to evaluate the efficiency of power plants. For example, Barros and

Peypoch (2008) use an output distance function to estimate the efficiency and analyze the effect of

pollutants on the efficiency by using second-stage regressions. Other studies (e.g. Färe et al. (2007a))

apply directional distance functions (DDF) when including pollutants as weakly disposable outputs

(see Zhang and Choi (2014) for a survey on the use of directional distance functions in efficiency studies

in the energy sector). However, the use of DDFs in combination with weakly disposable outputs is

criticized by Aparicio et al. (2013) and Chen (2013). They point out that the model by Färe et al.
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(1989) may lead to negatively sloped regions of the frontiers of the output sets, and that points located

on these parts of the frontier can be misclassified as efficient when applying DDFs. Sueyoshi and Goto

(2012a, 2012b) propose non-radial slacks-based measures which do not suffer from this drawback of

the analyses using DDFs to evaluate the efficiency of power plants. To estimate the feasibility of the

EPA proposal we also propose a non-radial approach that is based on finding the optimal ratio of y/b

subject to the nonparametric technology sets defined above.6

Our approach to estimating optimal ratios is similar to the approaches of Färe et al. (2004) and

Kuosmanen and Kortelainen (2005). Färe et al. (2004) propose an index of good to bad outputs

which is based on ratios of radial distance functions leading to the same difficulties as the application

of directional distance functions discussed above. Kuosmanen and Kortelainen (2005) present an

analysis that is based on the ratio of value added to a weighted sum of environmental pressures.

The weights of the environmental pressures are determined by a multiplier form of DEA, hence the

model treats the pressures as inputs and keeps the output (the value added) constant. In contrast

to the previous literature, we show how an optimal ratio of good to bad outputs can be estimated

non-radially without using distance functions, by simultaneously optimizing y and b.

In the following we present the optimization problems to estimate the optimal ratio y/b given the

specification applied for our empirical analysis. Hence, we assume scalar polluting and non-polluting

inputs as well as scalar good and bad outputs. The corresponding programming problems for a general

specification including multiple inputs and outputs can be found in appendix B. We start by discussing

the optimization for the joint production model under constant returns to scale.

max
y,b,λ

y

b

s.t. xPi = xP
T
λ

xNPi = xNP
T
λ

y 5 yTλ

b = bTλ

y, b = 0

λ = 0.

(2.5)
Linearization
=======⇒

max
z,w

yTz

s.t. wxPi = xP
T
z

wxNPi = xNP
T
z

bTz = 1

w = 0

z = 0.

(2.6)

In these programming problems we have separated the constraints on the inputs. xP
T

(xNP
T

) denotes

the transpose of the n × 1 vector of polluting (non-polluting) inputs. Equation (2.5) presents the

non-linear optimization problem for the estimation of the optimal ratio for y/b while equation (2.6)

presents the linearized version of this optimization. Here, z = 1
bTλ

λ and w = 1
bTλ

where z can

be interpreted as the “virtual” weights of the reference DMUs similar to the “virtual” multipliers

in the (dual) multiplier version of DEA. A detailed discussion on the linearization of this and the

following programming problems can be found in appendix A. For further discussions on linearization

of non-linear DEA models see Zhou et al. (2008).

Assuming a joint production model under variable returns to scale, the programming problems read

as

6 Note that instead of minimizing the ratio b/y for the estimated technology sets we maximize the ratio y/b. This is
done to make our results and our ratio efficiency measure comparable to other approaches in the efficiency analysis lit-
erature. Since this inversion does not change the optimal results for the reference observations the policy implications
of our empirical analysis are not influenced by it.
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max
y,b,λ,θ

y

b

s.t. xPi = xP
T
λ

xNPi = xNP
T
λ

y 5 yTλθ

b = bTλθ

1Tλ = 1

0 5 θ 5 1

y, b = 0

λ = 0.

(2.7)
Linearization
=======⇒

max
g,h

yTg

s.t.
(
xP − xPi

)T
g 5 0(

xNP − xNPi
)T
g 5 0

1Tg 5 h

bTg = 1

h = 0

g = 0.

(2.8)

In addition to the variables defined for the analysis under CRS the weak disposability factor θ has

to be determined endogenously for each DMU. Moreover, the sum of the λ-values is restricted to be

equal to one. Again, the non-linear programming problem (2.7) can be linearized to problem (2.8).

In this programing problem g = 1
bTλθ

λθ and h = 1
bTλθ

.

It is also possible to estimate the optimal ratio y/b based on the materials balance model. The

corresponding optimization problems under constant returns to scale read as

max
y, b, εxP ,

εxNP , εy, εb,λ

y

b

s.t. xPi = xP
T
λ+ εxP

xNPi = xNP
T
λ+ εxNP

y = yTλ− εy
b = bTλ+ εb

εb = sxP ε
P
x + syεy

y, b = 0

εxP , εxNP , εy, εb = 0

λ = 0.

(2.9)
Linearization
=======⇒

max
c,v

yTc

s.t. vxNPi = xNP
T
c

bTc+ sxx
P
i v = 1

v = 0

c = 0.

(2.10)

In addition to the variables defined for the materials balance technology as well as for the optimization

problems presented above, εxP (εxNP ) denotes the slack in the polluting (non-polluting) input and sxP

denotes the emission factor for the polluting input. In the linearized model c = 1

(b−sxP xP )
T
λ+s

xP
xPi
λ

and v = 1

(b−sxP xP )
T
λ+s

xP
xPi

.

Finally, the programming problems for the MB model under variable returns to scale are given by

10



max
y, b, εxP ,

εxNP , εy, εb,λ

y

b

s.t. xPi = xP
T
λ+ εxP

xNPi = xNP
T
λ+ εxNP

y = yTλ− εy
b = bTλ+ εb

1Tλ = 1

εb = sxP ε
P
x + syεy

y, b = 0

εxP , εxNP , εy, εb = 0

λ = 0.

(2.11)
Linearization
=======⇒

max
c,v

yTc

s.t. vxNPi = xNP
T
c

1Tc = v

bTc+ sxx
P
i v = 1

v = 0

c = 0.

(2.12)

In the above presented optimization models we have made two implicit assumptions. First, we have

assumed that the inputs are exogenously given and cannot be adjusted by the DMUs. Second, we have

assumed that y can be freely chosen by the DMUs. In this case we denote the solutions to the above

programming problems r∗Ex =
y∗Ex
b∗Ex

. If the DMUs can adjust the amount of the inputs, x becomes

an additional variable to be endogenously determined by the programming problems. We denote the

solutions to these modified programming problems r∗En =
y∗En
b∗En

. In addition we also account for the

situation where the inputs are fixed and the DMUs cannot freely choose y. We consider the most

relevant case that the DMUs cannot decrease the good outputs (e.g. the production of electricity)

to further improve the optimal ratio. To model this case we include an additional constraint which

prevents the optimal amount of y from being smaller than the actual observed amount for each

DMU. We denote the optimal ratio obtained by this analysis by rCEx =
yCEx

bCEx

, with the superscript “C”

indicating that the additional constraint on the good output is included when optimizing the ratio.

Given the different degrees of freedom of the DMUs to adjust the inputs as well as the good output

we obtain the following relationship among the above defined ratios

r∗En = r∗Ex = rCEx. (2.13)

2.3 A ratio efficiency measure

The results obtained by the above presented programs enable us to analyze the best feasible ratios

of good to bad outputs for each DMU (i.e. for each electricity generating unit in our empirical

application). However, these results do not provide information on how efficient the DMUs are in

achieving the optimal ratios. To compare their actual performances to best practices we propose a

ratio efficiency measure (REM) given by the ratio of the estimated optimal ratio to the actual observed

ratio ract in the case with endogenous inputs and without output constraint. This implies that the

inputs and outputs can be freely adjusted, hence increased or decreased, without any restrictions

except the technological constraints. Therefore, the REM is defined as:

REM =
r∗En
ract

(2.14)
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A DMU is classified as efficient (inefficient) if the measure exhibits a value equal to (larger than)

one. The potential percentage increase in the ratio of good to bad outputs by adopting best-practice

technology can thus be calculated by 100 · (REM− 1).

