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Abstract: 

Knowing the speed at which a cyclist travels is important in route and mode choice 
modelling. Empirical evidence suggests that it varies significantly in accordance with 
– among other things – infrastructure and topology. Despite this, in many network-
based transport models cycling speed is constant, making travel distance the 
predominant variable of cycling behavior.  

Motivated by the lack of a comprehensive speed model in the literature, we present 
models for bicycles and e-bikes estimated based on a large-scale collection of GPS 
data in the Oslo area. In the models, speed on a network link is described as a 
function of several characteristics of the infrastructure and topology, and differs by 
user segments such as gender, trip purpose and type of bicycle. Model parameters are 
estimated with regression models using data from close to 50 000 single cycling trips.  

The data indicate that, on average, men cycle at a faster rate than women, although 
the difference is significantly less in the case of e-bikes. There is a non-linear and 
non-monotonic relationship between speed and gradient, with speed increasing up to 
a gradient of –6%, but decreasing thereafter most likely due to safety concerns. 
Notable is the fact that cycling speed is significantly higher on routes where cyclists 
and pedestrians have their own dedicated space.  
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1. Introduction 

The speed at which cyclists travel is a direct consequence of cycling behavior, which 
is in contrast to public transport, where travel speed is beyond the control of the 
traveller. As opposed to driving a car, where the upper and lower ranges of travel 
speeds are restricted by limits, cycling speeds are less regulated. Cycling speed is 
restricted primarily by the physical condition of the cyclist and varies with the effort 
put into it. The environment (e.g. weather, wind, slipstreams, road surface and 
topology) and to some extent bicycle technology are factors that influence the degree 
to which physical power translates to speed. In addition, safety motives in relation to 
road infrastructure and volume of traffic influence the speed at which cyclists choose 
to travel.    

These considerations suggest that cycling speed varies greatly across individuals, 
regions, time of year, road sections and the bicycle itself. Variation in speed within 
and across studies is documented in Allen et al. (2008).  

Cycling speeds influence travel times and therefore play an important role in 
transport model systems. Route choice models are typically based on the algorithm 
“choose the fastest available cycling route”. Thus, knowledge about how speed varies 
across network links is of crucial information in route choice modelling. Cycling 
speed is also important knowledge in travel mode choice modelling, since travel time 
savings or losses of the alternative “cycle” influences the choice of whether to cycle 
or not. All other things equal, a transport model will predict a higher market share of 
cycling where it can take place at higher speeds.    

Yet many transport models (such the Norwegian regional transport models; Madslien 
et al. 2005) impose a constant cycling speed when route choice is being modelled, 
thus making travel distance the sole determinant. Some models have route choice 
dependent on the characteristics of road infrastructure. For instance, Menghini et al. 
(2010) and Ehrgott et al. (2012) have established route choice models where 
qualitative information about the road network is among the generalized cost 
functions underlying the behavioral model. In this case, behavioral changes in route 
choice due to qualitative improvements in the road network (e.g. separating 
pedestrians from cyclists) can be predicted. Such route choice models circumvent the 
need for separated speed models by directly modelling the effect of network 
characteristics on cyclist behavior without making cycling speed explicit. However, 
speed models are needed when one wants to predict the effect of changes in the road 
network on cycling speeds and travel times savings. Information about the latter 
could be crucial for economic appraisal studies, where travel time changes enter the 
economic accounting of the user benefits of road infrastructure projects. 
Applications to economic appraisal, which has a central role in Norwegian transport 
planning, was a major motivation for the establishing of the speed models presented 
in this paper.      

One reason why so few transport models vary cycling speed across network links is 
likely a scarcity of comprehensive speed models in the scientific literature. El-
Geneidy et al. (2007) were probably the first to study a comprehensive model where 
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speed is described as a function of network link characteristics. Some significant 
results were identified (see later discussion in Section 6) despite the low sample size 
of the study. To our knowledge, El-Geneidy et al.’s speed model was never 
implemented in a transport model. In fact, it seems that most behavior cycle models 
in which network link information is used within a transport model system are route 
choice models that do not have an underlying speed model. Models by Menghini et 
al. (2010) or Ehrgott et al. (2012) use link length (not link speed or link travel time) as 
one of the explanatory variables in their route choice models.1 An alternative 
approach, where link attributes are first translated into link speed by means of a 
speed model and then consecutively used in route choice modelling, can be found in 
Ziemke et al. (2017), whose speed model, however, is limited and not estimated on 
empirical data.  

In this paper, we present speed models (one for bicycle and one for e-bike) 
describing speed on a network link as a function of several characteristics of 
infrastructure and topology, as well as the user segment defined by gender, trip 
purpose and type of bicycle. We regard our model as the most comprehensive 
cycling speed model in the literature. 

Besides its scope, a strength of the model is that it is estimated empirically based on 
revealed preference data. Thus, the model mirrors real world behavior and is 
therefore an empirical model as opposed to (i) pure theoretical models that are based 
on physical laws (see, e.g., Parkin and Rotheram (2010, page 4) and (ii) speed models 
that use given/assumed parameter values (as in Ziemke et al., 2017).  

Another contribution of the paper is the speed modelling of e-bikes utilizing a data 
set with over 12 000 registered e-bike trips. In only a few previous studies (Schleinitz 
et al., 2017; Dozza et al., 2016) have separate models for e-bikes been estimated.  

Our data were collected in Oslo, which has about 650 000 inhabitants and a GDP 
per capita of about 100 000 euros. Oslo is one of the wealthiest cities in Europe.2 
The mode share of cycling for all trips in Oslo was 4% in 2012 (URBANET 2013), 
and although this has increased in recent years, it is still lower than in most other 
European capitals. Barriers to cycling are long and cold winters, the hilly topology of 
the city and a lack of separate cycle lanes and pathways. The latter has recently 
received much attention in the political debate, resulting in city authorities allocating 
significant resources to improve cycling infrastructure. 

The paper is structured as follows: the data are described in Section 2, the statistical 
model in Section 3, parameter estimates in Section 4, and calibration and 
implementation of the model in Section 5. Section 6 is a discussion of (a) 
methodological issues and possible future improvements, (b) how our results 
compare with the earlier literature and what policy implications can be drawn. 
Section 7 concludes.   

  

                                                 

1 Also, Sener et al. (2009), who established a route choice model based on stated preference data, do 
not use cycling speed as an exploratory variable for route choice 
2 https://www.oecd.org/gov/regional-policy/resilient-cities-oslo.pdf (last retrieved 17 April 2017) 

https://www.oecd.org/gov/regional-policy/resilient-cities-oslo.pdf
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2. Data 

Data collection 

Cycling speed, the dependent variable of the model, is measured on the basis of GPS 
observations. This method is gaining in popularity in cycling research (Menghini et 
al., 2009; Winters et al., 2010; Broach et al., 2012; Dill et al., 2014) and in studies with 
the primary objective of measuring cycling speed (El-Geneidy et al., 2007; Dozza et 
al., 2016; Schleinitz et al., 2017). 

