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The more (sharp) curves, the lower the risk 
 

 

Rune Elvik, Institute of Transport Economics, Gaustadalleen 21, 0349 Oslo, 
Norway (E-mail: re@toi.no) 

 

 

ABSTRACT 

The risk of accident in horizontal curves is a complex function of at least the 

following characteristics of the curve: the radius of the curve; the length of the curve 

(and the resultant deflection angle); the presence of a spiral transition curve; the 

super-elevation of the curve; the distance to adjacent curves; and whether the curve 

is on a flat road, a straight gradient or a vertical curve. The interactions between these 

characteristics in determining accident risk in horizontal curves is only beginning to 

be understood. This paper summarises the results of studies that have investigated 

the interaction between the radius of a horizontal curve and the distance to adjacent 

curves. The shorter the mean distance between curves, the lower is the increase in 

risk for a given curve radius. The sharper neighbouring curves are, the lower is the 

increase in risk for a given curve radius. Thus, overall risk may not be higher on a 

road consisting mostly of sharp curves than on a road consisting mostly of straight 

sections with a few curves located far apart from each other. 
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1 INTRODUCTION 

It has been known for a long time that the risk of accident is higher in horizontal 

curves than on straight road sections. Perhaps the most widely studied characteristic 

of horizontal curves is their radius, i.e. how sharp the curves are. Although studies 

have consistently found that accident rate per million vehicle kilometres driven in 

curves increases as radius declines, there is large variation in estimates of the increase 

in risk. This is particularly the case when radius is less than 200 metres. Thus, Elvik 

(2013) noted that when relative risk is set to the value of 1.0 for a curve radius of 

1,000 metres, it was found to vary between 2.6 and 8.2 in curves with a radius of 100 

metres in six studies made in six different countries. A review of recent North-

American studies (Elvik 2017) found that the discrepancy in estimates of risk 

associated with sharp curves remains. Relative risk in curves with a radius of 150 

metres varied between 1.9 and 4.1 when the risk in curves with a radius of 1,200 

metres or more was set to 1.0. Clearly, risk in sharp curves is influenced not just by 

their radius. 

In addition to radius, accident rate in horizontal curves has been found to be 

influenced by: the presence of spiral transition curves (Zegeer et al. 1991, Tom 1995); 

the length of curves (and the resulting deflection angle) (e.g. Persaud et al. 2000, 

Saleem and Persaud 2017, Bil et al. 2018); super-elevation in curves (e.g. Sakshaug 

1998, Christensen and Ragnøy 2006); road surface friction (Musey and Park 2016); 

the distance to adjacent curves (Matthews and Barnes 1988, Eick and Vikane 1992, 

Eriksen 1993, Stigre 1993, Hauer 1999, Findley et al. 2012, Khan et al. 2013, Bil et al. 

2018); the radius of adjacent curves (Gooch et al. 2016, 2018); whether horizontal 
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curves are located on flat roads, straight gradients or vertical curves (Bauer and 

Harwood 2013, Saleem and Persaud 2017); and the use of warning signs or advisory 

speed limits in curves (e.g. Montella  et al. 2015). No study has included all these 

factors. Hence, their contributions to the safety of horizontal curves is not well 

known. 

The objective of this paper is to summarise evidence from studies of the interaction 

between the distance between adjacent curves and the increase in risk in curves of a 

given radius. As noted above, the increase in risk in horizontal curves of a given 

radius varies substantially, and one of the factors associated with this variation is the 

distance between curves. The main research questions asked in the paper are: 

1. Has an interaction between the number of horizontal curves on a given 

length of road and the increase in risk for curves with a given radius been 

found consistently in studies examining this interaction? 

2. Does the interaction depend on the radius of a horizontal curve; i.e. is there a 

radius beyond which the interaction becomes negligible? 

3. What may explain the interaction between the number and sharpness of 

curves and the increase in risk associated with them? 