The REM can be calculated for the joint production model and for the materials balance model (or

any other reference technology). Furthermore, using the optimization results obtained under different

flexibilities to adjust inputs and the amount of good outputs, we propose the following decomposition

of the REM :
r∗En
ract

=
rCEx
ract
·
r∗Ex
rCEx
·
r∗En
r∗Ex

(2.15)

The first component (rCEx/ract) measures by how much the actual observed ratio can be increased

relative to the best practice ratio if the inputs are fixed and the good output is not reduced. Hence,

the measure captures ratio enhancements which relate to increases in the good and/or decreases in the

bad output, potentially as a result of eliminating technical inefficiency. We refer to this component as

weak ratio efficiency since a DMU may be capable of further increasing its ratio by further changing

the good output and/or the inputs. The second component (r∗Ex/r
C
Ex) measures the additional ratio

improvements by a flexible choice of the produced amount of the good output implying that good

outputs can be reduced below the exogenous constrained amount y = yi. Therefore, this measure

accounts for the possibility to increase the ratio by sacrificing the good output to further reduce the

bad output. Since this component is similar to the allocative efficiency component in cost efficiency

models (see Coelli et al. (2005)) we refer to it as allocative ratio efficiency. Finally, the third term

(r∗En/r
∗
Ex) measures by how much the best practice ratio can be increased relative to r∗Ex when the

DMU can freely choose the input mix. In this case, inputs can be increased or decreased compared to

the actual amount of inputs used to further increase the optimal ratio of y/b.7 Hence, we name this

component input ratio efficiency.

For a graphical explanation of the REM we again consider the numerical example from table I. The

observed ratio ract of DMU C is defined by the slope of the dotted ray which intersects DMU C. The

overall REM compares DMU C’s ratio to the maximal feasible ratio for the technology. Intuitively,

the optimal ratio can be found by rotating the ray intersecting DMU C as far “to the left” as possible

in figure 2. This means that the optimal ray - both for the joint production model and the materials

balance model - intersects DMU A (i.e., DMU A is overall REM efficient). However, to obtain

the technologically optimal ratio DMU C may possibly reduce its good output or alter its input

consumption (which may lead to profit losses). To examine these aspects, we decompose the REM

into its three components. The weak ratio efficiency component studies the difference between DMU

C’s actual ratio and the optimal ratio for DMU C’s output set (i.e., for x = 20) when the good output

(i.e., DMU C’s revenue) is not reduced. The joint production model suggests that DMU C can obtain

DMU B’s ratio without changing its input use or reducing the good output (recall that the JP model’s

output set for x = 20 is bounded by 0ABC80). Hence, the model suggests that DMU C is inefficient

in terms of the first REM component. The materials balance model does, on the other hand, suggest

that DMU C cannot improve its ratio without reducing the good output; i.e., DMU C is considered

efficient in terms of the first REM component (recall that the MB model’s output set for x = 20 is

7 In line with conventional partial equilibrium analysis, we assume that the generating units do not compete for scarce
resources. Hence, each generating unit determines the ratio-maximizing input mix independently of the other units.
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Figure 2: The REM and its decompositions

The allocative ratio efficiency component assesses whether further ratio improvements are feasible

when the good output is reduced but the input consumption is unaltered. In this case, the joint

production model suggests that DMU C’s ratio can be set equal to DMU A’s ratio, and thereby that

the allocative ratio efficiency component amounts to the ratio of DMU B’s ratio to DMU A’s ratio.

The materials balance model suggests that the optimal ratio equals DMU A’s “input adjusted” ratio

(represented by the artificial datapoint A′ in figure 2) when inputs are fixed. Thus, the allocative ratio

efficiency component amounts to the artificial DMU (A′)’s ratio to DMU C’s ratio.

The input ratio efficiency component considers whether DMU C’s ratio could be further improved by

altering the input use. This is not the case for the joint production model. The reason for this result

is that the free disposability assumption states that if DMU A’s ratio is feasible for x = 10, then DMU

A’s ratio is also feasible for any larger input bundle. For the materials balance model, on the other

hand, most of the potential for improving DMU C’s ratio comes from altering the input use. This is

easily seen from figure 2 by comparing the ratio of DMU A to DMU A′. Hence, our graphical example

illustrates that there can be large differences in how the joint production model and the materials

balance model describe the DMU’s production possibilities.

2.4 Correcting the bias and regressing contextual variables

In the previous section we discussed how to use nonparametric methods to calculate the optimal

ratios. Since the nonparametric estimation of the technology set is a subset of the true, but unknown

production technology, the estimated optimal ratio is biased downwards (see Simar and Wilson (2008)).

This result holds irrespective of whether the technology is constructed on the basis of the materials

balance model or the joint production model. A bootstrapping approach to correct the bias for radial
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distance function estimations has been proposed by Simar and Wilson (1998) and for directional

distance function estimations by Simar et al. (2012). Since our proposed ratio efficiency measure is

not based on distance functions we cannot apply these approaches. Instead, we use subsampling

methods to estimate and correct the bias in the optimal ratios. This approach has been proposed

by Simar and Wilson (2011) who show that the subsampling approach (drawing m < n observations

without replacement) leads to consistent estimates of the bias given nonparametric frontier models.8

In the following we describe the algorithm to obtain the bias-corrected estimations of the optimal

ratios. Note that we present the algorithm for the optimal ratio y∗En/b
∗
En, hence for the ratio to

construct the overall REM. The ratios to construct the components of the REM can be bias-corrected

following the same steps. In our presentation we modify the discussion of subsampling applied to

distance functions in Simar and Wilson (2008, p. 451) to our ratio efficiency measure. The algorithm

to obtain the bias-corrected ratios can be summarized as:

1. Use the original sample Xn = {(xi,yi, bi) , i = 1, . . . , n} to estimate the technology set T̂ based

on the axioms of the joint production or the materials balance model. Use T̂ to estimate the

optimal ratio r∗En,i = y∗En,i/b
∗
En,i for i = 1, . . . , n given the linearized programming problems

defined above.

2. Draw without replacement m < n observations from the original sample Xn and denote the

resulting subsample X̃m.9

3. Use the subsample X̃m to construct the technology and estimate the optimal ratio r̃∗En,i =

ỹ∗En,i/b̃
∗
En,i for each observation in the original sample Xn.

4. Repeat steps 2 and 3 B times and denote the results r̃∗En,i,b with b = 1, . . . , B.

5. Use the subsampled ratio results to estimate the bias as

b̂iasB
(
r∗En,i

)
=
(m
n

) 2
(m+k+s+1) ×

[
1

B

B∑
b=1

r̃∗En,i,b − r∗En,i

]
(2.16)

and estimate the bias-corrected optimal ratio as

r∗En,i,bc = r∗En,i − b̂iasB
(
r∗En,i

)
. (2.17)

Since the bias correction introduces additional noise we follow Simar and Wilson (2008, p. 450) and

correct for the bias only if
|b̂iasB(r∗En,i)|

σ̂ > 1√
3
, where σ̂ denotes the standard deviation of the optimal

ratios based on the subsamples.

In the empirical part of our paper we are not only interested in estimating and decomposing the

ratio efficiency measure but also in analyzing whether plant characteristics like age or size as well as

8 Kneip et al. (2015) provide asymptotic results for the distribution of efficiency scores. However, their results are based
on distance functions. Hence, in our analysis without distance functions and with a limited number of observations
we rely on the more general subsampling technique.

