Vis enkel innførsel

dc.contributor.authorWickerts, Sanna
dc.contributor.authorArvidsson, Rickard
dc.contributor.authorNordelöf, Anders
dc.contributor.authorSvanström, Magdalena
dc.contributor.authorJohansson, Patrik
dc.coverage.spatialSweden, Norway, Franceen_US
dc.date.accessioned2024-01-30T14:52:10Z
dc.date.available2024-01-30T14:52:10Z
dc.date.created2023-09-19T14:57:37Z
dc.date.issued2023-06-16
dc.identifier.citationACS Sustainable Chemistry and Engineering. 2023, 11 (26), 9553-9563.en_US
dc.identifier.issn2168-0485
dc.identifier.urihttps://hdl.handle.net/11250/3114617
dc.descriptionSanna Wickerts, Rickard Arvidsson, Anders Nordelöf, Magdalena Svanström, and Patrik Johansson, Prospective Life Cycle Assessment of Lithium-Sulfur Batteries for Stationary Energy Storage, ACS Sustainable Chemistry & Engineering 2023 11 (26), 9553-9563, DOI: 10.1021/acssuschemeng.3c00141en_US
dc.description.abstractThe lithium-sulfur (Li-S) battery represents a promising next-generation battery technology because it can reach high energy densities without containing any rare metals besides lithium. These aspects could give Li-S batteries a vantage point from an environmental and resource perspective as compared to lithium-ion batteries (LIBs). Whereas LIBs are currently produced at a large scale, Li-S batteries are not. Therefore, prospective life cycle assessment (LCA) was used to assess the environmental and resource scarcity impacts of Li-S batteries produced at a large scale for both a cradle-to-gate and a cradle-to-grave scope. Six scenarios were constructed to account for potential developments, with the overall aim of identifying parameters that reduce (future) environmental and resource impacts. The specific energy density and the type of electrolyte salt are the two most important parameters for reducing cradle-to-gate impacts, whereas for the cradle-to-grave scope, the electricity source, the cycle life, and, again, the specific energy density, are the most important. Additionally, we find that hydrometallurgical recycling of Li-S batteries could be beneficial for lowering mineral resource impacts but not necessarily for lowering other environmental impacts.en_US
dc.description.sponsorshipWe would like to thank the Swedish Energy Agency (grant number 50099-1) and the Vinnova competence center Batteries Sweden (BASE) for financially supporting this study.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectlithium-sulfur batteriesen_US
dc.subjectlarge-scale energy storageen_US
dc.subjectlife cycle assessmenten_US
dc.subjectrecyclingen_US
dc.subjectclimate changeen_US
dc.titleProspective Life Cycle Assessment of Lithium-Sulfur Batteries for Stationary Energy Storageen_US
dc.title.alternativeProspective Life Cycle Assessment of Lithium-Sulfur Batteries for Stationary Energy Storageen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.rights.holder© 2023 The Authorsen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1021/acssuschemeng.3c00141
dc.identifier.cristin2176589
dc.source.journalACS Sustainable Chemistry and Engineeringen_US
dc.source.volume11en_US
dc.source.issue26en_US
dc.source.pagenumber9553-9563en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal