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Highlights

» Shadow pricing is a popular method for abatement cost estimation.

* Most previous studies ignore the materials balance condition.

* Materials balance consistent Convex Nonparametric Least Squares estimator
developed.

» Shadow prices for 160 US power producers from stochastic and deterministic
models.

» Abatement costs severely understated when the materials balance is ignored.

Abstract

Marginal abatement cost is an essential input to optimal environmental policies. Shadow pricing has become a popular method for estimating
abatement costs subject to parsimonious data requirement. This paper provides a novel contribution to the literature on shadow pricing by
considering the implication of the materials balance principle for shadow prices. To that end, the paper establishes a Convex Nonparametric
Least Squares estimator for the weak G-disposable production model, which for the first time enables modeling a composite error term and
joint estimation of the production frontier and contextual variables within this production model framework. Applying the Directional
Distance Function, environmental efficiencies and shadow prices for carbon dioxide emissions are estimated for a sample of power producers
using both stochastic and deterministic frontier models. Average shadow price estimates for carbon dioxide range between 14,000 and 40,000
$/ton CO,, for the weak G-disposable model and between 70 and 77 $/ton CO,, for the conventional production model that ignores the
materials balance. These findings cast doubt on previous shadow price estimates since a majority of comparable studies ignore the strict
technical relationship among pollution-generating inputs and bad outputs under the materials balance condition.
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Nomenclature

Glossary
Abbreviation
Term

CNLS
Convex Nonparametric Least Squares

co,
Carbon dioxide

DEA
Data Envelopment Analysis

DGP
Data generating process

DMU
Decision making unit

FD
Free disposability

MBC
Materials balance condition

SFA
Stochastic Frontier Analysis

StoNED
Stochastic Nonparametric Envelopment of Data

WGD
Weak G-disposability

1. Introduction

There are several approaches to incorporate bad outputs in production analysis; see Dakpo et al. [1] for an overview. In recent years, their
consistency with the materials balance principle has received attention. Coelli et al. [2] paved the way for a new class of environmental
production models based on the materials balance. Redseth [3] analyzed a set of axioms, broadly referred to as the weak G-disposable
production model, and showed that they are in compliance with the materials balance principle. Hampf and Redseth [4] showed how
Redseth’s theoretical model could be implemented empirically using Data Envelopment Analysis (DEA). While there have been several
empirical studies following Hampf and Redseth’s paper, DEA continues to be the workhorse of applied production analysis using weak G-
disposability. A noteworthy exception is the recent study by Atkinson and Tsionas [5] that embeds the materials balance principle into a
Stochastic Frontier Analysis (SFA) framework. Their approach is, however, not readily comparable to Hampf and Redseth’s (2015) DEA model.

DEA has its roots in the seminal work of Farrell [6], but was coined by Charnes et al. [7]. A major advantage of this approach is that it is
nonparametric, thereby avoiding assumptions about the functional form of the production model. On the other hand, it does not
accommodate stochastic noise in the data - i.e., it is a deterministic model - but regards any deviation from the frontier as inefficiency. This is a
potential drawback in the current context as parameters of the materials balance or materials balance-based estimates of bad outputs are
likely vulnerable to some level of measurement bias. Another drawback is that the DEA literature predominately models the impacts of
contextual variables on efficiencies using a two-stage approach [cf. 8]. Johnson and Kuosmanen [9] find that unbiased and efficient estimation



of the impact of contextual variables on efficiency requires joint estimation of the production frontier and effects of contextual variables. The
use of a one-stage approach for modeling contextual variables within the weak G-disposability framework is discussed by Hampf and Redseth
[10], who note.

“A one-stage analysis could have been conducted by including the second-stage variables in Convex Nonparametric Least Squares analysis (i.e., the
StoNED model by Kuosmanen and Kortelainen [11]) as proposed in Johnson and Kuosmanen [12]. Moreover, this approach would have enabled both
deterministic and stochastic specifications of the technology.” 10, p. 623-624].

However, the main restriction is that:
“the MBC-model" is currently not developed for StoNED” [10, p. 624].

The current paper provides a cure for this problem. It starts by deriving the dual of Hampf and Redseth’s [4] DEA model. Drawing on
Kuosmanen [13] and Kuosmanen and Johnson [14], a Convex Nonparametric Least Squares (CNLS) estimator for the weak G-disposable model
is then derived. Thereby, this paper enables efficiency analysis accommodating both stochastic modeling and one-stage estimation of the
impact of contextual factors while ensuring compliance with the materials balance principle.

Marginal abatement cost refers to the (minimum) cost of a unit reduction of a bad output, which is an essential input to environmental policy.
While there are multiple methods available for estimating abatement costs, they can broadly be classified into economics and engineering
approaches [15]. Methods range from techno-economic evaluation (see e.g. Dai et al. [ 16] for a recent example) and programming to data-
driven methods such as econometrics and production analysis [17]. In this study, we concentrate on production analysis, which has become a
popular data-driven approach for estimating marginal abatement costs by means of shadow pricing. Recent publications on shadow pricing of

carbon dioxide include Ao et al., [18], Yue et al. [19], and Zhao and Qiao [20], just to mention a few among a substantial number of recent
studies.

The standard definition of marginal abatement costs in the shadow pricing literature concerns forgone revenue from reducing emissions by
one unit [21]. This notion is also maintained in the recent study by Shen et al. [22] that explores shadow pricing in the context of the by-
production approach to environmental efficiency analysis [23]. In contrast, Kuosmanen and Zhou [17] recently advance the shadow pricing
approach by i) considering multiple abatement strategies and ii) identifying shadow prices at local (i.e., quantile) frontiers.

In line with most previous studies (see Zhou et al. [24] for a review) Kuosmanen and Zhou [17] model inputs (as well as pollutants) as freely
disposable. They argue there is a trade-off between letting the data speak for themselves and force the data to a straitjacket of too tight
theoretical equations. However, assuming free disposability ignores the tight technical relationship among pollution-generating inputs and
bad outputs - governed by the materials balance principle - as one variable can vary while the others are maintained at current levels.

A second objective of this paper is consequently to examine the profound implications of the dependence of bad outputs (e.g., carbon dioxide)
on pollution-generating inputs (e.g., coal) for shadow pricing. Simply put, the standard notion in the shadow pricing literature - that bads can
be reduced by lowering good outputs for given inputs - is substantially handicapped when the amount of bads produced is close to
predetermined by the input mix. This assumption contradicts the materials balance principle, which enforces limited substitutability among
material inputs and bads and consequently precludes that bads can be reduced for given inputs. Its consequences are illustrated by comparing
shadow prices for carbon dioxide emissions estimated assuming weak g- and free disposability using stochastic and deterministic CNLS
production models applied to Hampf's and Redseth’s [4] dataset containing 160 US bituminous-fired electricity generating units. Shadow price
estimates are substantially higher when the technical relationship among pollution-generating inputs and bads is explicitly modeled, which
casts doubt on previous comparable shadow pricing estimates presented in the literature.