 

2 STUDY RETRIEVAL 

The studies identified by Elvik (2013, 2017) in previous reviews were included. To 

identify new studies, searches were made of ISI Web of Science, Science Direct and 

Transportation Research Record online using “horizontal curve” and “radius” 

and/or “accidents” or “crashes” as search terms occurring in the title, abstract or key 
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words of papers. Studies were included if they: (1) developed models or contained 

estimates of the association between the radius of horizontal curves and the accident 

rate (or accident frequency) in the curves, and (2) developed models or contained 

data shedding light on the interaction between radius and the distance to 

neighbouring curves in influencing the accident rate in curves with a given horizontal 

radius. 

It was not possible to statistically combine the results of different studies by means 

of standard techniques of meta-analysis. However, the results of the studies reviewed 

in the next section have been made comparable by: (1) Converting estimates of 

accident frequency to accident rate (i.e. accidents per million vehicle kilometres); (2) 

Converting accident rates to accident modification factors by setting the value of the 

lowest estimated accident rate in any study to 1.0 and expressing other accident rates 

as a multiple of this value. The results of the studies are then summarised in terms of 

functional relationships and the shape of these relationships is compared graphically. 

 

3 ESTIMATION OF RISK – FREQENCY OF CURVES 

A total of five functional relationships using distance between neighbouring curves as 

the independent variable and relative risk in curves with a given radius have been 

developed. This section explains how these relationships were estimated. 

 

3.1 Matthews and Barnes (1988) – re-analysed by Hauer (1999) 
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The oldest study that examined the interaction between the distance between curves 

and curve radius in influencing accident rate was reported by Matthews and Barnes 

(1988). Hauer (1999) re-analysed the study, fitting the following models to describe 

its results: 

Accident rate = 

𝑒𝑒(1.73∙ 10−6𝑅𝑅2−4.17 ∙ 10−3𝑅𝑅) ∙ 𝑒𝑒(−(6.2 ∙10−4−1.2 ∙ 10−6𝑅𝑅)∙(1200−𝑇𝑇))  (1) 

Accident rate = 𝑒𝑒(1.73 ∙10−6𝑅𝑅2− 4.17 ∙10−3𝑅𝑅)    (2) 

R denotes the radius of a curve in metres and T denotes the length in metres of the 

tangent (straight) section preceding a curve. Equation 1 applies to curves with a 

radius less than 500 metres and a tangent length less than 1,200 metres. Equation 2 

applies to curves with a radius of 500 metres or more. No correction for tangent 

length was applied to curves with radius larger than 500 metres. Accident rate was 

stated as the number of accidents per million vehicle kilometres of travel. Estimates 

of accident rate developed by means of equations 1 and 2 have been tabulated in 

Table 1. 

Table 1 about here 

It is seen that the length of the tangent (straight) section ahead of a curve has a larger 

influence on accident rate the sharper the curve is. The accident rate for a tangent 

length of 1,200 metres and curve radius of 700 metres (0.126, lowest rightmost cell 

of Table 1) is given the value of 1.0. The highest estimated accident rate (0.671) then 

gets the value of 5.32 (0.671/0.126). 

 



 

 7 

3.2 Findley et al. (2012) 

The next study exploring how accident rate depends both on the distance between 

curves and their radius was reported by Findley et al. (2012). The study applied the 

CMF (crash modification function) developed for the Highway Safety Manual: 

CMF = 
(1.55 ∙ 𝐿𝐿𝑐𝑐)+�80.2

𝑅𝑅 �− (0.012 ∙𝑆𝑆)

(1.55 ∙ 𝐿𝐿𝑐𝑐)
      (3) 

In equation 3, Lc is the length of a curve in miles, R is the radius of the curve in feet 

and S is an indicator for the presence of a spiral transition curve, equal to 1 if there is 

a transition curve at both ends of a curve, 0.5 if there is a transition curve at one end 

only, and 0 if there is no transition curve. When applying the equation in this paper, 

it was assumed that there is no transition curve. It was further assumed that the 

length of a curve is equal to its radius, which implies that the deflection angle is equal 

to one radian (57.3 degrees). Equation 3 estimates a crash modification function, i.e. 

a multiplicator showing how much higher the accident rate per million vehicle miles 

is in a horizontal curve compared to a straight section. 