9 To obtain the optimal size of m we follow the approaches by Politis et al. (2001) and Bickel and Sakov (2008). In these
papers it is proposed to estimate the statistic of interest for each value in an interval around m (m−k, . . . ,m, . . . ,m+k)
and to calculate a measure of variation for the results. This procedure is repeated for several values of m and the
value of m with the minimal measure of variation is chosen for the subsampling. In our application we set k = 2 and
estimate the median bias for each value in the interval. The variation is measured by the standard deviation of the
results and we evaluate a grid of (m = 30, 40, . . . , 130). The optimal value for m obtained by this method is m = 100.
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other variables have a significant influence on the efficiency of the power plants.10 Therefore, after

estimating the efficiency we use regression methods to estimate the effects and test whether they are

statistically significant. However, conventional inference based on the results of truncated regression

with the efficiency measure as the dependent variable is not appropriate for this purpose (see Simar

and Wilson (2013, pp. 304-320) for an overview of this issue and possible solutions). Simar and

Wilson (2007) have shown that the correlation among the efficiency estimates which are based on

nonparametric technology estimations leads to invalid inference results. To obtain valid estimates of

the confidence intervals Simar and Wilson (2007) have proposed a double-bootstrap approach with

the first bootstrap addressing the problem of bias-correcting the efficiency estimates and the second

bootstrap providing valid statistical inference. For our regression explaining the results for the REM we

combine the bias-correction based on subsampling as described above and the second bootstrap from

the approach by Simar and Wilson (2007) to estimate the regression results. A detailed explanation

on how to conduct the truncated second-stage regression and to bootstrap the results can be found in

Simar and Wilson (2008, pp. 504-505). In our empirical application we use 2000 replications for each

of the bootstraps discussed above.

Note that the validity of the regression approach by Simar and Wilson (2007) depends on a separability

condition for the regressors and the technology set, implying that the regressors influence the efficiency

results but not the shape of the technology.11 To verify this condition, Daraio et al. (2010) have

proposed a statistical test based on subsampling and a comparison of conditional and unconditional

efficiency estimates using distance functions. In our model, which is not based on distance functions,

this test cannot be readily applied.12 We want to point out this caveat regarding the separability

condition for our regression results.

3 Analysis of U.S. Power Plants

In this section we present the data and the results of the ratio efficiency analysis of U.S. power plants.

3.1 Constructing the dataset

We estimate the optimal ratios using a dataset containing 160 bituminous fired electricity generating

units that were in operation in 2011.13 Bituminous coal is an important energy source in the U.S., and

accounted for about 43 percent of the electricity sector’s total receipts of coal in 2011 (EIA (2013)). In

10 See Simar and Wilson (forthcoming) for a survey of recent advances in statistical analyses of nonparametric frontier
models.

11 The estimation of partial frontier models (see Bădin et al. (2014) for an overview) is an alternative approach to
account for the effects of plant characteristics. However, full frontier models as applied in this study may outperform
partial frontier models (see Krüger (2012) for a comparison of the approaches based on Monte-Carlo simulations).

12 We tried to test the condition based on distance functions, thus transforming our model. However, due to the inclusion
of weakly disposable outputs, which are not accounted for in the original test, the conditional efficiency estimates are
often infeasible, leading to no meaningful test results. Only in case of a CRS model and regression specification (1)
defined in section 3.2 we were able to calculate the results. They indicate that the hypothesis of separability cannot
be rejected for this specification.

13 For more detailed information and definitions of coal-fired power plants and their generating units see Woodruff et al.
(2012).
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turn, coal fired electricity generation accounted for about 50 percent of the total domestic electricity

generation.

Bituminous coal has very high sulfur content but similar carbon content to other types of coal.14

Although there is currently no regulation for CO2 emissions in place in the U.S. electricity sector,

regulations for SO2 and NOx emissions were implemented many years ago. The first air pollution

control legislations were passed in the 1960s. Later, the Acid Rain Program (ARP) - a major program

to control SO2 and NOx from power plants - was implemented in 1995, and has been followed by

other initiatives such as the Ozone Commission’s cap-and-trade program for NOx and the Clean Air

Interstate Rule (CAIR). Because bituminous coal firing is one of the largest sources of SO2 and NOx

emissions in the U.S. electricity sector, all the units in the dataset are regulated by the ARP. Most of

the units are also regulated by the CAIR program.

We model technologies consisting of two inputs, bituminous coal and capital (proxied by generating

capacity), which are used to produce electricity and CO2.15 Unlike other studies on polluting tech-

nologies (see e.g. Färe et al. (2005) and Murty et al. (2012)) we do not incorporate labor into our

model. Since we are using generator-level data for our analysis we need precise data on the labor

input. However, data on labor are only available on the plant-level (see Färe et al. (2005)) and hence

we would need to rely on rough estimates of the labor input of the generating units. Moreover, recent

studies (see Färe et al. (2013) and Hampf (2014)) have shown that data on labor input are very limited

and hence we would be faced with a significant reduction in the number of observations in our sample

if DMUs with missing labor data were to be excluded. However, a large number of generating units

is important for the validity of our results since our analysis aims at providing information on the

feasibility of the EPA standard. Moreover, Welch and Barnum (2009) argue that the labor input is

proportional to the generating capacity. Therefore, by including capacity as an input we implicitly ac-

count for labor inputs as well. Hence, given these arguments we refrain from including labor explicitly

in our analysis.

Information about the units’ generating capacity is collected from the publicly available form EIA-

860 Generator, while information on coal consumption, gross electricity generation, and CO2 emissions

is collected from the EPA database “Air Markets Program data”. To ensure that we model a homoge-

neous technology we only include single-fueled units in the dataset; i.e. generating units that consume

bituminous coal only. Second, we follow Mekaroonreung and Johnson (2012) and restrict our sam-

ple 1) to generating units with nameplate capacity larger or equal to 100 MW and 2) to pulverized

coal-fired units. This results in a preliminary sample of 193 generating units.

There are three main categories of pulverized coal-fired units: subcritical, supercritical, and ultra-

supercritical.16 The differences between these categories relate to operating temperatures and pres-

14 NOx formation is to a smaller degree dependent on the nitrogen content of the coal, but is primarily a function of
temperature.

15 One referee pointed out that the use of generating capacity as a proxy for capital ignores investments associated
with abatement activities. We feel that this is appropriate in our analysis our since our efficiency analysis does not
include pollutants for which abatement is a viable compliance strategy. Hence, including abatement inputs, but
not accounting for pollution reduction, is likely to lead to biased efficiency measurement (see Färe et al. (2007b)).
However, by correcting our efficiency results using second-stage regressions that account for regulated pollutants (SO2

and NOx) we correct for a potential bias due to pollution abatement. This procedure to explain efficiency is similar
to the second-stage approach by Barros and Peypoch (2008).

16 Pulverized boilers can also be separated into dry bottom and wet bottom units. Most of the DMUs in our dataset are
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sures, which in turn have implications for operating efficiency. More specifically, the operating effi-

ciencies of subcritical plants are usually less than the operating efficiencies of supercritical or ultra-

supercritical plants. We omit all 32 supercritical units from the sample to avoid mistaking differences

in the units’ production technologies for potential for efficiency improvements. No units report that

they are ultra-supercritical, but there are several missing values for pulverized coal-fired type in our

dataset. Consequently, some of the units in the sample may be supercritical or ultra-supercritical.

We use a battery of non-parametric tests (the Kolomogorov-Smirnov test, ANOVA, the Wilcoxon

rank-sum test, and the median test, hereafter referred to as “the non-parametric tests”) to consider

whether the ratios of electricity to CO2 emissions differ for the reported subcritical units and the units

that do not report their type. All tests indicate that there are no statistical differences between the

two groups’ CO2 efficiencies, and we do therefore not exclude the generating units that do not report

their type from the sample. This results in a dataset containing 161 electricity generating units in

operation in 2011.
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Figure 3: Actual ratios - MWh produced per ton of CO2 emitted

Next, we inspect the actual ratios of electricity to carbon dioxide emissions to control for potential

outliers in our dataset. As can be seen from figure 3, one unit by far outperforms the other units in

terms of its electricity to CO2 ratio. This particular unit’s ratio is 33 percent higher than the average

ratio and 13 percent higher than the second most efficient unit’s ratio. We estimate the optimal ratios

with and without the identified outlier, and use the non-parametric tests to consider whether including

the unit in the dataset influences the results. The tests strongly support that including the outlier

influences the results and we therefore omit it from the dataset.17 This leads to a final sample size of

dry bottom units. We use the nonparametric tests to consider whether the DMUs’ observed electricity to CO2 ratios
and the empirical results differ for dry and wet bottom units, but we are unable to detect any differences. Therefore,
we do not exclude wet bottom units from the dataset.