A main contribution of this paper is to derive a CNLS estimator for the weak G-disposable production model, which for the first time enables
modeling a composite error term and joint estimation of the production frontier and the impact of contextual variables within this production
model framework. Second, the paper offers a first investigation into the consequences of the materials balance principle for shadow pricing of
bad outputs. Thereby, the paper provides novel insights for and puts a caveat on previous studies in the field of shadow pricing, which is a
substantial and rapidly growing field within abatement cost analysis.

This paper is structured as follows. Section 2 presents the theoretical underpinnings of the shadow pricing analysis and develops the CNLS
estimator for weak G-disposability. Section 3 presents the dataset and the results of a Monte Carlo study that sheds light on differences among
how the deterministic materials balance and conventional production models characterize substitutability among intended and unintended
outputs and their implications for efficiency measurement, while Section 4 reviews the empirical results. Section 5 offers conclusions and

recommendations for further research.

2. Theoretical underpinnings



We tailor the theoretical production model to the empirical case study, i.e., electricity production. The selected input and output variables are
in line with previous studies on US power generation [25]. Generalization of the model and the theoretical results to a higher number of
inputs and outputs is straightforward.

2.1. Production theory

Letz € 2 denote a vector of inputs, of which zp € $. is a material input (i.e., fuel) and zyp € R, is a non-material input (i.e., generating
capacity). We will also refer to the former as the pollution-generating input. Let y € 2 denote the desirable output (i.e., electricity), and let
the sole pollutant analyzed (i.e., carbon dioxide, abbreviated CO,) be denoted b € R . A technology set that summarizes technically feasible
input-output combinations is defined by Eq. (1).

T ={(=,y,b): = can produce (y,b)} (M

The technology is assumed to possess a set of properties, known as axioms. We refer to Fare and Primont [26] for details about standard
axioms in production theory and Radseth [3] for their compliance with the materials balance principle. In this paper, we study and compare
production possibilities under two different sets of axioms (i.e., for two distinct technologies). In both cases, the technology is assumed to
exhibit convexity and free disposability of the desirable output. Following Kuosmanen and Zhou [17], the first technology specification - the
free disposability (FD) model - treats inputs and the bad output as freely disposable. That is,

if (¢,y,b) € T and @' > «,b' > b, then (',y,b') €T (2)

In words, if the vectors indicated by primes contain elements of equal or larger quantities compared to the vectors not indicated by primes,
the vectors indicated by primes are included in the technology. Note that free disposability does not preclude increasing the consumption of
the material input without affecting the production of the bad output, and vice versa. In this sense, the two variables are “technically
decoupled” in the realm of the free disposable model.

The second model considered is Radseth’s [3] weak G-disposability (WGD) framework. To define the weak G-disposable axiom tailored to our
use case we need to introduce additional notation. Let u € R denote the material flow coefficient for the material input, describing the
carbon content and therefore CO, emissions per unit of fuel. The weak G-disposability axiom can consequently be defined:

if (®,y,b) € T and ', > zp,b’ > b,uzl, — b =0, (3)
then (a,y,b') €T

Weak G-disposability is a directional disposability condition that in this case enforces disposability according to the materials balance principle,
i.e., ensuring that carbon entering the system through fuel consumption is unavoidably converted into CO,. Hence, all points included in the
technology set are subject to a strict technical relationship among material inputs and pollution.

The aim of the subsequent empirical analysis is to illustrate how the technology and its characterizations of output substitutability vary when
evoking the fundamentally different disposability assumptions represented by Egs. (2)-(3). In the former case, there is no firm relationship
among material inputs and pollution, while the latter case imposes a strict correspondence between use of material inputs and pollution for
any input-output combination. By comparing the two production models with regards to output substitutability, this study expands the scope
of Atkinson’s and Tsionas’s [5] recent research that focused on the impact of incorporating the materials balance on productivity and
efficiency.

While the technology set is a theoretical construct, a function representation that can be estimated from data is required for empirical
analysis. We use a Directional Distance Function [27] that nowadays has become a standard tool for shadow pricing [24]. Following the
standard convention [e.g., 21], our primary model considers a Directional Distance Function that expands the desirable output and contracts
the undesirable output to the production frontier according to the direction vector (gx,gy,g)=(0,1,1). In this case, the Directional Distance
Function is defined:

D(=,y,b;0,1,1)= sup{6 :(=,y + 0,b — 0)c T} (4)

where 8 € R measures the maximal expansion of the desirable output and contraction of the bad output along the selected path (or direction
vector) to the production frontier. The distance function inherits the properties of the technology set and is greater or equal to 0 when (x,y,b)
is an element of the technology. # = 0 indicates that the unit under observation operates on the frontier, while a positive value signals
inefficiency in production. While we apply the most common direction vector for our main analysis, other direction vectors are subsequently
considered as robustness checks.

2.2. Shadow pricing

Following the influential publication by Fare et al. [21], we derive shadow prices using duality theory. Since the Directional Distance Function
completely characterizes the technology set, the revenue function can be defined



R(x,p,q)= Sup{py —gb: D(x,y,;0,1,1)> 0} (5)
b

where p € R, and g € R are (shadow) prices for the good and bad outputs, respectively. Utilizing first order conditions, the shadow price
for the bad output is defined [cf,, 21]:

_ 85(z,y,b;0,1,1)/8b (6)
1= 7P| oB(auno.0/00

The shadow price defined by Eq. (6) represents the value of the intended output that must be forgone to achieve a marginal reduction of the
bad output for given inputs.

As noted by Kuosmanen and Zhou [17], similar shadow pricing rules can also be defined based on the substitutability among inputs and the
bad output. They argue that the minimum of the set of admissible shadow prices should be regarded marginal abatement costs. We agree with
their opinion, but to relate our main result to the approach used by most existing studies we follow the standard convention and base shadow
prices for bads solely on the trade-off among the good and bad outputs.

Our emphasis is on how weak G-disposability affects the shadow price for the bad output according to Eq. (6), relative to the standard case of
imposing free disposability of material input. To the best of our knowledge, there is no comparable empirical study that estimates shadow
prices subject to the materials balance condition. Redseth [28] derives shadow pricing rules in the context of the materials balance condition,
but his contribution is purely theoretical.

2.3. Nonparametric estimation
In this section, we first derive the dual of the DEA estimator of the Directional Distance Function under weak G-disposability. Based thereon,
we develop a CNLS estimator for the weak G-disposable model.

2.3.1. Weak G-disposable DEA model

Assume a dataset consisting of I=1,..,.L decision making units or DMUs for short. Following Hampf and Redseth [4], the weak G-disposable DEA
estimator of the Directional Distance Function for DMU I’ under variable returns to scale corresponds to solving the following linear

programming problem:

SNy >y +6 (7)
SN e =0 -0

B Eszl Nab, +ep =24,

D (ml”yp’bl,;o’ L 1) = I:,l(fic{oz ZIL=1 )‘lmfrvp < ”’grp
EIL=1 N=1
uep —ep =0
A>0,e > 0,ep > 0}

In this formulation, A, VI denote intensity variables that enable linear combinations of datapoints to form the production frontier, while
(ep, &) represent slacks in production. After replacing &, by uep in the constraint for the bad output and removing uep — &, = 0 from Eq. (7)
for simplicity, the dual of this linear program can be written
r?in {a+'yp:t"P + 'pra;ﬁ,P + bt — &y (8)
V8,00
s.t.
Ij(zl”yl’,bl’;o’ 1, 1) — a +’)’P(E§_—, +’YNP$5\IP+ vbp— oy >0,l=1,..,L
P +vu >0
v+d=1
e > 0,6 > 0}

where (a, vp, Ynp, v, §) are dual variables or prices, also known as multipliers or weights.

vp + vu > 0 imposes weak G-disposability by means of restricting the relationship among dual prices of material input and pollution,
depending on the material flow coefficient, u. Omitting this inequality enables modeling the DEA technology under freely disposable material
input and pollution. In the case of free disposability, dual prices for material input and pollution are constrained to be non-negative.

2.3.2. CNLS models

The DMU-specific DEA model can be estimated jointly for all L DMUs by formulating the corresponding CNLS quadratic optimization problem.



Proposition: The minimization problem in Eq. (8) can be equivalently written as a CNLS model with a one-sided error term. Specifically, the
DEA efficiency scores can be obtained as the optimal solution to Eq. (9).

. 2
min Y7 & 9)
b0k

s.t.

oy =df + bzl + Y pzhe + Vo — K,V

of + Yol + Yhphp + o — 8y <of
bzl + Yapthp + 140 — & VLT

v + vhu > 0,V1

P+ 8 =1,V

Yhp > 0,8 >0,k >0,V

Proof: See Kuosmanen [13], Appendix 1.

Note that !, VI can be interpreted as a residual in a regression analysis, where the objective is to minimize the sum of squared errors.
However, because the error terms are restricted to be non-negative, i.e., ! > 0, VI, they correspond to DEA estimates of the Directional
Distance Function. Hence, the error terms take the value 0 for efficient units and are >0 for inefficient units.

Following Kuosmanen and Zhou [17], the corresponding CNLS problem for the free disposable technology is defined:

2, Tt o
s.t.
dy =df +9bzh + YA pzhp + b — kI
ol + bzl + A pzhp + o — oy <of
ozl + Ypzh + 148 — & VLT

Fd+d=1w
Yhp > 0,68 >0,k >0,V
v > 0,04 > 0,VI

The estimated dual prices for the good and bad outputs from Egs. (9)-(10) are used to calculate shadow price for the bad output according to
Eq. (6).

2.3.3. Stochastic modeling and contextual variables

We consider two extensions of the optimization problems in Eqgs. (9)-(10).

» Two-sided error term: Mean value estimators of the weak G- and free disposable technologies are obtained by omitting restrictions
k! > 0, VI from Egs. (9)-(10). This enables estimating the weak G-disposability model assuming a composite error term, and ultimately to
obtain efficiency scores in a second stage estimation [11].

* Contextual variables: By appending a linear function g(2)= Zszl wkz; to the regression equations in (9)-(10), the effects of contextual
variables can be estimated jointly with the residuals (i.e., efficiency scores); cf. Johnson and Kuosmanen [9]. Here, @y, Vk denote unknown
parameters in a conventional regression analysis. Contextual factors are considered both for the stochastic and deterministic production
models.

3. Case study and data

We base the empirical study on the dataset originally collected by Hampf and Redseth [4] and extended with price data in Hampf and Redseth
[25]. These studies focus on economic consequences of ambitious new regulation for greenhouse gas emissions launched by the Obama

administration, but which was later mitigated by the Trump administration. With seemingly negligible changes in central government policies
to control carbon dioxide emissions from US power plants in recent years, we still find the dataset relevant for CO, abatement cost estimation.

The dataset comprises 160 US electricity generating units in operation in 2011. Key selection criteria for the sample are: Bituminous-fired coal
generators only; Nameplate capacity larger or equal to 10MW; Pulverized coal-fired generating units only; Subcritical units only. These are
implemented to ensure a more homogenous sample than what is normally used for efficiency analysis of power plants. We refer to Hampf and
Redseth [4] for further elaboration and for details regarding the selection of variables and collection and processing of data. Key data sources
are forms EIA-860_Generator and EIA-861, as well as EPA’s database “Air Markets Program Data”.



Table 1 presents an overview of the variables used for the empirical analysis. As previously outlined, the empirical production technology
comprises two inputs (capacity and fuel) that produces two outputs (electricity and CO-). To consider vintage effects as well as the impacts of
mitigation of other pollutants under regulation (i.e., sulfur dioxide, SO,, and nitrogen oxides, NOy), age and local emission intensities are
modeled as contextual variables. Finally, electricity prices are used to derive shadow prices for CO,, cf. Eq. (6). They are set equal to the average
of retail and resale prices of electricity per generating unit; see Hampf and Rgdseth [25] for details.

Table 1. Summary statistics.

Type Variable Unit Obs Mean St.Dev Min Max
Input Capacity MW 160 3379 2318 100.0 1425.6
Fuel 1,000 MMBtu 160 16,089.1 14,715.8 57.4 74,900.0
Output Electricity 100 MWh 160 16,967.2 16,165.2 58.8 85,413.0
CO, 1,000 Tons 160 1,653.2 1,509.6 5.9 7,686.1
Contextual Age Years 160 473 10.8 18.0 64.0
SO,-ratio 1,000 tons per MWh 160 4.4 4.8 0.1 25.9
NOy-ratio 1,000 tons per MWh 160 14 0.8 0.2 4.0
Price Electricty price $ per MWh 144 68.4 10.0 421 99.7

3.1. Empirical relationship among coal consumption and CO,

Before turning to the Directional Distance Function results we use the dataset to visualize the persistent technical relationship that exists
among the fuel input and CO, emissions. This is due to CO, being a product of the carbon content of the fuel. Fig. 1 presents a scatterplot of the
two variables for the 160 observations contained in the dataset. Regressing fuel consumption on CO, emissions provides a perfect fit (i.e., R-
squared equal to 1), while the effect of fuel use on CO, emissions is found to be statistically significant at the 1-percent level by means of t-
testing. We consequently consider weak G-disposability a highly relevant axiom for this case.
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Fig. 1. Correlation among fuel consumption and carbon dioxide emissions. Source: Own dataset.

The fuel’s carbon content depends to some extent on the individual coal mine. Hampf and Redseth [10] analyze the impact of fuel quality
differences on environmental efficiency of CO, and SO, emissions from power plants. They conclude that while fuel quality differences matter
for SO, efficiency it has a negligible impact on CO, efficiency. Based thereon, we do not pay attention to (negligible) fuel quality differences in
this study. We therefore set the material flow coefficient for the fuel input equal to the sample average CO,-to-fuel ratio.