Findley et al. added a correction term to equation 3, defined as follows: 

Correction = CMF ∙ 𝑒𝑒[𝐵𝐵0+(𝐵𝐵1 ∙𝐷𝐷)+(𝐵𝐵2 ∙𝑃𝑃)+(𝐵𝐵3 ∙(𝐷𝐷 ∙𝑃𝑃))]   (4) 

The correction term is an exponential function containing a constant term (B0), a 

term for the distance to the distal curve(B1) (i.e. the neighbouring curve furthest away 

from a given curve), a term for the distance to the proximal curve (B2) (i.e. the 

neighbouring curve closest to a given curve) and a term (B3) for the interaction 

between distances to distal and proximal curves. Distances to distal and proximal 
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curves were measured in miles. The results for distance to proximal curve of 0.3 

miles and distances to distal curve between 0.3 and 2.1 miles have been extracted. 

The multipliers (the exponential function in equation 4) ranged from 1.267 for a 

distance of 0.3 miles to the distal curve to 2.138 for a distance of 2.1 miles to the 

distal curve. Risk in a curve with radius 1,200 metres was used as reference (i.e. set to 

1.0) when estimating accident modification factors. 

 

3.3 Khan et al. (2013) 

Khan et al. (2013) estimated a set of models to predict accident rates in curves. All 

models were negative binomial regression models of the following basic form: 

Number of accidents = 𝑒𝑒(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖∙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖)  (5) 

The predictor variables included in the model referring to the largest accident data 

set (the ALL crash data set; N = 15,097 accidents) were: 

1. Curve radius in feet 

2. Curve length in feet 

3. Ln(AADT) 

4. Posted speed limit 

5. Average IRI (International Roughness Index) 

6. Difference between posted and advisory speed 

7. Upstream tangent of 0-600 feet (dummy) 

8. Upstream tangent of 601-1200 feet (dummy) 

9. Upstream tangent of 1201 – 2600 feet (dummy) 
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When applying the equation, curve radius was varied between 328 feet (100 metres) 

and 3937 feet (1200 metres). Mean curve radius in the data was 2920.4 feet and mean 

curve length was 914.8 feet. Based on this, curve length was set to a proportion of 

curve radius = 914.8/2920.4 = 0.313. All other variables were entered at their mean 

values. The mean values of the three levels for the length of the upstream tangent, 

using the midpoint of the range as an estimate and converted to metres was, 

respectively, 91 metres, 274 metres and 579 metres. Risk in curves with a radius of 

100 metres was found to increase sharply as the length of the upstream tangent 

increased. 

The model (equation 5) predicts the number of accidents. However, as AADT and 

the ratio of curve length to curve radius were kept constant when applying the 

model, the results can be interpreted as estimates of accident rate at the mean traffic 

volume (an AADT of 1338). In the comparisons of accident rates for different 

distances to upstream curves, everything else was kept constant. A curve with radius 

1,200 metres was used as reference for the accident modification factors. 

 

3.4 Bil et al. (2018) 

A paper by Bil, Andrasik, Sedonik and Cicha (2018) presented a GIS-tool used to 

identify curves and compute curve radius on Czech highways. The paper contained 

an accident prediction model for one class of road. The authors were contacted and 

asked if they could supply similar models developed for other classes of road. The 

answer was positive, and prediction models for four classes of road were provided. 

All these models had the following form: 
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Number of accidents per curve per year = 𝑒𝑒𝛽𝛽1+𝛽𝛽2(𝐿𝐿𝑅𝑅)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝛽𝛽3𝐿𝐿𝛽𝛽4𝑅𝑅𝛽𝛽5  (6) 

The first coefficient (β1) is a constant term. The next coefficient (β2) refers to the 

ratio of the length of a curve to its radius, with both length and radius measured in 

metres. The final three coefficients refer to AADT (Annual Average Daily Traffic), 

Curve length (L) and curve radius (R). Note that the model predicts the number of 

accidents. To obtain the accident rate, used as estimator of safety by the other studies 

included, the number of vehicle kilometres performed in curves with different radii 

was estimated using an AADT of 2,000 and assuming that each curve had the same 

length as its radius (L/R = 1). 