The GPS observations in this study were recorded by means of the commercial 
mobile application Sense.Dat (www.dat.nl) downloaded and taken into use by the 
respondents. 

The original data collection was initiated by Fyhri et al. (2016), along with 
respondents recruited from two samples: (a) 1,000 persons who had applied to take 
part in an e-bike subvention program in Oslo3 and (b) a sample of 10,000 cyclists 
from Oslo drawn from a bike insurance register. Data collection was carried out over 
three rounds. In the first (carried out in January 2016), respondents were asked if 
they wanted to use the app to record all their travel at a later point. Information 
about the program and login was sent via email. The second round was an 
intermediate questionnaire survey for those who opted out of using the app 
(conducted in April). The final round was carried out from May to June 2016, and 
consisted of the app data collection and a questionnaire survey (completed between 
26 May and 3 June).  

A total of 3,132 participants (890 and 2,242 from the first and second sample, 
respectively) responded to the first survey. Of these, 1,376 participants (376 and 
1,000) agreed to register their travel with the app, and were sent the information 
regarding its download and use, as well as a unique user ID for login. Not all those 
invited took the app into use, so the final sample of app users was 721 (161 vs. 560, 
respectively) participants. 

Table 1 presents an overview of relevant background variables for the participating 
app users, and compares these with data from the total sample of cycle owners in 
Oslo, from which the current sample is partially drawn (Fyhri et al. 2016).  

 

Table 1 Background characteristics of participating app users and the bicycle owners in Oslo (data from 
Fyhri et al 2016). 

                                                 

3 The subvention program in Oslo amounted to 25% of cost of e-bike, max 500 €. The budget of the 
program was large enough to pay for 1000 e-bikes. The only conditions that had to be filled were that 
the applicant had to live in Oslo, the bike had to be an approved pedelec, it had to be registered in an 
insurance registry (to locate bicycles based on their frame number in the case of theft) and that they 
had to respond to a questionnaire prior to using the e-bike.  

http://www.dat.nl/
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App 
users 

Bicycle 
owners 

Mean age 45.2 47.4 

% Female  41 44 

% Employed 91 87 

% Own/access to car 85 85 

% Own/access to bicycle 97 98 

% Used bicycle on interview day (June) 45 27 

N 721 2242 

 

Study participants differ in several respects from the broader population of bicycle 
owners: fewer of them are female and the employment rate among them is higher.  

Registration of cycling information and geographical mapping 
The app automatically recognized transport mode from the speed and motion 
pattern. According to the developers, the accuracy of recognition of transport mode 
is 90%. The app does not distinguish between bicycle and e-bike, however. 
Identification of the type of bicycle used was therefore based on the purchase date of 
the e-bike. All bike trips registered after the purchase date are considered e-bike trips. 
 
The purpose of trips was given automatically by the app based on re-occurring places 
and trips. The user can state the purpose of the trip or correct the guess, in this way 
future trips being more accurate. However, the distribution of trip purposes in our 
data was substantially different from traditional survey data, indicating that the 
automatic registration of trip-purposes in Sense.Dat is not very reliable (see also 
section 6). 
 
The app automatically registers when a trip is completed and stores a trip ID to 
single GPS observations. After data cleaning, the data set consists of the 48,633 
cycling trips – 36,447 by bike and 12,186 e-bike trips – made by 709 persons 
identified by a user ID in the mobile application. The number of registered cycle 
trips per person in the data collection period (1 April to 31 June 2016) ranges from 1 
to 411.  
 
The mobile application maps raw GPS observation on Open Street-Map in an initial 
data cleaning process. This procedure removes noise from the GPS observations by 
forcing them onto the network links. For the scope of our study, we regard that 
possible effects/errors of this procedure to be uniform over the data set. We 
therefore decided to use the map-matched time and location stamps for our speed 
calculation rather than the one’s from the raw GPS-observations. 

For modelling building we used the official road network of the Public Roads 
administration of Norway (the national road database NVDB4). The reason for this is 
the need to have link information that is consistent with the network used in 

                                                 

4 http://www.vegvesen.no/fag/teknologi/Nasjonal+vegdatabank/In+English (last retrieved 17 April 
2017) 

http://www.vegvesen.no/fag/teknologi/Nasjonal+vegdatabank/In+English
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Norwegian transport models. Therefore, we projected GPS observations on the Oslo 
region NVDB network,5 which consists of close to 50,000 links (see Figure 1). 

 

Figure 1 The Oslo road network (NVDB). 

 

Projections result in the attachment of link IDs onto single GPS observations,6 
which previously were marked with a user and trip ID as well as time and location 
stamps.  

Calculation of speed at a link level 

Based on this information, we calculate the average speed 𝑆𝑙 on a network link l for a 
given cycling trip m. The following equation is used (indices for trips are suppressed).  

                                                 

5 This was done by means of the spatial join approach in ArcMap ( 
http://desktop.arcgis.com/en/arcmap/10.3/tools/analysis-toolbox/spatial-join.htm) 
6 In this connection, we excluded observations that where further than 8 meters from the actual link. 
The link represents the center line of the road, and since the roads we are interested in have one or 
two lanes in each direction, we consider 8 meters as a critical distance for an observation to take place 
on the given link. 

http://desktop.arcgis.com/en/arcmap/10.3/tools/analysis-toolbox/spatial-join.htm
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(1)                                       𝑆𝑙 =
∑ 𝑑𝑙𝑖

𝑛
𝑖=1

∑ 𝑡𝑙𝑖
𝑛
𝑖=1

 

where 

i=1 is the first GPS observation for a given trip on link l, 

i=n is the last GPS observation for a given trip on link l, 

dli is the distance (in meters) between observation i and i – 1 identified by the 

related location stamps; we set  𝑑𝑙1 = 0, 

𝑡𝑙𝑖 is the duration (in seconds) between observation i and i – 1 identified by 
the related time stamps.7 

Thus, only GPS observations mapped on a link are used to calculate speed on that 
link; speeds measured at link transitions are not included. Because speed may 
decrease at link transitions, due to braking and acceleration, we measure speed on a 
link level as higher than on a trip level. We therefore need to calibrate the speed 
model (see Section 5).   

Alternatively, we could have included distance and duration between the first 
observation of link l and the last observation on link l – 1 (or between the first 
observation on l + 1 and the last of link l). This would have meant that the speed 
measurements were more continuous. However, it would also have led to 
inconsistency in the concept structures of the model, as the estimated effects of 
characteristics of link l would partly estimate speed associated with link l – 1. This 
was deemed problematic, especially when l is short or when the last observation on l 
– 1 is far from the link transition. Note that after projection on the applied network 
there are links without any (valid) GPS observation, which means that some speed 
measures would have been based on speed on l – 2, l – 3 etc.        