In the long run, end-of-pipe abatement technologies for CO, will enable breaking the technical dependance of CO, on fuel consumption. As
they still are not widespread - and based on Fig. 1 - it is reasonable to assume that a linear technical relationship among fuel and CO, exists



for the generating units in the sample. This is also the case for previous comparable studies focusing on shadow pricing of CO,. Weak G-
disposability preserves this relationship for any feasible production plan.

3.2. Monte Carlo simulation

To further illustrate how the technical relationship among coal consumption and CO, emissions are treated differently by the WGD and FD
models, we undertake a small Monte Carlo simulation study in which the Data generating Process (DGP) maintains the relationship among
coal consumption and CO, presented in Section 3.1. The DGP considered is inspired by the Monte Carlo study by Hampf [29], and can be
considered a special case of the by-production approach to modeling of bad outputs [23]. This approach considers separate production
relations for good and bad outputs, respectively.

y= m%mm%,};’e_’“v (11)
b =0.1028992zp + Ky

where &y and kp refer to inefficiencies in the generation of the intended and unintended outputs, respectively.

The DGP under consideration is presented by Eq. (11), which contains parameter values that are tailored to the data presented in Table 1. The
Cobb-Douglas production function for the good output is fitted using Ordinary Least Squares, which gives an adjusted R? of 0.99. The emission
coefficient is set equal to the sample average (i.e., 0.1028992). Deviations from mean emission factor and Cobb Douglas function (i.e.,
inefficiencies), alongside observed min and max values for the two inputs, are used to determine admissible ranges of inputs (zp, zyp) and
efficiency parameters (ky, ). These are all drawn from the uniform distribution over the intervals [57,74900] (energy input), [100,1425]
(capacity input), [0,1.3] (good output efficiency), and [0,0.005] (bad output efficiency).

Note that the bad output efficiency parameter k3 allows minor variation in the emission coefficient of the unit under consideration. However,
it does in general assume away inefficiency in pollution generation. That is, burning a ton of coal leads to a close to predetermined amount of
emissions. Consequently, the only way to reduce emissions is through reducing coal consumption (in absence of end-of-pipe abatement).

In turn, this means that the potential for increasing the good output by the same amount as the reduction in pollution - as considered by the
Directional Distance Function defined by Eq. (4) - is severely limited. To calculate the “true” Directional Distance Function, we first calculate
deviations per output based on the simulated data. We use tilde to indicate simulated data, and define

079,019
6, = b —0.10289927 p

and subsequently identify the minimal distance as the true Directional Distance Function, i.e., § = min{6,, 65 }.

The DGP in Eq. (11) assumes away random noise, and we consequently use deterministic models defined by Egs. (9)-(10) to a) estimate
Directional Distance Functions for the WGD and FD models based on synthetic data and b) to evaluate Mean Squared Errors of the WGD and
FD estimators. We simulate data for three different sample sizes (L=25; 50; 100) with 500 replications for each sample size. Mean Squared
Errors for each of the simulations are presented by Table 2, which shows that the WGD model has a negligible error due to ensuring the
technical relationship among coal consumption and CO, emissions. The FD estimator, on the other hand, performs poorly, and its Mean
Squared Error increases with sample size.

Table 2. Results of Monte Carlo simulations with 500 replications (Mean Squared Errors).

Model L=25 L=50 L=100
WGD 0.000 0.000 0.000
FD 1,973,286.651 2,471,665.329 2,845,920.343

4. Empirical results

Egs. (9)-(10) are fitted using GAMS, considering the following model specifications:
*  Weak G-disposability (WGD) and free disposability (FD)

e One-sided errors (i.e., deterministic DEA) and two-sided errors (i.e., stochastic CNLS)

« With and without contextual variables



Consequently, 8 different production models are fitted under the assumption of variable returns to scale. The code used for estimation can be
found in Appendix A.

4.1. Efficiencies

First, we compare DEA estimates of the Directional Distance Function - i.e., the one-sided errors from Eqgs. (9)-(10) - calculated under various
scenarios. We refer to Eq. (4) for a formal definition of the Directional Distance Function, which is our preferred efficiency measure. As
previously described, it is used for evaluating the technical potential for jointly expanding the desirable output and contracting the
undesirable output according to the direction vector (gy,gy.g)=(0,1,1). The efficiency measure is greater or equal to 0, where 0 indicates
efficient production.

Fig. 2 shows WGD efficiencies with and without joint estimation of effects of contextual variables. The Directional Distance Function estimates
range between 0 and 67, with most of the units being very efficient. While modeling contextual variables slightly improves efficiencies, the
overall efficiency distribution is affected only to a minor degree. Hence, estimating the models with and without contextual variables matters
very little for the efficiency analysis.
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Fig. 2. Distribution of WGD DEA efficiencies with and without simultaneous estimation of effects of contextual variables.

Fig. 3 compares environmental efficiencies calculated under WGD and FD. Similar to Fig. 2, it shows that most efficiencies associated with the
WGD model are close to zero, signaling highly efficient power production. This is in line with previous studies on US power generation, e.g.,
Hampf [30] and Hampf and Redseth [10]. The FD model, on the other hand, signals substantial efficiency improvement potentials for many
electricity generators. The average efficiency scores associated with the FD and WGD models are 7 and 198, respectively.
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Fig. 3. DEA efficiencies under WGD and FD. Without simultaneous estimation of effects of contextual variables.

The substantial difference between WGD and FD efficiencies - as depicted by Fig. 3 — can be associated with the FD model’s lack of awareness

of that carbon dioxide is closely linked to the quantity of coal used for energy production. Similar results were also obtained by Atkinson and
Tsionas [5], who incorporated the materials balance in a SFA framework.

To elaborate further, Fig. 4 compares actual and efficient CO, emissions under WGD and FD. It clearly shows that the latter suggests minimal
emissions that fall short of the materials balance condition (i.e., the 45-degree line). Hence, efficient FD CO, emissions can only be physically

attainable if carbon contents of the coal consumed are allowed to be less than their observed levels; cf. Fig. 1. We consider this an irrelevant
and unrealistic assumption.
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Fig. 4. Comparing actual and efficient carbon dioxide emissions under WGD and FD. Without simultaneous estimation of the effects of
contextual variables.

4.2. Shadow prices

Using Eq. (6), we derive shadow price estimates for each of the 8 empirical models implemented, utilizing the dual price estimates of the
DEA/CNLS models. Table 3 provides summary statistics of these shadow price estimates.



Table 3. Shadow price estimates ($/ton).

Disposability Weak G--disposability Free disposability

Frontier CNLS DEA CNLS DEA CNLS DEA CNLS DEA
Contextual vars Without Without With With Without Without With With
N 81 103 92 m 144 144 144 142
Median 12,786.01 6,908.04 6,219.40 8,361.96 7119 7772 72.96 73.19
Mean 40,666.00 19,041.82 58,158.17 14,415.17 69.95 76.69 71.09 73.29
Min 3,333.80 633.05 2368.34 755.65 37.95 14.03 1.52 1.56
Max 1,079,277.00 43,968.30 808,826.30 167,596.30 106.93 117.81 110.40 122.34

Note that shadow prices are not reported either when i) electricity prices are unavailable (i.e., for only up to 144 of the 160 DMUs used for
estimation of the Directional Distance Function) or ii) the dual price for the electricity output is zero. As expected, the latter is primarily the
case under WGD, implying that shadow prices tend to infinity due to lack of substitution possibilities among good and bad outputs when
inputs are fixed.

Focusing solely on shadow price estimates that do not tend to infinity, there is a substantial difference between the magnitudes of WGD and
FD shadow price estimates, regardless of frontier model (CNLS or DEA) considered and use of controls for contextual variables (With or
Without). Again, this is due to the WGD model’s preservation of the relationship among the pollution-generating input and CO,, which leaves
little room for reducing bads for a given input vector. Consequently, shadow prices become very high. The FD model, however, assumes less
stringent ties between these variables, thereby enabling low or moderate shadow prices.

A perhaps more surprising finding is that the deterministic DEA model produces substantially lower shadow price estimates than stochastic
CNLS under WGD, especially when contextual factors are not controlled. Under FD, shadow price estimates based on DEA and CNLS are of
comparable sizes: DEA exhibits lower minimum values than CNLS, but medians and averages are slightly higher for DEA.

This leads to the following conclusion: Contrary to Kuosmanen and Zhou'’s [17] study, our results do in general not support the claim that
widespread use of deterministic methods such as DEA is a key explanation of high shadow price estimates found in the literature. However, in
contrast to Kuosmanen and Zhou, this study does not pay attention to local (or quantile) frontiers.

4.2.1. Robustness checks

Preceding results are all evaluated for the direction vector (g,gy.g)=(0,1,1). It is well known that empirical results - including shadow prices -
are sensitive to the choice of direction vector. Appendix B consequently presents shadow price results for a set of alternative direction vectors
that give disproportional weights to intended and bad outputs. These robustness checks reveal that shadow price estimates are fairly robust to
the choice of direction vector under free disposability, but not under weak G-disposability: In the limiting case where the direction vector is
zero for the bad output some of the shadow prices become negative and shadow prices become lower for CNLS than for DEA. Regardless, the
robustness checks support the preceding finding that shadow prices are in general (substantially) higher under WGD than under FD and also
higher for DEA compared to CNLS.

Further robustness checks stem from comparing our results to shadow price estimates from the literature. Kuosmanen and Zhou [17]
summarize the results of 11 recent studies that report shadow prices ranging between $16 and $476 per ton of CO,. While the FD results from
this study fall within this range, shadow prices estimated under WGD largely surpass the estimates from previously published studies.

4.2.2. Replicability

One referee noted that the preceding results are contingent on a dataset that is coming of age, and that it will be preferable to reexamine key
findings using more recent data. This section evaluates replicability of the main results using an alternative dataset comprising 171 electricity
generating units in operation in 2015. This dataset was prepared by Hampf and Redseth [10], and we refer to their study concerning the
sources of the dataset and how it was prepared. For the replicability study, fuel and generating capacity are regarded as inputs and electricity
and CO, emissions are regarded as outputs, while age of the facility and use of scrubbers (i.e., a dummy variable indicating use of pollution
controls for sulfur dioxide emissions) are regarded as contextual variables. Appendix C presents summary statistics of the alternative dataset.

The dataset compiled by Hampf and Redseth [10] does not contain information about the price for electricity. For the replicability test, we
consider an average price of 101 $/MWh, which is obtained from U.S. Energy Information Agency’s Electric Power Annual 2015. While
assuming a uniform price can lead to incorrect shadow prices of carbon dioxide emission for the individual producer, it does not affect the



comparison of the weak G-disposable model and the conventional production model. As this is our primary aim, we consider using an average
price sufficient for the replicability check.

Table 5 summarizes the results of the replicability test. Comparing it to Table 3, it is clear that the replicability test reconfirms previous
findings that shadow prices are substantially higher under weak G-disposability compared to free disposability. The reason for this is that the
technical relationship among pollution-generating inputs and bads is explicitly modeled by the former approach while it is ignored by the
latter.

Table 4. Effects of contextual variables on efficiencies.

(CNLS) (CNLS)

WGD FD
Generator age 0.126* 5.740""

(0.076) (1.086)
SO,/electricity 0.086 2.486

(0.169) (2.417)
NO,/electricity 0.972 -7.876

(1.003) (14.368)
N 160 160

Standard errors in parentheses.

p<0.10, " p<0.05, " p<0.01.

Table 5. Shadow price estimates based on an alternative dataset ($/ton).

Disposability Weak G--disposability Free disposability

Frontier CNLS DEA CNLS DEA CNLS DEA CNLS DEA
Contextual vars Without Without With With Without Without With With
N 131 129 128 128 171 170 171 171
Median 4,053.27 482.50 3,119.88 1,000.48 116.91 134.03 116.91 135.18
Mean 122,285.70 2,920.11 30,560.40 2,722.81 110.48 119.77 109.24 119.93
Min 93.02 53.67 61.16 18.91 4419 27.19 19.48 26.55
Max 389,515.50 44,889.21 108,528.20 16,884.01 116.91 174.38 116.91 173.51

43, Effects of contextual variables

While contextual variables are primarily applied as robustness checks to consider how controlling for vintage effects and other air pollutants
impact main shadow price estimates, their parameter estimates are also of interest for understanding drivers of (CO,-focused) environmental
efficiency. Table 4 presents the empirical estimates of the associated parametric functions for the CNLS WGD and FD models fitted using the
dataset outlined in Section 3.

In line with Hampf and Redseth [4], we find that newer generating units are in general more environmentally inefficient than older units. This
finding is discussed in more detail by Hampf and Redseth [4], who argue that this is likely related to the implementation of more stringent
environmental regulation for NOy and SO, over time. Regardless, the impacts of contextual variables are substantially less pronounced, both in
terms of magnitude and statistical significance, for WGD than for FD. The explanation for this is found in Section 4.1, namely that the latter
overestimates potential for efficiency improvement for the case study at hand.

5. Summary and conclusions



This paper has derived a CNLS estimator for the weak G-disposable techology. Based thereon, shadow prices for CO, emissions from power
generation are estimated considering both stochastic and deterministic reference technologies and with and without contextual factors. All
results are compared to reference technologies under free disposability of pollution-generating input and bad output.

Our empirical investigations find average efficiency scores associated with the weak G- and free disposability models equal to 7 and 198,
respectively, using the Directional Distance Function. This means that the potential to reduce carbon dioxide emissions for given inputs are
found negligible under the materials balance condition, while it is deemed promising under free disposability. The latter therefore leads to
predicted minimal emissions that do not coincide with observed emissions. Average shadow price estimates for carbon dioxide range between
14,000 and 40,000 $/ton CO, for the weak G-disposable model and between 70 and 77 $/ton CO, under free disposability. The substantial
shadow prices under weak G-disposability reflect the limited degree of substitutability among CO, and fuel consumption when taking the
materials balance principle into consideration.