One of the four classes of road included in the study was motorways, where the 

mean distance between horizontal curves was considerable larger than in the other 

three classes of road. This class was omitted. In the other three classes of road, the 

mean number of curves per kilometre of road was 2.4382, 4.9232 and 5.2230, 

corresponding to mean distances between curves of 410, 203 and 191 metres. The 

accident rate in curves with a radius of 100 metres was found to increase as the 

distance between curves increased. 

 

3.5 Re-analysis of Eick and Vikane (1992), Eriksen (1993) and Stigre (1993) 

A number of Norwegian studies (Eick and Vikane 1992, Eriksen 1993, Stigre 1993) 

evaluated the road safety effects of signing of hazardous curves. In these curves, 

background and/or directional signs were put up. All curves were identified by 

means of a computer programme (Amundsen and Lie 1984). The purpose of this 
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programme was to identify surprising curves. Curves scoring high for degree of 

surprise were selected for special signing. These curves did not all have the same 

radius, but data on the radius of each curve was not provided in the studies quoted 

above. However, data provided by Sakshaug (1998) show that the mean radius of the 

signed curves was 110 metres. Thus, no great inaccuracy is introduced by treating the 

curves as having a radius of 100 metres to be consistent with the studies quoted 

above. 

Based on the data provided by Eick and Vikane (1993), Eriksen (1993) and Stigre 

(1993), five groups have been formed with respect to the mean distance between 

curves. Accident rates (injury accidents per million vehicle kilometre) in these groups 

are shown in Table 2. 

Table 2 about here 

The estimates of risk in Table 2 show that not only the risk in curves declines as the 

distance between them gets shorter, but that the risk on straight section between 

curves also declines. This is perhaps not so surprising, as higher density of curves 

means that the straight sections become shorter, and short straight sections may be 

associated with a lower speed than long straight sections. Nevertheless, the relative 

increase in accident rate (rate in curves/rate on straight section) tends to be smaller 

on roads with many curves than on roads with few curves, consistent with what the 

studies above have found. The following function was fitted to the relative accident 

rates: 

Relative accident rate (curve/straight) = 3.652X0.2555 (R2 = 0.4775)  (7) 
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This function will be applied along with the results of the other studies reviewed 

above. 

 

4 ESTIMATION OF RISK – SHARPNESS OF NEIGHBOURING CURVE 

Two studies by Gooch et al. (2016, 2018) included data on the presence and radius of 

proximal and distal curves to a given curve. Models were developed including these 

variables in addition to the radius of a subject curve. These models were applied to 

estimate how the accident rate in a subject curve depends on the presence and radius 

of a proximal curve. The following estimates were developed, all for a subject curve 

with radius 100 metres: 

1. No proximal or distal curves (intended to represent an isolated curve). 

2. A proximal curve within 0.75 miles with radius 1,200 metres. 

3. A proximal curve within 0.75 miles with radius 100 metres. 

4. A proximal curve within 1.25 miles with radius 1,200 metres. 

5. A proximal curve within 1.25 miles and radius 100 metres. 

6. A proximal curve more than 0.75 miles away with radius 1,200 metres. 

7. A proximal curve more than 0.75 miles away with radius 100 metres. 

The distances of less or more than 0.75 miles were used by Gooch et al. (2016). The 

distance of 1.25 miles was used by Gooch et al. (2018). The extreme values for radius 

(1,200 and 100 metres) were used to probe whether the distance or the sharpness of 

a proximal curve had the greatest influence on the accident rate of the subject curve. 
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5 RESULTS 

Figure 1 shows results of the five studies that were reviewed in section 3, dealing 

with how accident rate in a curve with a given radius depends on the distance to a 

neighbouring curve. A sharp curve with a radius of 100 metres is used as case. It is 

seen that all studies find that accident rate in a sharp curve increases as the mean 

distance between curves increases. 

Figure 1 about here 

The shape of the functions showing how accident rate in a sharp curve increases as 

the distance to neighbouring curves increases differs considerably. The functions 

developed by Hauer (1999) and Khan et al. (2013) rise steeply at an increasing rate. 