17 We checked whether this observation is only an outlier for the specific year 2011. However, we also found for the
years 2010 (y/b = 1.25 MWh per ton) and 2012 (y/b = 1.28 MWh per ton) that this observations is an outlier which
always exhibits the largest ratio of y/b.
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160 analyzed generating units.

By undertaking the steps above to ensure that the dataset contains homogeneous DMUs we believe

that our study offers substantial advancement relative to other comparable studies on polluting tech-

nologies. The common practice is to merge units with different production technologies and/or units

that consume different types of fossil fuels into one dataset.18 For example, the selection criterion

used for a popular dataset on coal fired power plants (see e.g. Färe et al. (2007b)) is that at least 95

percent of the plants’ energy inputs must come from coal. The power plant’s technology type or the

qualities of their fuels are not emphasized, and the units are allowed to consume oil and natural gas in

addition to coal. We therefore question whether efficiency analyses based on this and similar datasets

reflect actual possibilities for efficiency improvements or whether they reflect technological differences

among the units (see Heshmati et al. (2012) for a further analysis of the importance of accounting for

heterogeneity in the technologies when analyzing power plant efficiency).

In order to undertake the regression analysis we add a variable containing the generating units startup

year to the dataset. This variable is collected from the form EIA-860 Generator. Second, emissions of

SO2 and NOx are collected from the “Air Markets Program” database. Finally, CO2 emission factors

are calculated by dividing the generating units’ CO2 emissions on their bituminous coal consumption.

This approach is in line with the materials balance principle from equation (2.2) since there is no

end-of-pipe abatement taking place for CO2. Summary statistics of the dataset are reported in table

II.

Table II: Summary statistics (160 DMUs)

Variable Units Mean St.dev Min Max

Fuel mmBTUs 16 100 000.00 14 700 000.00 57 417.69 4 900 000.00
Capacity MW 337.92 231.84 100.00 1 425.60
Electricity MWh 1 696 715.00 1 616 519.00 5 884.10 8 541 296.00
CO2 Tons 1653 226.00 1 509 647.00 5 890.97 7 686 116.00
SO2 Tons 4 153.28 6 513.48 34.23 57 308.22
NOx Tons 1 625.39 1 363.38 15.73 8 438.45
Installed year Year 1 966.73 10.83 1 950.00 1 996.00
Emission factor Ton/mmBTU 0.10 0.00 0.10 0.11

3.2 Results of the efficiency analysis

Having presented the dataset we now turn to the empirical results. First, we present the estimated

maximal feasible MWhs to CO2 ratios in figure 4. The overall figure is made up of 4 sub-figures,

each containing histograms for 1) the optimal ratios in the scenario where the good output cannot be

reduced (i.e, be reduced below the actual produced amount yi in order to reduce emissions) to reduce

CO2 emissions (the weak efficient ratios), 2) for the scenario where the good output may be reduced

to reduce CO2 emissions (the allocative efficient ratios), and 3), the scenario where the DMUs may

18 One exception is the recent study by Mekaroonreung and Johnson (2012), which also utilizes a dataset for bituminous
generating units. To our understanding, Mekaroonreung and Johnson did not distinguish between different pulverized
coal-fired technologies (i.e. subcritical, supercritical, and ultra-supercritical units) when compiling their dataset.

18



alter their input mix to improve the optimal ratio (the input efficient ratios). The 4 sub-figures report

the results for the two model specifications (JP and MB) and the two scale assumptions (VRS and

CRS).19
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Fig 4a. JP model VRS
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Fig 4b. JP model CRS
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Fig 4c. MB model VRS
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Fig 4d. MB model CRS
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Figure 4: Optimal ratios

The first noticeable aspect of figure 4 is that all four model specifications suggest a maximal feasible

ratio of approximately 1.18, which corresponds to the maximal ratio in the dataset. This optimal

ratio should be compared to EPA’s proposed CO2 emission standard of 1000 pounds of CO2 per

megawatt-hour for new plants or, stated differently, 0.5 tons of CO2 per megawatt-hour produced.

Since we consider its inverse, the generating units are required to have a ratio of 1/0.5 = 2 MWh per

ton CO2 or higher to comply with the EPA’s standard. Clearly, the optimal ratio of 1.18 falls short of

this standard (it is 40% below the EPA standard), thereby indicating that introducing the proposed

standard will have significant economic implications for the existing electricity producers by forcing

them to retire or to invest in end-of-pipe technologies (Carbon Capture and Storage) that are still in

their infancies.

According to figure 4, most of the DMUs in the dataset would be capable of achieving the best practice

ratio of 1.18. This result is consistent across both the production models (JP and MB) and the scale

19 Detailed results for each generating unit can be obtained from the authors upon request.
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assumptions (VRS and CRS). However, some differences in the results across the 4 different model

specifications should be pointed out.

First, the DMUs’ maximal feasible ratios are estimated to be slightly higher for the CRS specifications

than for the corresponding VRS specifications. For the CRS specifications most generating units have

an optimal ratio of 1.18, also in the cases where the optimal ratios are calculated without altering

the DMUs’ input mixes. The reason for this is that the CRS assumption implies that if a certain

optimal ratio is feasible for a given input vector, then that optimal ratio is also feasible for any larger

input vector (and their corresponding output sets). In other words, the (globally) optimal ratio of

1.18 appears to be feasible for most of the evaluated output sets under CRS.

Second, the maximal ratios calculated by the MB model are found to be slightly less than the cor-

responding ratios calculated by the JP model (irrespective of the scale assumption), except for the

model specifications where the inputs are allowed to be reallocated to improve the optimal ratio. This

result can be attributed to the difference in the models’ assumptions about input disposability. We

refer to figures 1 and 2 for details. We also note that the small differences in the results for the JP and

MB models may be attributed to our choice of efficiency measure, namely the maximal ratios. Other

measures - such as directional distance functions (see Färe and Grosskopf (2004) for a theoretical

discussion and Weber and Domazlicky (2001) for an application) - may result in larger differences

among the JP and MB models’ result, in particular because the slack variables for electricity and CO2

may not be zero in the solution to the programming problems for the distance functions, unlike in the

programming problem for the maximal ratio for the JP model.

Third, the two models differ slightly in terms of how they capture the (potential) economic trade-offs

related to reducing CO2 emissions. From figure 4 we see that the JP and MB models both appear to

suggest that a positive trade-off between electricity generation and CO2 emissions exists, since the light

grey bars are not parallel to the medium grey bars. As mentioned in section 2, such a trade-off is likely

to occur when emission reductions solely take place by diverting resources from intended production

to pollution control, in particular to end-of-pipe abatement activities. Such controls for CO2 are not

adopted by the U.S. bituminous producers, and the trade-off should therefore be close to zero. Note

that the trade-off suggested by the MB model appears to be smaller than the corresponding trade-

off suggested by the JP model. We use the non-parametric tests to examine statistical differences

in the optimal ratios calculated with and without the possibility of reducing the good output to

carefully examine how the two production models portray the proposed economic trade-off. All four

tests are unable to reject the null hypothesis of no differences among the ratios for the MB model,

both under VRS and CRS. For the JP model, on the other hand, all the tests strongly reject the

null-hypothesis for the VRS specification and two tests (the Kolomogorov-Smirnov and the Wilcoxon

rank-sum tests) strongly reject the null hypothesis under CRS. Consequently, the MB model seems to

be more appropriate to case studies where end-of-pipe abatement is not common.

So far we have discussed which optimal ratios could be achieved if the generating units adopt best

practices. The next step is to compare current practices with best practices. Hence, figure 5 provides

cumulative plots of the REM and its decompositions. As before, 1) the light grey bars indicate the

possible ratio improvements for given inputs and without the possibility to reduce the good output, 2)

the medium grey bars indicate additional ratio improvements by reducing the good output (for fixed
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inputs), while 3) the dark grey bars indicate additional ratio improvements by reallocating inputs. On

the horizontal axes the generating units are listed in order of the least to the most inefficient unit. The

vertical axes indicate the magnitudes of the REM, i.e. they report the percentage possible increases

in the DMUs’ actual ratios.
1.

0
1.

1
1.

2
1.

3
1.

4
1.