The empirical findings clearly illustrate that ignoring the strict dependence of CO, on the carbon content and therefore the quantity of coal
consumed - which is the case under free disposability - leads to overestimation of environmental inefficiency and underestimation of shadow
prices for CO,. In particular, we show that the standard approach of the shadow pricing literature - to assume that bads can be reduced by
lowering good outputs — becomes less relevant when the amount of bads is contingent on the fuel consumption as the latter is usually
assumed fixed when calculating shadow prices. Hence, emissions are close to predetermined when there are no end-of-pipe abatement
technologies present.

Kuosmanen and Zhou [17] are concerned with shadow price estimates presented in the literature that substantially surpass prices for
tradeable emission permits. In line with our results, they find emission mitigation only by means of foregoing intended outputs too restrictive
for abatement cost estimation. Furthermore, they argue that deterministic frontier estimation methods such as DEA overestimate marginal
abatement costs because they overestimate shadow prices faced by inefficient units. To resolve the latter, they develop a quantile DEA
approach that enables estimating shadow prices at “local” frontiers. In line with this approach, we compare shadow prices based on stochastic
CNLS to deterministic DEA. Unlike Kuosmanen and Zhou [17], our results do in general not support lower shadow prices of the stochastic
model.

Another potential explanation for deviations among shadow price estimates and quota prices that is not addressed by Kuosmanen and Zhou
[17] is whether the shadow pricing literature focuses on the wrong objective function for marginal abatement cost estimation. Indeed, an
intuitive approach to analyzing the economic impacts of environmental regulation is to consider how emission constraints affect DMUs’
profits; see e.g., Radseth [28], [31]. The dual price associated with an emission constraint can readily be interpretted as marginal abatement
costs, reflecting the least costly approach among available strategies for reducing emissions. A new shadow pricing approach focused on the
dual of the restricted profit function can for example be built from dual formulations of the profit function developed in Kuosmanen and
Kazemi Matin [32]. We leave this as a promising avenue for further research.

Finally, the empirical investigations presented in this paper use data from 2011 and 2015. While we consider that there have not been any
major shifts in terms of carbon dioxide removal for the power generators under consideration, and consequently that the results are robust,

we encourage further research to replicate our study using more recent data or other datasets on the joint production of intended outputs and
carbon dioxide emissions.
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Appendix A. GAMS code
SETS.

i index of dmus /i1*1160/.
k index of contextual vars [k1*k3/.

alias(i,j).



PARAMETERS.

X(i) Fuel input of firm i.

C(i) Capacity input of firm i.

Y(i) Output of firm i.

B(i) badput of firm i.

Z(i,k) contextual vars.

EF avg. emission factor /0.102899223/.

gy(i) direction vector y.

gb(i) direction vector b.

EffDEA_WGD(i) residual CNLS weak G-disposable.

EffDEA_FD(i) residual CNLS freely disposable.

EffDEA_WGD_ZVAR(i) residual CNLS weak G-disposable.
EffDEA_FD_ZVAR(i) residual CNLS freely disposable.

MRT_CNLS_WGD(i) marginal rate of transformation - weak G-disposable.
MRT_DEA_WGD(i) marginal rate of transformation - weak G-disposable.
MRT_CNLS_WGD_ZVAR(i) marginal rate of transformation - weak G-disposable.
MRT_DEA_WGD_ZVAR(i) marginal rate of transformation - weak G-disposable.
MRT_CNLS_FD(i) marginal rate of transformation - free disposable.
MRT_DEA_FD(i) marginal rate of transformation - free disposable.
MRT_CNLS_FD_ZVAR(i) marginal rate of transformation - free disposable.
MRT_DEA_FD_ZVAR(i) marginal rate of transformation - free disposable.
Yhat_CNLS_WGD_ZVAR(i) predicted frontier.

Yhat_CNLS_FD_ZVAR(i) predicted frontier.

Beta_WGD(k) Parameters for contextual variables - weak G-disposable.
Beta_FD(k) Parameters for contextual variables - free disposable.

* The following command assumes the data files have been saved in the roor of drive C:
$libinclude xlimportXC:\Axioms_data\WGD\Input.xls a1:fd2.

$libinclude xlimport C C:\Axioms_data\WGD\Capacity.xls a1:fd2.
$libinclude xlimport B C:\Axioms_data\WGD\Badput.xls a1:fd2.
$libinclude xlimport Y C:\Axioms_data\WGD\Output.xls a1:fd2.
$libinclude xlimport Z C:\Axioms_data\WGD\Contextual.xlIs a1:d161.

Display X,C,B,Y.Z;



*Set direction vectors.

gy(i)=1;

gb(i)=1;

VARIABLES.

E(i) Composite error term (v+u).

a(i) scale coefficient.

bx(i) slope coeff x.

bb(i) slope coeff b.

bz(k).

SS Sum of squares of residuals.

Chat(i) emission function.

Beta Directional Distance Function.

POSITIVE VARIABLES.

Epos(i) one-sided error term.

by(i) slope coeff'y.

bc(i) slope coeff c.

bxpos(i) slope coeff free dispos.

bbpos(i) slope coeff free dispos.

EQUATIONS.

QSSE_CNLS objective function=sum of squares of residuals.
QSSE_DEA.

QREG_CNLS_WGD(i) regression equation weak G-disposable.
QREG_DEA_WGD(i) regression equation weak G-disposable.
QREG_CNLS_WGD_ZVAR(i) regression equation weak G-disposable.
QREG_DEA_WGD_ZVAR(i) regression equation weak G-disposable.
QREG_CNLS_FD(i) regression equation freely disposable.
QREG_DEA_FD(i) regression equation freely disposable.
QREG_CNLS_FD_ZVAR(i) regression equation freely disposable.
QREG_DEA_FD_ZVAR(i) regression equation freely disposable.
QCONC_WGD(i,j) curvature constraint (Afriat inequalities) weak G-disposable.
QCONC_FD(i,j) curvature constraint (Afriat inequalities) freely disposable.
QWGD(i) Weak G-dispos constraint.

QDDF_WGD(i) Directional Distance Function weak G-disposable.



QDDF_FD(i) Directional Distance Function free disposable.

QSSE_CNLS.. SS=e=sum(i, E(i)*E(i));
QSSE_DEA.. SS=e=sum(i,Epos(i)*Epos(i));

QREG_CNLS_WGD(i).. by(i)*Y(i)=e=a(i)+bx(i)*X(i)+be(i)*C(i).
+bb(i)*B(i) - E(i);

QREG_DEA_WGD(i).. by(i)*Y(i)=e=a(i)+bx(i)*X(i)+bc(i)*C(i).
+bb(i)*B(i) - Epos(i);

QREG_CNLS_WGD_ZVAR(i).. by(i)*Y(i)=e=a(i)+bx(i)*X(i) +bc(i)*C(i).