Besides the need to calibrate the speed model, the approach chosen has implications 
for the total sample size of the estimation model. That is because trip-link pairs with 
only one valid GPS observation could not be used for estimation (see next section) 

 

3. Statistical model  

We specify the same statistical model for both bicycle and e-bike, but estimate two 
sets of coefficients by means of separate model runs. 

The dependent variable in the model is average speed on link l calculated by 
Equation (1). Speed is specified by a function of the user segment, defined by gender 

g and trip purpose p, link characteristic 𝑋𝑘,𝑙 and related coefficients 𝛽𝑘, as well as an 

error term 𝜀.   

(2)               𝑆𝑙,𝑔,𝑝 = 𝑒𝛽𝑜+𝛽𝑚𝑒𝑛∗ 𝐷𝑔=1+𝛽𝑤𝑜𝑟𝑘∗ 𝐷𝑝=1+∑ (𝛽𝑘∗𝑋𝑘,𝑙)𝑘 +𝜀 

                                                 

7 Note that  𝑡𝑙𝑖 = 𝑑𝑙𝑖/𝑠𝑙𝑖  where 𝑠𝑙𝑖  is the speed between observation i and i-1. Thus, Equation (1) 
corresponds to the weighted harmonic mean of speed measurements along link l. 
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where 𝛽𝑜 is the constant term,  𝐷𝑔=1 a dummy variable that equals 1 if cyclist is male, 

 𝐷𝑝=1 a dummy that equals 1 if the cycle trip is registered as a work-related trip. 𝑋𝑘,𝑙 

is a set of variables describing characteristics of network link l. 𝜀 are independent and 
identically (IID) normally distributed error terms. 

The main argument for modelling speed with an exponential function is that it allows 
calibration of the model at a later stage with respect to only a single parameter and 
without the need to scale the beta-coefficients. After log transformation, the linear 
regression model can be estimated using the least-squares method in standard 
statistics programs (here SPSS8).  

We weight observations by link length (meters), putting higher weights on longer 
links. As a direct consequence, coefficient estimates are affected more by longer links 
where speed measures are presumably more robust and where the relationship 
between link characteristics and link speed is profound.9 Weighting also makes sense 
from a model application point of view, as the speed model should predict average 
speed (travel times) for entire cycle trips. The model should therefore have a 
relatively better fit for long links that contribute more to the calculation of travel 
times on a trip level. To avoid bias in coefficient estimates for explanatory variables 
that are likely to depend on link length, we applied interaction effects. In final model 
specification, this was done for the effect of T and X crossings, for which the relative 
impact of braking and acceleration is likely to depend on link length. Technically, we 
have simply specified 12 dummy variables based on combinations of the dummy 
variables for type of crossing and dummy variables for the link length groups. 

Having a large database at hand, we decided to exclude from the estimation 
observations with presumed low data quality. As already mentioned (in Section 3), 
the applied methodology of speed calculation at a link level required that we 
discarded link-trips pairs with only one GPS observation per link. Furthermore, we 
decided to drop all observations where we did not observe at least 75% of the link 
length with GPS observations. A few links in our network had an unreasonably high 
net gradient attached.10 We excluded all gradients below –20% and above 20%, and 
also observations with unreasonably high (more than 60 km/h) and low speeds 
(below 5 km/h) on a link. The former was likely due to data issues or to a wrong 
registration of transport mode, while among the latter cases there were presumably 
many trips when the cycle was walked (rather than ridden). Finally, after some 
testing, we excluded very short links (below 10 meters) from the estimation, because 
the data quality, in particular the measurement of gradients, was regarded as inferior 
for short links.  

The applied exclusion criteria are summarized in Table 2. 

  

                                                 

8 https://www.ibm.com/analytics/us/en/technology/spss/ 
9 For shorter links, speed will to a higher degree depend on the link characteristics of previous links. 
The goodness-of-fit increases considerably when using weighted least square regressions.    
10 The net gradient is identified by the difference in z-coordinates in link nodes and the length of the 
link. It is measured as percent points and represent the average gradient over the entire link. 
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Table 2 Applied criteria for exclusion of GPS-observations that could be mapped on the NVDB-network 
(original N=2848560). 

Exclusion criteria Excluded cases * 

Only one GPS-observations on link 1278596 

Less than 75% of the link length covered by GPS-observations 954974 

Link gradient above 20% (link i and link i-1) 24273 

Measured link speed below 5 km/h or above 60 km/h 204217 

Measured average trip speed above 60 km/h 50 

Link length short than 10 meters** 6546 

Links that are not allowed for cycling (tunnels, motorways) 187 

Remaining cases after data cleaning (%) 379717 (13.3%) 

*) calculated from remaining cases after the previous exclusion rule 
**) many observations on such short links are already removed by the first exclusion rule 

 

These exclusions of unreasonable and “low quality” observations led to clear 
improvement in the goodness-of-fit in the estimation model. As t-statistics of the 
estimated parameters remained very high in general, the reduction in the number of 
observations was not regarded as a problem from a statistical perspective. Most 
importantly, the parameter estimates became more reasonable (comparing parameter 
sign and order with prior expectations) after the exclusion.  

The following link characteristics are used in the model: 

 Net gradient specified as 18 different dummy variables for ranges of 
gradients (the level “0% – 1% gradient” is normalized). 

 Average net gradient of inbound (i.e. the preceding) links (continuous 
variable).11  

 Horizontal curvature (continuous variable). 

 Type of road specified by four dummy variables: cycling path, cycling lane, 
walk/cycle path and remaining roads (the latter is normalized). 

 Type of crossing specified as 12 dummies depending on (1) T or X cross, (2) 
at start or end of link, (3) short, middle or long link. 

 Main cycling route alongside major roads in and around the city (one dummy 
variable). 

                                                 

11 This variable is motivated by the possibility that cyclists enter a given link at a higher (lower) speed 
if the preceding links have a downhill (uphill) slope. Compared to the gradient at the evaluated link (i), 
the average gradient of preceding links (i-1) is expected to be of minor importance for speed 
predictions on link i. We therefore model this variable not by a set of dummy variables (that can 
capture possible non-linearity) but as a simple continuous variable. This helps to limit the overall 
number of parameters in the model.   
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 Proxy for traffic density/safety concerns specified as four dummies 
depending on whether link is in city center and whether the road has a 30 
km/h speed limit for cars. 12 

A more detailed overview of the explanatory variables – presented as descriptive 
statistics – and a short note about their technical coding is given in Appendix. Table 
A1 in the appendix also gives the a-prior expectation of the parameter signs.    

4. Parameter estimation 

Because of log transformation of the estimation model, the beta-coefficients (besides 
the constant term) are interpreted as percentage change given marginal change in the 
explanatory variable.  