The function developed by Findley et al. (2012) is close to linear, whereas the 

functions fitted to the Norwegian and Czech studies (Eick and Vikane 1992, Eriksen 

1993, Stigre 1993, Bil et al. 2018) increase steeply at first and then become flatter. It 

would therefore not be informative to try to developed a synthesised function based 

on the five functions shown in Figure 1. 

The intercept of the functions also differs considerably. The function fitted to the 

study by Bil et al. (2018) suggests a negative accident rate when the distance between 

curves goes toward zero; this is implausible, but possibly attributable to the fact that 

Bil et al. included only curves in their models, not straight sections. When applying 

their models, a radius of 1,200 metres was treated as a straight section. Had a value 

of, say 12,000 been applied for a presumably straight section, relative accident rate 

for a radius of 100 metres would have been considerably higher. 
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Despite the rather wide dispersion of intercepts and different functional forms seen 

in Figure 1, all studies agree that the more curves there are on a road, the lower is the 

risk in a curve with a given radius. In other words: the more common this risk factor 

is, the lower is the risk associated with it. 

Figure 2 shows estimates developed on the basis of the two studies by Gooch et al. 

(2016, 2018). The results of the studies were very similar, but the coefficients for 

radius (degree of curvature) of proximal curves did not apply the same values for 

distance in the two studies. The first study applied distances of less than or more 

than 0.75 miles from a subject curve. The second study only applied a distance of less 

than 1.25 miles from a subject curve. 

Figure 2 about here 

A gentle proximal curve within 0.75 miles of a subject curve hardly influences 

accident rate in the subject curve. However, if the proximal curve has a radius of 100 

metres, accident rate in the subject curve is 8 % lower (relative risk 0.92). Proximal 

curves located more than 0.75 miles from a subject curve appear to influence 

accident rate in the subject more than proximal curves located less than 0.75 miles 

from the subject curve. This is inconsistent with the functions presented in Figure 1, 

all of which show a positive relationship between distance between curves and 

relative risk in a subject curve with a given radius. However, a sharp proximal curve 

is associated with a reduction in the accident rate of a subject curve for all distances 

specified by the two studies.  It is noted that some of the coefficients estimated by 

Gooch et al. (2016, 2018) were highly uncertain and that results could have been 

different with different values for these coefficients 
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6 DISCUSSION 

Many risk factors that are associated with accidents display a dose-response pattern. 

The higher the speed, the higher the risk of accident and the more severe its 

outcome. The higher the blood alcohol concentration, the higher the risk of accident. 

The larger the mass of a vehicle, the higher its potential for causing damage to others 

in case of an accident. Horizontal curves appear to display the opposite pattern: the 

more there are of them, the lower the risk in each curve. 

Based on the studies presented in this paper, one cannot rule out that a road with 

many curves will have a lower total accident rate than a road with few curves. A 

simple numerical example has been developed to illustrate this. A road section of 1 

kilometre with a constant traffic volume is considered. The section is assumed to 

have either 7, 5, 3, or 1 horizontal curves. Each curve has a radius and a length of 

100 metres. It is assumed that the beginning and end of the road section consists of a 

curve, except for the case of 1 curve, which is located at the beginning of the road 

section. Table 3 shows hypothetical relative accident rates for the curves and the 

straight sections between them. 

Table 3 about here 

Accident rate for the shortest straight sections has been given the value of 1. All 

other accident rates are relative to this value. The section with seven curves will have 

six straight sections located between the curves, each with a length of 50 metres (0.05 

kilometres). For the shortest straight sections, speed is not expected to increase 

compared to the speed kept in curves. For the longer straight sections, an increase in 
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speed has been assumed, leading to an increase in accident rate. Since traffic volume 

is assumed to be constant throughout the length of the road section, the expected 

number of accidents can be estimated simply by multiplying the length of curves and 

straight sections by their respective relative accident rates. The estimated total 

number of accidents is shown in the rightmost column of Table 3. 