+ bb(i)*B(i)+sum(k,bz(k)*Z(i,k)) - E(i);

QREG_DEA_WGD_ZVAR(i).. by(i)*Y(i)=e=a(i)+bx(i)*X(i)+bc(i)*C(i).

+ bb(i)*B(i)+sum(k,bz(k)*Z(i,k)) - Epos(i);

QREG_CNLS_FD(i).. by(i)*Y(i)=e=a(i)+bxpos(i)*X(i)+bc(i)*C(i).

+ bbpos(i)*B(i) - E(i);

QREG_DEA_FD(i).. by(i)*Y(i)=e=a(i)+bxpos(i)*X(i)+bc(i)*C(i).

+ bbpos(i)*B(i) - Epos(i);

QREG_CNLS_FD_ZVAR(i).. by(i)*Y(i)=e=a(i)+bxpos(i)*X(i)+bc(i)*C(i).
+ bbpos(i)*B(i)+sum(k,bz(k)*Z(i,k)) - E(i);

QREG_DEA_FD_ZVAR(i).. by(i)*Y(i)=e=a(i)+bxpos(i)*X(i)+bc(i)*C(i).

+ bbpos(i)*B(i)+sum(k,bz(k)*Z(i.k)) - Epos(i);

QCONC_WGD(i,j).. a(i)+bx(i)*X(i)+bc(i)*C(i)+bb(i)*B(i) - by(i)*Y(i)=I=.
a(j)+bx(j)*X(i)+be(j)*C(i)+bb(j)*B(i) - by(j)*Y(i);

QCONC_FD(i,j).. a(i)+bxpos(i)*X(i)*+bc(i)*C(i)+bbpos(i)*B(i) - by(i)*Y(i)=I=.
a(j)+bxpos(j)*X(i)+bc(j)*C(i)+bbpos(j)*B(i) - by(j)*Y(i);

QWGD(i).. bx(i)+EF*bb(i)=g=0;

QDDF_WGD(i).. by(i)*gy(i)+bb(i)*gh(i)=e=1;

QDDF_FD(i).. by(i)*gy(i)+bbpos(i)*gh(i)=e=1;

“*** Stage 1: Weak G-disposable models ***.

MODEL CNLS_WGD /QSSE_CNLS,QREG_CNLS_WGD,QCONC_WGD,QDDF_WGD,QWGD]/.
OPTION solvelink=0;

OPTION limrow=0;

OPTION limcol=0;

OPTION SOLPRINT=OFF;

OPTION optcr=0.0;

OPTION iterlim=10000000;



OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE CNLS_WGD using NLP Minimizing SS;
MRT_CNLS_WGD(i)$(by.I(i)>0)=bb.I(i)/by.1(i);
*

MODEL DEA_WGD /QSSE_DEA,QREG_DEA_WGD,QCONC_WGD,QDDF_WGD,QWGD/.
OPTION solvelink=0;

OPTION limrow=0;

OPTION limcol=0;

OPTION SOLPRINT=OFF;

OPTION optcr=0.0;

OPTION iterlim=10000000;

OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE DEA_WGD using NLP Minimizing SS;
MRT_DEA_WGD(i)$(by.I(i)>0)=bb.I(i)/by.I(i);
EffDEA_WGD(i)=Epos.I(i);

MODEL CNLS_WGD_ZVAR /QSSE_CNLS,QREG_CNLS_WGD_ZVAR,QCONC_WGD,QDDF_WGD,QWGD/.
OPTION solvelink=0;

OPTION limrow=0;

OPTION limcol=0;

OPTION SOLPRINT=OFF;

OPTION optcr=0.0;

OPTION iterlim=10000000;

OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE CNLS_WGD_ZVAR using NLP Minimizing SS;

MRT_CNLS_WGD_ZVAR(i)$(by.I(i)>0)=bb.1(i)/by.(i);



Beta_WGD(k)=bz.l(k);

Yhat_CNLS_WGD_ZVAR(i)=by.I(i)*Y(i) - a.I(i) - bx.I(i)*X(i) - bc.I(i)*C(i) - bb.I(i)*B(i);
MODEL DEA_WGD_ZVAR [QSSE_DEA,QREG_DEA_WGD_ZVAR,QCONC_WGD,QDDF_WGD,QWGD/.
OPTION solvelink=0;

OPTION limrow=0;

OPTION limcol=0;

OPTION SOLPRINT=OFF;

OPTION optcr=0.0;

OPTION iterlim=10000000;

OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE DEA_WGD_ZVAR using NLP Minimizing SS;
MRT_DEA_WGD_ZVAR(i)$(by.1(i)>0)=bb.1(i)/by.1(i);
EffDEA_WGD_ZVAR(i)=Epos.I(i);

o Stage 2: Freely disposable models ***.

MODEL CNLS_FD /QSSE_CNLS,QREG_CNLS_FD,QCONC_FD,QDDF_FD].
OPTION solvelink=0;

OPTION limrow=0;

OPTION limcol=0;

OPTION SOLPRINT=OFF;

OPTION optcr=0.0;

OPTION iterlim=10000000;

OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE CNLS_FD using NLP Minimizing SS;
MRT_CNLS_FD(i)$(by.I(i)>0)=bbpos.I(i)/by.I(i);

*

MODEL DEA_FD /QSSE_DEA,QREG_DEA_FD,QCONC_FD,QDDF_FD/.
OPTION solvelink=0;

OPTION limrow=0;



OPTION limcol=0;

OPTION SOLPRINT=OFF;

OPTION optcr=0.0;

OPTION iterlim=10000000;

OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE DEA_FD using NLP Minimizing SS;
MRT_DEA_FD(i)$(by.I(i)>0)=bbpos.I(i)/by.1(i);
EffDEA_FD(i)=Epos.I(i);

MODEL CNLS_FD_ZVAR /QSSE_CNLS,QREG_CNLS_FD_ZVAR,QCONC_FD,QDDF_FD/.
OPTION solvelink=0;

OPTION limrow=0;

OPTION limcol=0;

OPTION SOLPRINT=O0FF;

OPTION optcr=0.0;

OPTION iterlim=10000000;

OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE CNLS_FD_ZVAR using NLP Minimizing SS;
MRT_CNLS_FD_ZVAR(i)$(by.l(i)>0)=bbpos.I(i)/by.1(i);
Beta_FD(k)=bz.I(k);
Yhat_CNLS_FD_ZVAR(i)=by.I(i)*Y(i) - a.I(i) - bxpos.I(i)*X(i) - bc.I(i)*C(i) - bbpos.I(i)*B(i);
MODEL DEA_FD_ZVAR /QSSE_DEA,QREG_DEA_FD_ZVAR,QCONC_FD,QDDF_FD|/.
OPTION solvelink=0;

OPTION limrow=0;

OPTION limcol=0;

OPTION SOLPRINT=OFF;

OPTION optcr=0.0;

OPTION iterlim=10000000;



OPTION reslim=10000000;

OPTION decimals=3;

OPTION NLP=MINOS;

$libinclude gams2txt.