5

Fig 5a. JP model VRS

E
ffi

ci
en

cy
 s

co
re

Generating units in order of inefficiency

Input ratio efficiency
Allocative ratio efficiency
Weak ratio efficiency

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Fig 5b. JP model CRS

E
ffi

ci
en

cy
 s

co
re

Generating units in order of inefficiency

Input ratio efficiency
Allocative ratio efficiency
Weak ratio efficiency

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Fig 5c. MB model VRS

E
ffi

ci
en

cy
 s

co
re

Generating units in order of inefficiency

Input ratio efficiency
Allocative ratio efficiency
Weak ratio efficiency

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Fig 5d. MB model CRS

E
ffi

ci
en

cy
 s

co
re

Generating units in order of inefficiency

Input ratio efficiency
Allocative ratio efficiency
Weak ratio efficiency

Figure 5: Results for the ratio efficiency measure

Since the optimal ratios in the scenario where inputs can be allocated freely are similar for the JP

and MB models it follows readily that the overall REM is similar for the two reference technologies.20

Our DEA results indicate that the generating unit’s ratios of MWh produced to tons of CO2 emitted

could, on average, be improved by 18 percent according to the VRS model specifications and 19

percent according to the CRS model specifications - if the generating units adopt best practices. Stated

differently, the average actual practice ratio of electricity to CO2 is approximately 100 ·(1−1/1.185) =

15.3% below the best-practice ratio. The results also indicate that the “worst practice” generating

unit could be able to improve its ratio by 46 percent according to the VRS specifications and 47

percent according to the CRS specifications.

From figure 5 it is clear that the light grey bars are dominating, i.e. most of the potential for improving

20 Note that given our analyzed empirical specification both models (JP and MB) lead to the same results of the overall
REM under CRS. A proof of this equivalence can be found in appendix A.
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the generating units electricity to CO2 ratios comes from improvements in the weak ratio efficiency.

While it is the dominating source of MWhs to CO2 ratio improvements, the remaining potential

for improvements comes either from reducing the good output or from altering the current input

consumption. It is evident from figure 5 that the occurrences of dark grey bars are far more frequent

for the MB model’s estimates than for the JP model’s estimates, while the occurrences of medium grey

bars are far more frequent for the JP model’s estimates than for the MB model’s estimates. Simply

said, the MB model does not indicate a positive trade-off among electricity and CO2 (implying that

additional ratio improvements must therefore come from input reallocation), while the JP model does.

On the basis of this finding we again conclude that the MB model paints a more accurate picture of

the possible sources of ratio improvements for the case study at hand.

To indicate the environmental gains from adopting best practices we undertake a simple calculation.

We multiply the inverse of the estimated optimal ratios (calculated for fixed inputs and without

possibilities to reduce revenues) with the actual MWhs produced by the generating units to obtain

estimates of CO2 emissions in the case where all units operate efficiently.21 Table III presents the sums

of the estimated emissions and the corresponding total and percentage reductions in CO2 emissions

relative to the units’ actual emissions, which for the 160 generating units amount to 264.52 million

tons of CO2. For comparison, we also include the corresponding estimates if all units complied with

EPA’s proposed standard of 0.5 tons of CO2 per megawatt-hour produced.

Table III: CO2 emissions and savings

JP VRS JP CRS MB VRS MB CRS EPA standard

Aggregate CO2 emissions 232.34 230.77 234.75 233.09 135.74
(mill. Tons)
Aggregate CO2 reductions 32.18 33.75 29.77 31.43 128.78
(mill. Tons)
Percentage CO2 reductions 12.16 12.76 11.25 11.88 48.68

The JP model reports a greater potential for efficiency improvements than the MB model, in particular

because the JP model puts less emphasis on input reallocations to reduce emissions than the MB model.

However, both models suggest that the gains from efficiency improvements on CO2 emissions could

be substantial, averaging at about 12 percent reductions in current emissions. Yet, these savings are

far from the corresponding emission reductions that would occur if the generating units were able to

comply with the proposed EPA standard.

While the potential for reducing CO2 emissions by efficiency improvements at first sight appears to

be vast, the differences between the DMUs’ performances may not only be related to differences in

management practices. There is also a possibility that contextual factors - factors which are outside of

the control of the generating units - play an important role in determining the spread in the efficiency

scores. Identifying these factors are important, both for achieving a better understanding of our

empirical results and for establishing factors that should be taken into account when designing new

21 Given that the largest share of the potential for ratio improvements comes from weak ratio efficiency improvements
this procedure allows us to quantify nearly all reductions potentials while accounting for the constraints on the inputs
and the good output.
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regulations for CO2 emissions. We undertake a second-stage regression analysis to shed some light on

this matter, emphasizing the role which the generating units’ age, sizes (generating capacities), and

existing regulations for SO2 and NOx play for the efficiency results. In the regressions we analyze

the effects of these contextual factors on the weak ratio efficiency. This allows us to quantify feasible

emission standards based on improvements in managerial inefficiencies, and further to compare the

resulting CO2 emissions to the best practice CO2 emissions in table III which do not account for the

influence of contextual variables on the possibilities for efficiency improvements.

In table IV the regression results for the 4 analyzed models (the JP and the MB model under CRS

and VRS) are presented. We consider two different specifications for the regression model. In the first

model we solely address the effects of the age (installed year) and size (capacity) of the generating

units. In the second model we include interaction terms of the age and the ratio of electricity to SO2 as

well as the ratio of electricity to NOx in the regression. This is done to analyze whether the increased

stringency of environmental regulation for local air pollutants (proxied by their emission ratios) over

time has influenced the CO2-efficiencies of the generating units.22

End of pipe abatement for SO2 - also known as scrubbers - has become one of the most common

compliance strategies for U.S. power plants (see Ellerman (2003) or Rødseth and Romstad (2014)).

The use of scrubbers to reduce SO2 can affect the ratio of electricity to CO2 in two different ways. First,

scrubbers consume a non-negliable amount of electricity during operation. Second, chemical processes

to reduce SO2 can lead to additional CO2 (see Agee et al. (2014)). In our regression we can only account

for the latter effect since we are using gross electricity as the good output when estimating the REM.

We do so because the evaluated EPA regulations are also based on gross electricity production.

While compliance with SO2 regulations largely has been achieved by fuel switching and pollution

control, the introduction of the Acid Rain Program in 1995 also led most power producers under

environmental legislation to install low NOx-burners to reduce nitrogen oxides (see Swift (2001)).

Low NOx-burners reduce the peak flame temperature and thereby also reduce the formation of NOx.

Table IV presents the estimated coefficients and their standard errors. We analyzed several functional

specifications and found that a log-log specification yields the largest explanatory power (as measured

by the R2 values). Hence, the coefficients presented in table IV are elasticities. Note that a negative

coefficient is associated with an increase in efficiency (the weak ratio efficiency becomes closer to one).

Based on regression model 1 we find that larger generating units are more efficient than smaller

units. Hence, significant economies of scale with regard to the ratio of electricity to CO2 exist, which

suggests that larger generating units would be better equipped to meet new CO2 regulations.23 Rather

surprisingly, we find that this effect is significant for the analysis under CRS as well as VRS. Since

the analysis under VRS only accounts for technical efficiency and does not account for scale efficiency

we would expect the coefficient not to be statistically different from zero under VRS. Second, we find

that newer generating units are in general more inefficient than older units. At first, this may appear

to be a counterintuitive result. However, we expect this result to be related to the stringency of the

22 Note that we have also conducted the regressions in model 2 by including the SO2 and the NOx ratio as additional
independent variables. However, due to multicollinearity the standard errors inflated and the regressions did not lead
to any statistically meaningful results.

23 It has long been debated that environmental regulations hamper competition by increasing the optimal plant size (see
e.g. Pashigan (1984)). Our finding bares resemblance to this result.
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environmental regulations for NOx and SO2 which has increased over time.

To evaluate whether this is indeed the case, regression model 2 includes the interaction terms for the

age of the units and the ratios of electricity to SO2 and NOx. The results for regression model 2

show that when accounting for these interactions the surprising result from regression model 1 with

respect to the negative effect of size on the units’ performances under VRS is not statistically significant

anymore. Moreover, the interaction term between the age and the NOx ratio has a significant negative

coefficient, thereby indicating that an increase in the stringency of regulation reduces the effect of age

on efficiency. Thus, CO2 and NOx appear to be complements, which means that an increase in the

regulatory stringency for NOx leads to further improvements in CO2 emissions. Therefore, our results

are in line with the findings by Holland (2010) who shows in an analysis of Californian power plants

that NOx and CO2 are complements.24 We do not find a corresponding significant relationship for the

units’ age and SO2 stringency. This may result because we consider gross electricity and therefore do

not fully capture the influences of SO2 reductions on CO2 efficiencies.

These results provide an important lesson, namely that CO2 and NOx are technologically related and

hence that regulations which are implemented for one of the pollutants have impacts for the other

pollutant. This suggests that socially optimal allocations for the pollutants are unlikely to be achieved

by implementing regulations on a pollutant-by-pollutant basis.

Furthermore, the regression results provide valuable information on which emission standard could be

achieved by reducing managerial inefficiencies. To estimate a technically feasible emission standard for

the average generating unit we utilize the regression results to calculate the managerial inefficiency for

the average generating unit and multiply this efficiency measure with the actual ratio of electricity to

CO2 of the generating unit. We further multiply the feasible emission standards with the total MWhs

generated by the 160 units to obtain a tentative measure of the CO2 emissions under managerial

efficiency. The results for the different models are presented in table V.

The results show that the feasible emission standard based on improving the managerial efficiency of

the generating unit (approx. 1943 pounds of CO2 per MWh of electricity) is far larger than emission

standard of the EPA (1000 pounds CO2 per MWh) irrespective of which model is used to evaluate

the efficiency of the units. Moreover, comparing the results to the average actual ratio (1997 pounds

of CO2 per MWh of electricity) shows that the efficiency improvement possibilities which are due to

managerial deficits in the plant are very small. We find that the CO2 emissions under managerial

efficiency are approximately 0.3 percent lower than the actual emissions, whereas the DEA results

in table III suggested that a 12 percent reduction in the CO2 emissions would be feasible. Hence,

regulatory actions which aim at improving the efficiency of electricity plants by imposing emission

standards can only exploit a very small amount of inefficiencies without forcing the plants to shut

down operations or to invest in completely new generating capacities.

24 An alternative approach to examine the substitutability among pollutants, using the directional distance function
to calculate the Morishima elasticity of transformation, has been proposed by Färe et al. (2012). They analyze the
power production in the US, but emphasize the substitutability among SO2 and NOx.
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Table V: Feasible emission standards

Technology model Feasible emission standard Aggregate CO2 emissions
(pounds of CO2 per MWh electricity) (mio. tons of CO2)

Joint production (CRS) 1943 263.80
Materials balance (CRS) 1944 263.84
Joint production (VRS) 1943 263.68
Materials balance (VRS) 1942 263.60

4 Conclusion

In this paper we have conducted an efficiency analysis of coal-fired U.S. power plants. Using a set

of 160 homogeneous electricity generating units we addressed whether the proposed EPA regulatory

standard of 1000 pounds of carbon dioxide emissions per megawatt hour would be feasible for existing

generating units. To analyze the feasibility of this standard we have constructed a new efficiency

measure which evaluates the optimal ratio of good to bad outputs. Moreover, it allows disentangling

efficiency improvements based on different degrees of flexibility in the choice of good outputs and

inputs. We estimated the efficiency measure and compared the results using two different technology

models: the joint production model based on weak disposability of pollutants by Färe et al. (1989) and

the recently developed materials balance model by Rødseth (2014a) which is based on the assumption

of weak G-disposability.

Our results show that even if all generating units were able to adopt best practices their ratios of

electricity to carbon dioxide would still be 40% below the EPA standard. Moreover, even the adoption

of best practices seems beyond the capability of most plants since our regression results show that the

efficiency results are significantly influenced by contextual variables like the age of the plants. Hence,

a large share of efficiency improvements is only achievable in the long run and would be associated

with significant costs related to the restructuring of the power plants.

Therefore, our results strengthen the findings by Kotchen and Mansur (2014) who are very pessimistic

about the possibility to achieve the proposed emission standard given the actual ratios of the power

plants. Our results add to the results of Kotchen and Mansur (2014) by showing that even the adoption

of best practices would not allow the power plants to meet the emission standards. Moreover, we were

able to show that significant interdependences between CO2 and NOx emissions exist. Hence, a new

regulation for CO2 is likely to affect other regulated pollutants, suggesting that regulations set on a

pollutant-by-pollutant basis are unlikely to result in socially optimal allocations.

In the light of these results we strongly question imposing the proposed EPA standard on existing

power plants. However, this does not lead to the conclusion that no standard at all should be im-

plemented. Our findings show that efficiency enhancement potentials exist which are not due to

contextual variables and thus are under the control of the plant operators. However, these potentials

are rather small and our efficiency and regression results show that a feasible emission standard for

the average existing generating unit should not be lower than 1943 pounds of CO2 per megawatt hour

of electricity. Future research should therefore address how the costs of restructuring the coal-fired

power plants compare to the damage costs of carbon dioxide emissions. Second, the contributions of
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more flexible regulatory schemes - such as emissions averaging and tradable quotas - in reducing the

power producers’ compliance costs should also be taken into account.
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Färe, R., S. Grosskopf, D.-W. Noh, and W. Weber (2005). “Characteristics of a Polluting Technology:

Theory and Practice”. In: Journal of Econometrics 126, pp. 469–492.
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Appendix A

Linearization of the optimization problems (scalar cases)

Joint production model under CRS (2.5)

The optimization model is given by

max
y,b,λ

y

b

s.t. xPi = xP
T
λ

xNPi = xNP
T
λ

y 5 yTλ

b = bTλ

y, b = 0

λ = 0.

(2.5)

In the optimum the constraints on the good and the bad output hold with equality since y and b can be

freely chosen. Replacing y and b in the objective function by these equalities leads to the transformed

programming problem

max
λ

yTλ

bTλ
s.t. xPi = xP

T
λ

xNPi = xNP
T
λ

λ = 0.

(A.1)

Denoting z = 1
bTλ

λ and w = 1
bTλ

as well as applying the transformation by Charnes and Cooper

(1962) leads to (2.6).

Joint production model under VRS (2.7)

Model (2.7) can be reformulated as

max
y,b,λ,θ

y

b

s.t. xPi = xP
T
λ

xNPi = xNP
T
λ

1
θy 5 yTλ
1
θ b = bTλ

1Tλ = 1
1
θ = 1

y, b = 0

λ = 0.

(A.2)

Multiplying each constraint by θ, denoting q = λθ and inserting the constraints on y and b (which
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again hold with equality) into the objective function leads to

max
q,θ

yTq

bTq
s.t. θxPi = xP

T
q

θxNPi = xNP
T
q

1Tq = θ

1 = θ

q = 0.

(A.3)

Inserting 1Tq = θ in the constraints for the inputs and the constraint on θ the programming problem

can be reformulated as

max
q

yTq

bTq

s.t.
(
xP − xPi

)T
q 5 0(

xNP − xNPi
)T
q 5 0

1Tq 5 1

q = 0.

(A.4)

Denoting g = 1
bT q
q and h = 1

bT q
and applying the Charnes-Cooper transformation leads to program-

ming problem (2.8).

Materials balance model under CRS (2.9)

The non-linear programming problem for the MB model under CRS is given by

max
y,b,ε

xP
,ε
xNP ,εy ,εb,λ

y

b

s.t. xPi = xP
T
λ+ εxP

xNPi = xNP
T
λ+ εxNP

y = yTλ− εy
b = bTλ+ εb

εb = sxP ε
P
x + syεy

y, b = 0

εxP , εxNP , εy, εb = 0

λ = 0.

(2.9)

Since the good output in our empirical application (electricity) does not contain any pollution (sy = 0)

and the non-polluting input xNP does not contain any pollution by definition, we can remove the slacks

εy and εxNP and replace the corresponding equations by inequalities. Replacing the constraints on y
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and b in the objective function leads to

max
ε
xP
,εb,λ

yTλ

bTλ+ εb
s.t. xPi = xP

T
λ+ εxP

xNPi = xNP
T
λ

εb = sxP ε
P
x

εxP , εb = 0

λ = 0.