Tables 3 reports on the estimation results for the bicycle and the e-bike model. 

Table 3 Estimation results. 

Model   bicycle e-bike 

Number of observations   283104 96613 

Adjusted R-square   0.24 0.174 

Coefficient 

Measure of 
related 
variable Value  95% CI Value  95% CI 

𝛽𝑜 constant (unity) 3.008*** [3.002; 3.013] 3.109*** [3.1; 3.118] 

male Dummy 0.1298*** [0.1268; 0.1327] 0.0491*** [0.0448; 0.0535] 

work-related trips Dummy 0.1142*** [0.1112; 0.1173] 0.1071*** [0.1022; 0.112] 

gradient below -9% Dummy 0.0491*** [0.0291; 0.0692] 0.0518*** [0.0201; 0.0835] 

gradient between. -9% and -
7% Dummy 

0.1081*** [0.0934; 0.1227] 0.0617*** [0.0411; 0.0823] 

gradient between -7% and -6% Dummy 0.1357*** [0.1238; 0.1476] 0.1228*** [0.1025; 0.1432] 

gradient between -6% and -5% Dummy 0.1795*** [0.1703; 0.1888] 0.1861*** [0.1728; 0.1993] 

gradient between -5% and -4% Dummy 0.1802*** [0.1729; 0.1875] 0.1488*** [0.1373; 0.1603] 

gradient between -4% and -3% Dummy 0.1494*** [0.1423; 0.1565] 0.1196*** [0.1074; 0.1317] 

gradient between -3% and -2% Dummy 0.1124*** [0.1061; 0.1187] 0.0779*** [0.0682; 0.0876] 

gradient between -2% and -1% Dummy 0.0589*** [0.0533; 0.0645] 0.0312*** [0.0221; 0.0404] 

gradient between -1% and 0% Dummy 0.0412*** [0.0364; 0.046] 0.0196*** [0.0122; 0.027] 

gradient between 0% and 1% Dummy normalized normalized 

gradient between 1% and 2% Dummy -0.0973*** [-0.1028; -0.0918] -0.0376*** [-0.0466; -0.0286] 

gradient between 2% and 3% Dummy -0.1299 [-0.1362; -0.1236] -0.0770*** [-0.087; -0.0671] 

gradient between 3% and 4% Dummy -0.1951*** [-0.2019; -0.1884] -0.0778*** [-0.0894; -0.0662] 

gradient between 4% and 5% Dummy -0.2669*** [-0.2738; -0.26] -0.1218*** [-0.1323; -0.1113] 

gradient between 5% and 6% Dummy -0.3034*** [-0.3119; -0.2949] -0.1448*** [-0.1566; -0.1329] 

gradient between 6% and 7% Dummy -0.3854*** [-0.3956; -0.3753] -0.1807*** [-0.1972; -0.1642] 

gradient between 7% and 9% Dummy -0.3949*** [-0.4078; -0.382] -0.2434*** [-0.2623; -0.2244] 

                                                 

12 We considered road surface as an attribute, but decided not to include it in the models, partly 
because of missing/unreliable data information and partly because the vast majority of roads in Oslo 
are actually of concrete (almost no cobblestone as in many other cities centers). The omission of 
cycle’s age is discussed in section 6. 
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gradient above 9% Dummy -0.4267*** [-0.4472; -0.4062] -0.3232*** [-0.3537; -0.2926] 

average gradient of all 
inbound links 

continuous (%-
gradient) 

-0.3936*** [-0.4354; -0.3518] -0.2946*** [-0.3583; -0.2309] 

horizontal curvature 
continuous 
(index 1) ) 

-0.2230*** [-0.2357; -0.2103] -0.1945*** [-0.2159; -0.1731] 

cycling lane Dummy 0.0815*** [0.077; 0.086] 0.0739*** [0.0667; 0.0811] 

walk/cycle path Dummy 0.0609*** [0.0565; 0.0654] 0.0852*** [0.0781; 0.0923] 

cycle path Dummy 0.1063*** [0.0994; 0.1132] 0.1234*** [0.1134; 0.1334] 

other types of roads 2) Dummy normalized normalized 

T-crossing at start of link; link < 
30 meter Dummy 

-0.0928*** [-0.1131; -0.0725] -0.1278*** [-0.1627; -0.0929] 

T-crossing at end of link; link < 
30 meter Dummy 

-0.0414*** [-0.0631; -0.0197] -0.0041 [-0.0415; 0.0334] 

X-crossing at start of link; link < 
30 meter Dummy 

-0.1223*** [-0.1678; -0.0768] -0.2438*** [-0.3269; -0.1606] 

X-crossing at end of link; link < 
30 meter Dummy 

-0.0908*** [-0.1402; -0.0414] -0.0385 [-0.1153; 0.0384] 

T-crossing at start of link; link 
>=30, < 100 meter Dummy 

-0.0490*** [-0.0573; -0.0406] -0.0699*** [-0.0838; -0.0559] 

T-crossing at end of link; link 
>=30, < 100 meter Dummy 

-0.0674*** [-0.0761; -0.0587] -0.0710*** [-0.0857; -0.0563] 

X-crossing at start of link; link 
>=30, < 100 meter Dummy 

-0.0351*** [-0.0409; -0.0293] -0.0383*** [-0.0478; -0.0288] 

X-crossing at end of link; link 
>=30, < 100 meter Dummy 

-0.0235*** [-0.0293; -0.0177] -0.0375*** [-0.047; -0.0281] 

T-crossing at start of link; link 
>= 100 meter Dummy 

0.0031 [-0.0006; 0.0068] -0.0059** [-0.0115; -0.0003] 

T-crossing at end of link; link 
>= 100 meter Dummy 

-0.0187*** [-0.0224; -0.0151] -0.0091*** [-0.0147; -0.0035] 

X-crossing at start of link; link 
>= 100 meter Dummy 

-0.0054** [-0.0105; -0.0004] -0.0096** [-0.0174; -0.0019] 

X-crossing at end of link; link 
>= 100 meter Dummy 

-0.0326*** [-0.0376; -0.0276] -0.0348*** [-0.0425; -0.0272] 

Main cycling route  Dummy 0.1140*** [0.1094; 0.1186] 0.0953*** [0.0884; 0.1021] 

city center road with car speed 
limit <= 30 km/h Dummy 

-0.2087*** [-0.2137; -0.2038] -0.2147*** [-0.2227; -0.2067] 

Non-city center road with car 
speed limit <= 30 km/h Dummy 

-0.1182*** [-0.1227; -0.1137] -0.1166*** [-0.1238; -0.1094] 

city center road with car speed 
limit >30 km/h Dummy 

-0.1252*** [-0.1295; -0.1209] -0.1443*** [-0.1515; -0.137] 

Non-city center road with car 
speed limit >30 km/h Dummy 

normalized normalized 

1)Measured LL/AD – 1, where LL stands for link length and AD for air distance. A straight line (link) therefore 
has a curvature of 0. See Appendix A for details. 2) The location stamps and the projection did not make it 
possible to separate between cycling on roads and cycling on sideways (pedestrian path). ***,**,* significant 
different from zero at level 0.90, 0.95 and 0.99 respectively  

The parameter estimate 𝛽𝑜lets us calculate the average speeds (prior calibration) 
given that all explanatory variables are zero. This would be for the reference group of 
all dummy variables, i.e. Non-city center road with car speed limit >30 km/h, other 
types of road with gradient 0% to 1%. We can see that e-bikes have a higher speed 
and, looking at the confidence intervals, this is clearly significant.  
 