SOLVE DEA_FD_ZVAR using NLP Minimizing SS;

MRT_DEA_FD_ZVAR(i)$(by.l(i)>0)=bbpos.I(i)/by.I(i);

EffDEA_FD_ZVAR(i)=Epos.I(i);

*SPECIFY THE FOLDER WHERE RESULTS ARE TO BE STORED.

$libinclude xldump EffDEA_WGD C:\Axioms_data\WGD\ShadPrice.xls EffDEA_WGD a1:ek160.

$libinclude xldump EffDEA_WGD_ZVAR C:\Axioms_data\WGD\ShadPrice.xls EffDEA_WGD_ZVAR a1:ek160.
$libinclude xldump EffDEA_FD C:\Axioms_data\WGD\ShadPrice.xls EffDEA_FD a1:ek160.

$libinclude xldump EffDEA_FD_ZVAR C:\Axioms_data\WGD\ShadPrice.xls EffDEA_FD_ZVAR a1:ek160.
$libinclude xldump MRT_CNLS_WGD C:\Axioms_data\WGD\ShadPrice.xls MRT_CNLS_WGD a1:ek160.
$libinclude xldump MRT_DEA_WGD C:\Axioms_data\WGD\ShadPrice.xls MRT_DEA_WGD a1:ek160.

$libinclude xldump MRT_CNLS_WGD_ZVAR C:\Axioms_data\WGD\ShadPrice.xls MRT_CNLS_WGD_ZVAR a1:ek160.
$libinclude xldump MRT_DEA_WGD_ZVAR C:\Axioms_data\WGD\ShadPrice.xls MRT_DEA_WGD_ZVAR a1:ek160.
$libinclude xIdump MRT_CNLS_FD C:\Axioms_data\WGD\ShadPrice.xls MRT_CNLS_FD a1:ek160.

$libinclude xldump MRT_DEA_FD C:\Axioms_data\WGD\ShadPrice.xls MRT_DEA_FD a1:ek160.

$libinclude xldump MRT_CNLS_FD_ZVAR C:\Axioms_data\WGD\ShadPrice.xls MRT_CNLS_FD_ZVAR a1:ek160.
$libinclude xldump MRT_DEA_FD_ZVAR C:\Axioms_data\WGD\ShadPrice.xIs MRT_DEA_FD_ZVAR a1l:ek160.
$libinclude xldump Beta_WGD C:\Axioms_data\WGD\ShadPrice.xls Beta_WGD a1:ek160.

$libinclude xldump Beta_FD C:\Axioms_data\WGD\ShadPrice.xls Beta_FD a1:ek160.

$libinclude xldump Yhat_CNLS_WGD_ZVAR C:\Axioms_data\WGD\ShadPrice.xls Yhat_CNLS_WGD_ZVAR a1:ek160.

$libinclude xldump Yhat_CNLS_FD_ZVAR C:\Axioms_data\WGD\ShadPrice.xls Yhat_CNLS_FD_ZVAR a1:ek160.

Appendix B. Robustness checks

(See Table 6, Table 7, Table 8, Table 9).

Table 6. Shadow price estimates for gy=2;g,=1 ($/ton).

Disposability Weak G--disposability Free disposability
Frontier CNLS DEA CNLS DEA CNLS DEA
Contextual vars Without Without With With Without Without
N 83 103 96 110 144 144
Median 11 916.19 6908.04 6 140.54 8 251.28 71.01 77.01
Mean 48 396.10 19534.44 60 584.11 12 938.17 69.25 76.62
Min 3274.93 633.05 2307.72 753.68 36.75 14.03

Max 1077 780.00 477 737.30 2672 541.00 104 875.40 106.89 117.81

CNLS

With

143

73.44

71.14

753

110.31

DEA

With

142

72.74

71.62

0.07

122.32



Table 7. Shadow price estimates for gy=1;g,=2 ($/ton).

Disposability
Frontier
Contextual vars
N

Median

Mean

Min

Max

Weak G--disposability

CNLS

Without

91

14 348.77

8495 319.00

1836.82

235000 000.00

Table 8. Shadow price estimates for gy=1;g,=0 ($/ton).

Disposability
Frontier
Contextual vars
N

Median

Mean

Min

Max

Weak G--disposability

CNLS

Without

127

61.85

1523.14

-1627.16

67 410.03

Table 9. Shadow price estimates for g,=0;g,=1 ($/ton).

Disposability
Frontier
Contextual vars
N

Median

Mean

Min

Max

Appendix C. Summary statistics for replicability analysis

(See Table 10).

Weak G--disposability

CNLS

Without

84

14 278.12

45 860.60

3373.42

1057 991.00

Table 10. Summary statistics.

Type

Input

Output

Contextual

Variable
Capacity
Fuel
Electricity
CO,

Age

DEA CNLS DEA
Without With With
101 91 m
6908.04 5732.40 8288.28
17 977.83 28 366.59 14 340.90
633.05 2394.59 759.74
431 829.40 800 879.10 159 761.10
DEA CNLS DEA
Without With With
139 139 140
550.26 76.68 998.68
1955.82 1799.30 248345
-2 147.55 -1633.03 -1633.03
67 418.23 69 031.06 69 031.06
DEA CNLS DEA
Without With With
102 96 111
7144.72 7 946.96 8288.21
18 028.86 54 481.37 14 257.54
633.05 151.93 151.93
393 754.50 1235 053.00 150 641.50
Unit Obs Mean
MW 171 430.6
1000 MMBtu 171 17,901.5
100 MWh 171 18,742.4
1000 Tons 171 1,668.3
Years 171 46.4

Free disposability
CNLS DEA
Without Without
144 144
71.20 77.81
70.21 76.89
38.78 14.03
106.95 117.81
Free disposability
CNLS DEA
Without Without
104 85
62.96 76.86
52.00 75.75
0.00 5.06
106.74 117.81

Free dispos.
CNLS
Without
144

71.24

70.47

38.74

107.00

St.Dev
2459
14,045.9
15,165.8
1,308.8

10.5

ability

DEA

Without

144

77.94

77.09

14.03

117.81

Min

112.5

548.8

554.0

511

19.0

CNLS DEA
With With
144 142

73.54 7423
72.08 7414
10.76 10.76

110.47 122.37

CNLS DEA
With With
94 109
68.10 71.85
61.66 68.75
0.75 8.59
109.68 121.83
CNLS DEA
With With
144 142
73.60 74.21
7191 73.63
7.37 7.40

110.54 122.40

Max
952.0
55,766.7
60,669.8
5,144.0

63.0



Type Variable Unit Obs Mean St.Dev Min Max
SO, control Dummy 171 0.8 0.4 0.0 1.0

Price Electricty price $ per MWh 171 101.0 0.0 101.0 101.0
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