(A.5)

Rearranging the constraint on the polluting input and combining it with the materials balance re-

striction leads to εb = sxP
(
xPi − xP

T
λ
)

. Inserting this expression in the objective function and

rearranging leads to

max
λ

yTλ

(b− sxPxP )T λ+ sxP x
P
i

s.t. xNPi = xNP
T
λ

λ = 0.

(A.6)

Denoting c = 1

(b−sxP xP )
T
λ+s

xP
xPi
λ and v = 1

(b−sxP xP )
T
λ+s

xP
xPi

and applying the Charnes-Cooper

transformation leads to the programming problem (2.10).

Linearization of (2.11)

The derivation of the linearization of (2.11) is equal to the linearization of (2.9) with the restriction

1Tλ = 1 added to the programming problem. Hence, it is not repeated here.

Equivalence of the overall REM for the JP and the MB model under CRS (scalar case)

In the following we demonstrate that given the model applied in our empirical analysis the REM leads

to the same results for the joint production and the materials balance approach. The equivalence holds

for the overall efficiency under constant returns to scale. However, the results for the decomposition

as well as the analysis under variable returns to scale may differ.

In our empirical specification we include a single polluting input, a single non-polluting input as well

as a single good and a single bad output. Hence, the joint production model under CRS reads as

max
y,b,xP ,λ

y
b

s.t. xP = xP
T
λ

xNPi = xNP
T
λ

y 5 yTλ

b = bTλ

y, b, xP = 0

λ = 0.

(A.7)

Since xP = xP
T
λ does not constrain the optimal results due to the free choice of xP and in the
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optimum y = yTλ and b = bTλ hold the model can be reformulated as

max
λ

yTλ

bTλ

s.t. xNPi = xNP
T
λ

λ = 0.

(A.8)

The corresponding materials balance model reads as

max
y,b,xP ,ε

xP
,ε
xNP ,εy ,εb,λ

y
b

s.t. xP = xP
T
λ+ εxP

xNP = xNP
T
λ+ εxNP

y = yTλ− εy
b = bTλ+ εb

syεy + sxP εxP = εb

y, b, xP = 0

εxP , εy, εb = 0

εxNP ,λ = 0.

(A.9)

Since our good output electricity does not contain any materials sy = 0 and εy can be removed from

the programming problem. εxNP can be removed since it does not affect the optimal choice of y and

b. Moreover, combining the restriction on the polluting input with the summing-up condition on the

slacks leads to εb = sxP
(
xP − xPT

λ
)

. Hence, the programming problem can be transformed into

max
y,b,xP ,ε

xP
,λ

y
b

s.t. xP = xP
T
λ+ εxP

xNPi = xNP
T
λ

y 5 yTλ

b = bTλ+ sxP
(
xP − xPT

λ
)

y, b, xP , εxP = 0

λ = 0.

(A.10)

In the optimum xP − xPT
λ = 0, y = yTλ and b = bTλ hold. Therefore, this programming problem

reduces to the programming problem of the joint production model.
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Appendix B

In this appendix we demonstrate how the optimal ratio y/b can be estimated in a general model.

In the following optimization problem we assume that a DMU maximizes the ratio of a single good

output (good output “o”) to a single bad output (bad output “l”) subject to a technology accounting

for multiple polluting and non-polluting inputs, as well as multiple good and bad outputs. We start

our discussion by assuming a joint production technology under constant returns to scale (CRS). In

this case the optimal ratio for a DMU i under evaluation can be obtained by solving the following

fractional programming problem

max
yo,bl,λ

yo
bl

s.t.

[
xPi
xNPi

]
=

[
XP

XNP

]
λ[

yo

yi,−o

]
5

[
yTo

Y −o

]
λ[

bl

bi,−l

]
=

[
bTl
B−l

]
λ

yo, bl = 0

λ = 0.

(B.1)

In this program we have separated the inputs, good outputs and bad outputs in a suitable way for our

following derivation. The input vector is partitioned into the polluting and the non-polluting inputs

with XP denoting the m1×n matrix of polluting inputs and XNP the m2×n matrix of non-polluting

inputs. The good outputs are partitioned into the single good output which is a part of the objective

function (yo) and the remaining (k − 1) good outputs which are fixed
(
yi,−o

)
, with yTo representing

the transpose of the n× 1 vector of good output “o” and Y −o denoting the (k− 1)× n matrix of the

remaining good outputs. Similarly, the bad outputs are partitioned into the single pollutant which is

part of the objective function (bl) and the remaining (s− 1) bad outputs which are fixed (bi,−l) with

bTl representing the transpose of the n× 1 vector of bad output “l” and B−l denoting the (s− 1)× n
matrix of the remaining bad outputs.

To linearize programming problem (B.1) note that yo=y
T
o λ in the optimum. Otherwise the obtained

ratio cannot be maximal. Moreover, by the weak disposability assumption bl=b
T
l λ holds as well. By

inserting these constraints in the objective function the program can be reformulated as

max
λ

yTo λ

bTl λ

s.t.

[
xPi
xNPi

]
=

[
XP

XNP

]
λ

yi,−o 5 Y −oλ

bi,−l = B−lλ

λ = 0.

(B.2)

Denoting w = 1
bTl λ

and z = 1
bTl λ

λ and applying the transformation by Charnes and Cooper (1962)
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this fractional optimization problem can be transformed into the linear programming problem

max
w,z

yTo z

s.t.

[
wxPi
wxNPi

]
=

[
XP

XNP

]
z

wyi,−o 5 Y −oz

wbi,−l = B−lz

bTl z = 1

w = 0

z = 0.

(B.3)

The VRS counterpart to (B.1) is defined by:

max
yo,bl,λ,θ

yo
bl

s.t.

[
xPi
xNPi

]
=

[
XP

XNP

]
λ[

yo

yi,−o

]
5

[
yTo

Y −o

]
λθ[

bl

bi,−l

]
=

[
bTl
B−l

]
λθ

yo, bl = 0

λ = 0

0 5 θ 5 1.

(B.4)

where θ denotes the scaling factor by the weak disposability assumption and is an endogenous variable.

Program (B.4) can be transformed by dividing the good and the bad output constraints by θ. Denoting

ρ = 1/θ the resulting maximization problem reads as

max
yo,bl,λ,ρ

yo
bl

s.t.

[
xPi
xNPi

]
=

[
XP

XNP

]
λ[

ρyo

ρyi,−o

]
5

[
yTo

Y −o

]
λ[

ρbl

ρbi,−l

]
=

[
bTl
B−l

]
λ

yo, bl = 0

λ = 0

ρ = 1.

(B.5)
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Dividing each constraint by ρ leads to

max
yo,bl,λ,ρ

yo
bl

s.t.

 xP
i
ρ

xNP
i
ρ

 =

[
XP

XNP

]
λ
ρ[

yo

yi,−o

]
5

[
yTo

Y −o

]
λ
ρ[

bl

bi,−l

]
=

[
bTl
B−l

]
λ
ρ

yo, bl = 0
λ
ρ = 0

1T λρ = 1
ρ

1 = 1
ρ .

(B.6)

Denoting λ
ρ = µ and replacing 1

ρ by 1Tµ the programming problem can be reformulated as

max
yo,bl,µ

yo
bl

s.t.

[
1TµxPi

1TµxNPi

]
=

[
XP

XNP

]
µ[

yo

yi,−o

]
5

[
yTo

Y −o

]
µ[

bl

bi,−l

]
=

[
bTl
B−l

]
µ

yo, bl = 0

µ = 0

1Tµ 5 1.

(B.7)

As in case of the analysis under CRS the optimization variables in the objective function are replaced by

the associated constraints since again these constraints hold with equality in the optimum. Moreover,

the constraints on the inputs are slightly rearranged leading to

max
µ

yTo µ

bTl µ

s.t.

[
XP − xPi
XNP − xNPi

]
µ = 0

yi,−o 5 Y −oµ

bi,−l = B−lµ

µ = 0

1Tµ 5 1.