All other things being equal, males cycle 13.0% faster compared to women, while the 
effect of gender on e-biking is just 4.9% (see Section 6).  
Cycling on work-related trips seems to be at higher speeds. As mentioned in Section 
2, there is uncertainty about the reliability of which trip purpose is identified in the 
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mobile application. However, work-related trips are highly significant; they are stable 
between bicycle and e-bike and follow a priori expectation. We are therefore 
reassured that the identification of work-related trips worked reasonably well. 
 
The net gradient of the link is one of the most important factors in explaining 
variation in speed over links. For positive gradients (cycling uphill) there is, as 
expected, a monotone (and roughly linear) decrease in speed with increasing gradient. 
With a gradient above 9%, participants cycle 42.7% slower than on links with or 
without a marginal gradient (0–1%). As expected, the decrease is lower for e-bikes 
(32.3%). 
The effect of the gradient for downhill cycling is non-monotonic. The highest speeds 
are on average estimated on gradients between 5 and 6%, while speed seems to 
decrease above 6%. This is probably due to braking motivated by safety concerns. 
Speed in relation to gradient for bicycle and e-bike is given in Figure 2, where the 
values are averages over segments and already calibrated to fit speed on trip level (see 
next section). 
 

  
Figure 2 E-bike and bicycle speed given different gradients. 

 
The coefficient continuously measured gradient of inbound links is not readily 
comparable to coefficients for the dummy variables on gradients on the actual link.13 
To get the marginal effect of a percentage point increase in gradient of the inbound 

                                                 

13 In alternative models where both types of gradients are measured continuously (not reported here) 
the effects of the gradient of inbound links was about 1/6 of the effect of the gradient on the actual 
link.     
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link, the coefficient estimates of –0.3936 and –0.2946 are divided by 100. 
Interpretation is that an increase in average gradient of inbound links lowers speed 
for bicycle and e-bike by 0.39% and 0.29%, respectively. Thus, for gradient on the 
actual link, the effect on speed is lower for e-bike. This highlights how additional 
power from e-bikes helps to maintain speed when cycling uphill.  
 
Horizontal curvature is measured by an index variable that equals 0 if the link is a 
straight line and 1 when link length is twice the air distance. The curvature effect on 
speed going from the latter to the former is estimated at –22.3% bicycle and –19.5% 
e-bike. 
 
Estimates for type of cycling infrastructure are relative to the category “other type of 
roads”, which entails streets not facilitated for cycling. We can see that highest speeds 
are estimated for cycling paths, where the cyclist is separated from cars and 
pedestrians. The relative effects compared to the category “other type of roads” are 
10.6% (bicycle) and 12.3% (e-bike). 
By comparison, there is a significantly lower effect for cycle lanes marked on roads 
otherwise used by cars. Here, speeds are estimated to be (just) 8.2% and 7.4% high. 
On paths shared by pedestrians and cyclists, cycling speed is 6.1% increased for 
bicycle compared to category “other type of roads”. Interestingly, the effect is 
significantly higher (8.5%) for e-bikes. 
 
For estimates relating to crossings, there are three general effects: (1) speeds are 
lower on trips with crossings, (2) speed decreases for X-crossings are higher than for 
T-crossings, and (3) the effect of crossings is greater for short links and small for 
long trips. All findings follow a priori expectation. There are no clear effects related 
to a crossing at the start versus end of a link. Also, the differences between bicycle 
and e-bike are ambiguous. As discussed in Section 6, estimates for crossings may be 
underestimated due to the way average trip speeds are measured at link level.   
 
The variable “main cycling route” encompasses three main cycling routes into and 
around the inner city of Oslo. These routes are often used for longer distance 
cycling. The infrastructure is mixed in terms of types of road (separated cycling path, 
cycling lanes and walk/cycle path), but in general of good standard. The estimated 
relative effects on speed are 11.4% (bicycle) and 9.5% (e-bike).  
 
The last set of explanatory variables (in Table 3) is of dummy variables for city center 
and car speed limit on the link. Car traffic is often regulated to 30 km/h and below 
for streets with a high density of pedestrians and/or cyclists. Furthermore, since the 
density of cyclists and pedestrians is generally higher in the city center, these variables 
may therefore function as a rough proxy for traffic density and related safety 
motives. Studying the estimated relative effects, we can see that both the city center 
and the reduced speed limit for cars have a significantly decreasing effect on cycling 
speed.    
 
The goodness-of-fit of the model and other variables that might explain the variation 
in cycling speed are discussed in Section 6.  
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5. Calibration and implementation  

As mentioned in Section 2, the method applied to measure average speed on link 
level (Equation 1) is an overestimation compared to speeds measured on a trip level. 
While calibration of the overall level of speed may not be necessary for route choice 
models that are based purely on travel times (as the fastest route remains the fastest 
route independently of the overall level of speed), a correct calibration of the model 
is needed for mode choice modelling and economic appraisal. 

In order to calibrate the models for predicting – on average – correct travel times on 

a trip level, we introduce a calibration factor 𝐶𝑔,𝑝 for each segment identified by 

gender g and trip purpose p. This is done separately for bicycle and e-bike with the 
following equation: 

 (3)    𝐶𝑔,𝑝 =

1

𝑀𝑔,𝑝
∑ 𝑆𝑔,𝑝,𝑚

𝑡𝑟𝑖𝑝
 

𝑀𝑔,𝑝
𝑚=1

1

𝐿𝑝,𝑔
∑ �̂�𝑔,𝑝,𝑙

𝑙𝑖𝑛𝑘 
𝐿𝑝,𝑔
𝑙=1

=
𝑆𝑔,𝑝

𝑡𝑟𝑖𝑝 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

�̂�𝑔,𝑝
𝑙𝑖𝑛𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

where 𝑆𝑔,𝑝
𝑇𝑟𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average speed measured over all trips (𝑀𝑔,𝑝) of segment g,p 14 

and �̂�𝑔,𝑝
𝐿𝑖𝑛𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 are the model predictions of average speed over links 𝐿𝑝,𝑔 that we have 

data for.   

For implementing the model, we calculate speed for all segments on all links in the 
network with the following equation 

 (4)   𝑆𝑙,𝑔,𝑝 = (𝑒𝛽𝑜+𝛽𝑚𝑒𝑛∗ 𝐷𝑔=1+𝛽𝑤𝑜𝑟𝑘∗ 𝐷𝑝=1+∑ (𝛽𝑘∗𝑋𝑘,𝑙)𝑘 ) * 𝐶𝑔,𝑝 

 

Average speeds at trip level and calibration factors for each segment are presented in 
Table 4.  

  

                                                 

14 𝑆𝑔,𝑝,𝑚
𝑡𝑟𝑖𝑝

 is simply derived from the time and locations stamps between the first and last GPS 

observation of each trip. 
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Table 4 Average speed at trip level and calibration factors. 

Segment Observa
tion on 

trip level 

(𝑀𝑔,𝑝) 

Average 
speed in 

km/h 

(𝑆𝑔,𝑝
𝑇𝑟𝑖𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

 S.E. 5% 
Percentil

e 

95% 
Percentil

e 

Calibra
tion 

factor 

(𝐂𝐠,𝐩) 

bicycle female Non-work 10961 15.16 .05 8.28 23.40 0.874 

work 2861 17.63 .08 10.44 25.20 0.852 

male Non-work 17261 16.55 .04 8.28 25.56 0.840 

work 5364 20.82 .07 11.88 28.08 0.870 

e-bike female Non-work 4201 16.60 .08 8.28 24.12 0.838 

work 1258 20.38 .13 12.24 26.64 0.876 

male Non-work 5422 17.82 .08 8.64 25.92 0.857 

work 1305 21.80 .15 11.52 29.16 0.890 

 

Figures 3a–d show how the average speed on a link calculated with Equation 3 varies 
over the network for uphill and downhill links and for bicycle and e-bike, 
respectively. Results are shown for the biggest segment (bicycle, male, non-work). 
 
   

 
Figure 3a Predicted speed (km/h) for bicycle in the Oslo network for segment male/non-work: uphill 
links. 
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Figure 3b Predicted speed for e-bike in the Oslo network for segment male/non-work: uphill links  

 

 
Figure 3c Predicted speed for bicycle in the Oslo network for segment male/non-work: downhill links.    
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  Figure 3d Predicted speed for e-bike in the Oslo network for segment male/non-work: downhill links.   

 
 
The figures show the lower speed in Oslo city center. This relates to the flat 
geography, but is directly connected with the dummy variables for inner Oslo that 
were included in the model.  
 
Figure 4 (a and b) shows the overall variation in predicted cycling speed over all user 
segments and network links for bicycle and e-bike, respectively.    
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Figure 4a Histogram of predicted speed (km/h) for bicycle (all network links and population segments 
included). 

 

Figure 4b Histogram of predicted speed (km/h) for e-bike (all network links and population segments 
included). 

 

Note that average values of the distribution depicted in Figure 4 (a and b) (16.3 
km/h and 17.7 km/h, respectively) differ from averages measured at trip level 
(compare Table 4) as calculations at trip level are based only on links where cycling is 
actually taking place in our data collection. 
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6. Discussion  
 

Methodological challenges 
 
We start the discussion section by briefly elaborating the methodological issues of 
our study and possible improvements for future studies. 
 
It is not easy to recruit people for studies based on GPS tracking and there is an 
obvious danger of sample selection bias, i.e. that those engaged in cycling and/or 
tend to cycle fast are more inclined to participate in the study. In addition, they might 
change behavior, e.g. cycle faster or slower due to social desirability effects 
(Podsakoff et al., 2003) when they know they are being tracked. This danger applies 
in our study as well; however, it could be argued that the problem is less pronounced 
here as we are using an app that tracks all movements/transport modes and is not a 
typical fitness or dedicated cycle app. Previous survey data of participants from the 
same sample population as used here have also indicated that their cycling behavior 
does not differ significantly from that of the general public in terms of self-reported 
speed choice or risky cycling (Fyhri et al., 2012).  
 
The app’s automatic registration of transport mode and trip purpose has 
measurement errors that are difficult to quantify. We attempted to circumvent 
wrongly registered cycling trips by excluding “unrealistic” travel speeds (below 5 and 
above 60 km/h). As mentioned in Section 2, the distinction between bicycle and e-
bike trip is based on whether the respondents owned an e-bike at the time of the 
cycle trip, but this indirect measurement is likely to produce incorrect registrations. 
Given that more registered e-bike trips are actually by (regular) bicycle, the true 
difference in speed between e-bike and bicycle is potentially higher than estimated in 
our study. The same applies for the difference between work and non-work trips. 
Work trips are underreported in our study and if this is due to incorrect registration, 
the speed gap between work and non-work trips may be underestimated.   
 
The method applied for measuring average link speed (see Section 2) is likely to 
underestimate the effect of crossings. Furthermore, the applied network had a poor 
coding of traffic lights, so we left this information out of the model. This is a clear 
way of improvement for future studies. 
 
A variable we have information about but which was omitted from the models is 
cyclist’s age. The relationship between age and speed was found to be non-linear with 
our data (Flügel et al., 2016), where the highest speeds were on average observed for 
the middle-age user group (35–55 years). To have included age in the model would 
therefore have required at least three new dummy variables and would have increased 
the number of different speed measures in the implemented model from 16 (2^4 
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combinations of gender, trip purpose, type of cycle and direction) to 48. This was 
discarded from a practical point of view.15  
 
The models presented in section 4 explain around 24% (bicycle) and 17% (e-bike) of 
the observed variation in cycle speed. Besides missing variables (such as traffic lights 
and age), a major reason for this relatively low level of explanatory power is likely 
related to measurement errors in the mapping of the GPS-data to our network. 
Figure 5 shows a plot of predicted average speed and measured average speed on a 
link level (here including data from both bicycle and e-bike).  
 
 

    
Figure 5 Measured versus predicted speed on a network link level (bicycle and e-bike combined) 

 
From the color codes in Figure 5 one can see that network links with few 
observations (the blue ones) are pretty widely scattered, most likely because of 
measurement errors, while predicted values stay in the reasonable range of 10-30 
km/h. For those cases, the model fit seems poor while in fact the model does a good 
job in “regressing out” the measurement errors in the empirical data.  

                                                 

15 With additional models, we found the relative effects on speed for respondents under 35 years 
(compared to persons between 35-55 years) to be -1.5% for bicycle and 0.07% for e-bike. The relative 
effects for group over 55 years (again to persons between 35-55 years) are -6.1% and -7.2%. The 
adjusted R-square in the models included age were slightly higher as in the model in section 4 (0.242 
for bicycle and 0.179 for e-bike). 

45-degree-line 
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Lastly, improvements to the statistical modelling are possible. The IID error terms 
applied are clearly restrictive, as we have repeated observations from identical trips 
and persons. As a test, we have performed models with fixed effects for respondents, 
accounting for the correlation in observations within a given persons and aiming to 
control for some of the unobserved variation on a person-level.16 The adjusted R 
square statistics improved from 0.24 to 0.30 (bicycle) and from 0.17 to 0.26 (e-bike). 
These improvements may seem moderate and might again indicate that measurement 
errors are the most prominent source of the error term. The estimated beta-
coefficients in these additional models are very close to the model presented in 
section 4, except for the dummy variable for gender. This parameter was only 
identifiable – as gender is constant for a given person – after removing some fixed 
effects. The estimated value for gender was furthermore deemed unreliable.17 The 
personal fixed effects model was therefore discarded for model implementation.  
 
Discussion of result and implications  

Despite the methodological weaknesses mentioned, we are confident that our model 
is a sound representation of how cycling speed varies with different factors, primarily 
because sign and order of coefficient estimates follow a priori expectations and seem 
to fit well with findings in the literature.   

It is not surprising that men cycle faster than women – a fact found consistently in 
the literature (El-Geneidy et al., 2007; Lin et al., 2008; Parkin & Rotheram, 2010). 
While the average speed is significantly different, our data show a high “gender-
internal” variation in speed, and 25% of the faster female cyclists have higher speeds 
than the median male cyclist (Flügel et al., 2016). Our data also show that the gender 
gap in speed (on average) is clearly reduced for e-bike (around 5% compared to 13% 
for regular bicycle). Public subsidies for e-bikes (as in Oslo; Fyhri et al. (2016)) may 
therefore be interesting from the perspective of equity and may be seen as a move to 
get more female travellers into cycling.     

The fact that e-bikes go faster than regular bicycles has been documented earlier in 
the literature (Schleinitz et al., 2017), and also our finding that they do particularly 
well when cycling uphill. Our modelling of downhill and uphill gradients showed a 
non-monotone and non-linear relationship which – to our knowledge – has not been 
measured to this degree of detail. The “braking effect” identified may have 
interesting implications from a road safety perspective, but needs to be verified in 
further studies. 

Interestingly, evidence in the literature regarding the effects of cycle infrastructure is 
mixed. In one study, cycling in a separate infrastructure resulted in higher speeds (El-
Geneidy et al., 2007), whereas in other studies there is no mention of this (Bernardi 

                                                 

16 We considered also fixed effects for single trips to control for unobserved variation given the 
situation context of the cycling trips but did not performed such models as the number of fixed 
effects would have been impractically high with our data. 
17 After the necessary removing of the person fixed effects for implementation the model would have 
predicted that male persons cycle up to 50% faster than female persons. This contradicts our empirical 
evidence (see Table 4).   
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& Rupi, 2015; Schleinitz et al., 2017). The reason for the disparity is probably the 
presence of other road users on the infrastructure – pedestrians in particular. Our 
study shows that speeds are highest on roads where cyclists are kept separate from 
cars and pedestrians. Cycling speed is on average 20.6 km/h (bicycle) and 19.0 km/h 
(e-bike) on dedicated cycling paths, and lowest when cycling is not facilitated at all 
(17.6 km/h and 16.3 km/h). We also estimated values for marked cycling paths (on 
car streets) to be 19.8 km/h and 18.7 km/h. Estimated speeds in combined 
pedestrian/cycling streets (18.4 km/h, 16.7 km/h) suggest – from a speed evaluation 
point of view – that it is relatively more important to separate cyclists from 
pedestrians than cars. This may have interesting implications for transport 
infrastructure planning, as cyclists, just like other road user groups, need to minimize 
travel times. 

It seems that our average predicted speeds are in the upper range of values in the 
literature.18 In this connection, we have to point out that the concepts “average 
speed”, “cruising speed”, “speed on flat roads” and “speed identified by the constant 
term in regression models” are sometimes confounded in the literature, so clear 
comparison is not easy. In addition, methodological differences in study designs and 
cultural differences in the study areas are likely to explain differences in measured or 
predicted average speed. We regard our model as largely transferable to other cities, 
but a recalibration of the general speed level might be desirable.19 It should be noted 
that cycling culture in Oslo is typical of that of many cities with relatively low cycling 
shares, in that it is characterized by a relatively high proportion of training oriented 
cyclists who cycle as a form of exercise (Fyhri et al., 2015), and many workplaces 
provide lockers and showers that facilitate “high-speed” cycling to work.  

On the basis of the speed model and the variation in cycling speed it predicts, we 
plan to revise and improve the modelling of route and travel mode choices in 
different Norwegian transport models. We hope that our model contributes to an 
improved modelling of travel behavior in general and cycling behavior in particular.  

 
 

7. Conclusion 
 
Our large-scale collection of GPS data on cycling in Oslo shows that cycling speed 
varies greatly over network links, user segments and type of bicycle (regular bicycle 
and e-bike). Significant and expected effects were found for most parameters, 
including type of infrastructure, type of crossing and link gradient. The assumption 
of constant link cycling speed in the clear majority of transport models is therefore 

                                                 

18 Other studies using GPS measurement have found lower cruising speeds, such as 15.3 km / h 
(Schleinitz et al.., 2017);  14 km / h (Dozza et al. 2016) and 16 km/h (El-Geneidy et al., 2007). In a 
study from Italy, using cameras to estimate speed average speeds ranged between 14,6 km / h 
(separate cycle path) and 22 km / h (mixed traffic)(Bernardi & Rupi, 2015). 
19 Technically an implementation to another network/city is done via equation 4. It involves inserting 
the estimated beta-parameters and calculated scaling factors reported in this paper, and applying it to 
the city specific network characteristics (the X vector). If not all X-variables are available, there might 
be the need adjust the constant term given that the normalization level is changed. A calibration to 
another average speed can directly be done by adjusting the scaling factors.      
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shown to be restrictive, and an implementation of cycling speed models is expected 
to increase the precision of transport model forecasts.       
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Attachment 

Table A1 descriptive statistics and a-priori expectation of related coefficients. 

Explanatory variable bicycle e-bike a-priori 
expect 

sign of 
coefficient 

Mean Min Max Mean Min Max 

male  dummy .6672 0.00 1.00 .5362 0.00 1.00 + 

work-related trips  dummy .1849 0.00 1.00 .1808 0.00 1.00 + 

gradient below -9%  dummy .0094 0.00 1.00 .0102 0.00 1.00 + 

gradient between -9% and -
7% 

 dummy .0135 0.00 1.00 .0178 0.00 1.00 + 

gradient between -7% and -
6% 

 dummy .0180 0.00 1.00 .0184 0.00 1.00 + 

gradient between -6% and -
5% 

 dummy .0265 0.00 1.00 .0292 0.00 1.00 + 

gradient between -5% and -
4% 

 dummy .0453 0.00 1.00 .0462 0.00 1.00 + 

gradient between -4% and -
3% 

 dummy .0527 0.00 1.00 .0459 0.00 1.00 + 

gradient between -3% and -
2% 

 dummy .0726 0.00 1.00 .0753 0.00 1.00 + 

gradient between -2% and -
1% 

 dummy .1029 0.00 1.00 .0957 0.00 1.00 + 

gradient between -1% and 0%  dummy .1398 0.00 1.00 .1444 0.00 1.00 + 

gradient between 0% and 1%  dummy .1505 0.00 1.00 .1477 0.00 1.00 Norm. 

gradient between 1% and 2%  dummy .1056 0.00 1.00 .0985 0.00 1.00 - 

gradient between 2% and 3%  dummy .0733 0.00 1.00 .0728 0.00 1.00 - 

gradient between 3% and 4%  dummy .0591 0.00 1.00 .0507 0.00 1.00 - 

gradient between 4% and 5%  dummy .0493 0.00 1.00 .0525 0.00 1.00 - 

gradient between 5% and 6%  dummy .0300 0.00 1.00 .0361 0.00 1.00 - 

gradient between 6% and 7%  dummy .0249 0.00 1.00 .0280 0.00 1.00 - 

gradient between 7% and 9%  dummy .0170 0.00 1.00 .0201 0.00 1.00 - 

gradient above 9%  dummy .0095 0.00 1.00 .0107 0.00 1.00 - 

average gradient of all 
inbound links 

continuous -.0010 -.18 .20 -.0006 -.18 .20 - 

horizontal curvature continuous .0287 0.00 1.50 .0287 0.00 1.50 - 

cycling lane  dummy .1314 0.00 1.00 .1213 0.00 1.00 + 

walk/cycle path  dummy .2300 0.00 1.00 .2546 0.00 1.00 + 

cycle path  dummy .0446 0.00 1.00 .0613 0.00 1.00 + 

remaining type of roads  dummy 0.594 0.00 1.00 0.563 0.00 1.00 Norm. 

T-crossing at start; link < 30 m  dummy .0522 0.00 1.00 .0476 0.00 1.00 - 

T-crossing at end; link < 30 m  dummy .0440 0.00 1.00 .0403 0.00 1.00 - 

X-crossing at start; link < 30 m  dummy .0053 0.00 1.00 .0045 0.00 1.00 - 

X-crossing at end; link < 30 m  dummy .0047 0.00 1.00 .0054 0.00 1.00 - 

T-crossing at start; link ϵ 
[30m,100m) 

 dummy .2496 0.00 1.00 .2596 0.00 1.00 - 

T-crossing at end; link ϵ 
[30m,100m) 

 dummy .2475 0.00 1.00 .2575 0.00 1.00 - 

X-crossing at start; link ϵ 
[30m,100m) 

 dummy .0697 0.00 1.00 .0736 0.00 1.00 - 

X-crossing at end; link ϵ 
[30m,100m) 

 dummy .0723 0.00 1.00 .0751 0.00 1.00 - 

T-crossing at start; link ≥ 100 

m 

 dummy .0669 0.00 1.00 .0639 0.00 1.00 - 
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T-crossing at end; link ≥ 100 m  dummy .0623 0.00 1.00 .0581 0.00 1.00 - 

X-crossing at start; link ≥ 100 

m 

 dummy .2822 0.00 1.00 .2723 0.00 1.00 - 

X-crossing at end; link ≥ 100 

m 

 dummy .2745 0.00 1.00 .2715 0.00 1.00 - 

Main cycling paths   dummy .1331 0.00 1.00 .1579 0.00 1.00 + 

city centre road, car speed 
limit ≤ 30 km/h 

 dummy .1821 0.00 1.00 .1760 0.00 1.00 - 

city centre road, car speed 
limit > 30 km/h 

 dummy .2694 0.00 1.00 .2812 0.00 1.00 - 

non city centre road, car 

speed limit ≤ 30 km/h 

 dummy .3233 0.00 1.00 .3548 0.00 1.00 - 

non city centre road, car 
speed limit > 30 km/h 

 dummy .2252 0.00 1.00 .1880 0.00 1.00 + 

 
Table A2 Note about technical coding of explanatory variables. 

Explanatory variable Technical coding 

male reported from the survey 

work-related trips identified by the app (optional changed by respondent) 

gradient below -9% 

Based on z-coordinates at start- and endnode 

gradient between -9% and -7% 

gradient between -7% and -6% 

gradient between -6% and -5% 

gradient between -5% and -4% 

gradient between -4% and -3% 

gradient between -3% and -2% 

gradient between -2% and -1% 

gradient between -1% and 0% 

gradient between 0% and 1% 

gradient between 1% and 2% 

gradient between 2% and 3% 

gradient between 3% and 4% 

gradient between 4% and 5% 

gradient between 5% and 6% 

gradient between 6% and 7% 

gradient between 7% and 9% 

gradient above 9% 

average gradient of all inbound links the mean of the gradient for all inbound links20 

horizontal curvature 
The ratio between shortest path and shape length minus value 
1 (such that a straight link gets value 0) 

cycling lane 

Combining the definition of lanes and road type in the network 
walk/cycle path 

cycle path 

remaining type of roads 

T-crossing at start; link < 30 m 

Combining number of inbound links and length of link. The 
number of inbound links gives type of crossing (1 = None, 2 = 
T, 3 or more = X). Length is a network attribute. 

T-crossing at end; link < 30 m 

X-crossing at start; link < 30 m 

X-crossing at end; link < 30 m 

T-crossing at start; link ϵ [30m,100m) 

                                                 

20 Inbound links are found by comparing start- and endnodes. 



I:\ØL-AVD\4376 Fartsmodell sykkel\artikkel\Transportation\pre_print_Final_version.docx 27 

T-crossing at end; link ϵ [30m,100m) 

X-crossing at start; link ϵ [30m,100m) 

X-crossing at end; link ϵ [30m,100m) 

T-crossing at start; link ≥ 100 m 

T-crossing at end; link ≥ 100 m 

X-crossing at start; link ≥ 100 m 

X-crossing at end; link ≥ 100 m 

Main cycling paths  
3 roads identified as main cycle roads. Coded manually by 
road number and geographic position. 

city centre road, car speed limit ≤ 30 km/h Combining speed limit and definition of city centre area. The 
centre zone is a concept variable from SSB (Statistics 
Norway). To be defined as a centre zone it must consist of 
several different functions and industries (e.g. it must have 
public administration or health services). We define a city 
centre road as a road located in the city centre area. The 
speed limit is defined in the network. 

city centre road, car speed limit > 30 km/h 

non city centre road, car speed limit ≤ 30 km/h 

non city centre road, car speed limit > 30 km/h 

 