It is seen that the estimated expected number of accidents tends to increase as the 

number of curves goes down. This obviously follows from the assumptions made, 

but as these are not altogether implausible, the hypothetical estimates may 

nevertheless predict real data. The results for the two bottom rows of Table 3 show a 

case of Simpson’s paradox. This denotes a situation where an effect in each of two 

groups, A and B, goes in one direction, whereas the effect when the groups are 

added (A + B) goes in the opposite direction. While the accident rate is higher both 

in curves and on straight sections in the bottom row than in the row immediately 

above it (3.6 vs. 2.7 and 1.3 vs. 1.1), the expected number of accidents is slightly 

lower than in the next-to-bottom row (1.53 vs. 1.58). 

One potential source of bias in comparisons using accident rate, is that accident rate 

depends on traffic volume and traffic volume could be different on roads with 

different frequency of curve. Roads with many curves tend to have low traffic 

volume and the accident rate tends to be higher at a low traffic volume than at a high 

traffic volume. Nevertheless, it is unlikely that differences in traffic volume between 

roads with many curves and roads with few curves can explain the findings of this 

paper. Applying the coefficient for ln(AADT) in a recent accident prediction model 

for Norway (Høye 2016) (0.928), it can be estimated that accident rate on a road with 
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an AADT of 1,000 will be about 18 % higher than on an otherwise identical road 

with an AADT of 10,000. The differences in accident rates associated with horizontal 

curve radius and distance to neighbouring curves found in the studies reviewed in 

this paper are far greater than 18 %. 

The most likely explanation for the results are behavioural adaptation among drivers. 

When driving on a road that mostly consists of curves, drivers come to expect that 

there will be many curves. They adapt their speed and visual search accordingly, but 

not enough to eliminate the increase in accident rate associated with curves. Even on 

roads that mostly consist of curve, the accident rate in the curves remains higher than 

on straight sections. 

 

7 CONCLUSIONS 

The main conclusions of the research presented in this paper are: 

1. The shorter the mean distance between horizontal curves, the lower the 

accident rate in curves of a given radius. 

2. Neighbouring curves with a small radius (sharp curves) are associated with a 

lower accident rate in a subject curve of a given radius than neighbouring 

curves with a larger radius. 

3. It cannot be ruled out that, under plausible assumptions, a road with many 

sharp curves will have a lower accident rate than an otherwise identical road 

with fewer sharp curves. 
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Table 1: 

 Accidents per million vehicle kilometres in horizontal curves with radius between 100 and 700 metres 

Tangent length (metres) 100 200 300 400 500 600 700 

25 0.373 0.298 0.246 0.211 0.187 0.153 0.126 

57 0.382 0.304 0.250 0.213 0.187 0.153 0.126 

125 0.392 0.309 0.253 0.214 0.187 0.153 0.126 

175 0.402 0.315 0.256 0.216 0.188 0.153 0.126 

300 0.428 0.331 0.265 0.219 0.188 0.153 0.126 

500 0.473 0.357 0.279 0.226 0.189 0.153 0.126 

800 0.549 0.400 0.301 0.235 0.190 0.153 0.126 

1200 0.671 0.465 0.334 0.249 0.192 0.153 0.126 
 

Table 2: 

 Injury accidents per million vehicle kilometres  

Mean distance between curves (km) Accident rate in curves Accident rate on straight sections Ratio of accident rates (Curve/straight) 

6.54 0.420 0.081 5.22 

3.49 0.675 0.106 6.36 

2.52 0.479 0.123 3.89 

1.46 0.188 0.038 4.89 

0.89 0.132 0.043 3.05 

All 0.410 0.094 4.34 
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Table 3: 

 
 
Curves (N)  

 
Straight 
sections (N) 

 
Length in 

curves (km) 

 
Straight length 

(km) 

Mean length of 
straight 

section (km) 

Relative 
accident rate 

in curves 

Relative 
accident rate 

straight 

Expected 
accidents in 

curves 

Expected 
accidents on 

straight 

Total expected 
number of 
accidents 

7 6 0.7 0.3 0.050 1.5 1.0 1.05 0.30 1.35 

5 4 0.5 0.5 0.125 2.0 1.0 1.00 0.50 1.50 

3 2 0.3 0.7 0.350 2.7 1.1 0.81 0.77 1.58 

1 1 0.1 0.9 0.900 3.6 1.3 0.36 1.17 1.53 
 