(B.8)

Applying the Charnes-Cooper transformation and denoting h = 1
bTl µ

and g = 1
bTl µ

µ leads to the linear
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programming problem

max
h,g

yTo g

s.t.

[
XP − xPi
XNP − xNPi

]
g 5 0

hyi,−o 5 Y −og

hbi,−l = B−lg

bTl g = 1

h = 0

g = 0.

(B.9)

The MB model under CRS reads as25

max
yo,bl,εxP ,εxNP ,εyo ,εy−o ,εbl ,εb−l

,λ

yo
bl

s.t.

[
xPi
xNPi

]
=

[
XPλ+ εxP

XNPλ+ εxNP

]
[
yo

yi,−o

]
=

[
yTo λ− εyo
Y −oλ− εy−o

]
[
bl

bi,−l

]
=

[
bTl λ+ εbl
B−lλ+ εb−l

]
[

sT
xP ,bl

εxP + sTy−o,bl
εy−o

+ syo,blεyo

SxP ,b−l
εxP + Sy−o,b−l

εy−o
+ syo,b−l

εyo

]
=

[
εbl
εb−l

]
yo, bl = 0

εyo , εbl = 0

εxP , εxNP , εy−o
, εb−l

,λ = 0.

(B.10)

As in case of the joint production model we have separated the constraints for the good outputs and

the bad outputs. In addition to the variables defined above we denote εxP (εxNP ) the m1×1 (m2×1)

vector of slacks for the polluting (non-polluting) inputs. The scalar εyo (εbl)denotes the slack for the

good output “o” (the bad output “l”) while εy−o
(εb−l

) denotes the (k − 1) × 1 ((s − 1) × 1) vector

of the slacks for the remaining good (bad) outputs. By the weak G-disposability axiom (MB8) the

slacks for the bad outputs are linear functions of the slacks for the polluting inputs and the good

outputs. In the constraint for the slack variable of the bad output “l” sT
xP ,bl

represents the transpose

of the m1 × 1 vector of emission factors of the polluting inputs, sTy−o,bl
denotes the transpose of the

(k − 1) × 1 vector of recuperation factors for all good outputs except for the output “o”, and syo,bl
denotes the scalar recuperation factor for the good output “o”. In the constraint for the slacks of the

remaining bad outputs SxP ,b−l
denotes the (s − 1) ×m1 matrix of emission factors for the polluting

inputs, Sy−o,b−l
represents the (s − 1) × (k − 1) matrix of recuperation factors for the good outputs

without good output “o”, and syo,b−l
denotes the (s − 1) × 1 vector of recuperation factors for the

good output “o”.

Linearization of (B.10)

Inserting the equality constraints on the good output “o” and the bad output “l” in the objective

25 Note that this transformation can be demonstrated similarly for the case of variable returns to scale by adding the
constraint 1Tλ = 1.
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function of (B.10) leads to

max
ε
xP ,εxNP ,εyo ,εy−o ,εbl ,εb−l

,λ

yTo λ− εyo
bTl λ+ εbl

s.t.

[
xPi
xNPi

]
=

[
XPλ+ εxP

XNPλ+ εxNP

]
yi,−o = Y −oλ− εy−o

bi,−l = B−lλ+ εb−l[
sT
xP ,bl

εxP + sTy−o,bl
εy−o

+ syo,blεyo

SxP ,b−l
εxP + Sy−o,b−l

εy−o
+ syo,b−l

εyo

]
=

[
εbl
εb−l

]
εyo , εbl = 0

εxP , εxNP , εy−o
, εb−l

,λ = 0.

(B.11)

The constraints for the polluting and non-polluting inputs as well as the good outputs and the bad

outputs can be rearranged to

εxP = xPi −XPλ

εxNP = xNPi −XNPλ

εy−o
= Y −oλ− yi,−o

εb−l
= bi,−l −B−lλ

(B.12)

Replacing these expressions in the constraints on the slacks for the bad outputs and the non-negativity

constraints we obtain the programming problem

max
εyo ,εbl ,λ

yTo λ− εyo
bTl λ+ εbl

s.t.


sT
xP ,bl

(
xPi −XPλ

)
+ sTy−o,bl

(
Y −oλ− yi,−o

)
+syo,blεyo

SxP ,b−l

(
xPi −XPλ

)
+ Sy−o,b−l

(
Y −oλ− yi,−o

)
+syo,b−l

εyo

 =

[
εbl

bi,−l −B−lλ

]
[
xPi
xNPi

]
=

[
XPλ

XNPλ

]
yi,−o 5 Y −oλ

bi,−l = B−lλ

εyo , εbl = 0

λ = 0.

(B.13)

Inserting the constraint on the slack of bad output “l” in the objective function and in the non-

negativity constraint as well as combining the equality constraint on bi,−l−B−lλ with the respective
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inequality constraint leads to

max
εyo ,λ

yTo λ− εyo
bTl λ+ sT

xP ,bl

(
xPi −X

Pλ
)

+ sTy−o,bl

(
Y −oλ− yi,−o

)
+ syo,blεyo

s.t.

[
xPi
xNPi

]
=

[
XPλ

XNPλ

]
yi,−o 5 Y −oλ

SxP ,b−l
xPi − Sy−o,b−l

yi,−o = SxP ,b−l
XPλ− Sy−o,b−l

Y −oλ− syo,b−l
εyo

sT
xP ,bl

xPi − sy−o,blyi,−o = sT
xP ,bl

XPλ− sTy−o,bl
Y −oλ− syo,blεyo

εyo = 0

λ = 0.

(B.14)

By defining the new vector

(
λ

εyo

)
the notation in the programming problem can be slightly changed

to

max
εyo ,λ

(
yTo

−1

)T (
λ

εyo

)
(
bTl − sTxP ,bl

XP + sTy−o,bl
Y −o

syo,bl

)T (
λ

εyo

)
+ sT

xP ,bl
xPi − sTy−o,bl

yi,−o

s.t.

[
xPi
xNPi

]
=


(
XP 0

)( λ
εyo

)
(
XNP 0

)( λ
εyo

)


yi,−o 5
(
Y −o 0

)( λ
εyo

)

SxP ,b−l
xPi − Sy−o,b−l

yi,−o = SxP ,b−l

(
XP 0

)( λ
εyo

)

−Sy−o,b−l

(
Y −o 0

)( λ
εyo

)

−
(
0 syo,b−l

)( λ
εyo

)

sT
xP ,bl

xPi − sTy−o,bl
yi,−o = sT

xP ,bl

(
XP 0

)( λ
εyo

)

−sTy−o,bl

(
Y −o 0

)( λ
εyo

)

−
(
0 syo,bl

)( λ
εyo

)
(
λ

εyo

)
= 0.

(B.15)
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Defining the new variables

d = 1bTl − sTxP ,bl
XP + sTy−o,bl

Y −o

syo,bl


T λ
εyo

+sT
xP ,bl

xP
i −sTy−o,bl

yi,−o

f = 1bTl − sTxP ,bl
XP + sTy−o,bl

Y −o

syo,bl


T λ
εyo

+sT
xP ,bl

xP
i −sTy−o,bl

yi,−o

(
λ

εyo

)
(B.16)

and applying the Charnes-Cooper transformation leads to the linearized programming problem

max
d,f

(
yo

−1

)
f

s.t.

[
dxPi
dxNPi

]
=

 (XP 0
)
f(

XNP 0
)
f


dyi,−o 5

(
Y −o 0

)
z

d
(
SxP ,b−l

xPi − Sy−o,b−l
yi,−o

)
=

(
SxP ,b−l

(
XP 0

)
−Sy−o,b−l

(
Y −o 0

)
−
(
0 syo,b−l

))
f

d
(
sT
xP ,bl

xPi − sTy−o,bl
yi,−o

)
=

(
sT
xP ,bl

(
XP 0

)
−sTy−o,bl

(
Y −o 0

)
−
(
0 syo,bl

))
f(

bo − sTxP ,bl
XP + sTy−o,bl

Y −o

syo,bl

)T
f

+d
(
sT
xP ,bl

xPi − sTy−o,bl
yi,−o

)
= 1

d = 0

f = 0.

(B.17)
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