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ABSTRACT 

Studies of the relationship between characteristics of horizontal curves and accident 

rate have been reported in several countries. The characteristic most often studied is 

the radius of a horizontal curve. Functions describing the relationship between the 

radius of horizontal curves and accident rate have been developed in Australia, 

Canada, Denmark, Germany, Great Britain, New Zealand, Norway, Portugal, 

Sweden, and the United States. Other characteristics of horizontal curves that have 

been studied include deflection angle, curve length, the presence of transition curves, 

super-elevation in curves and distance to adjacent curves. This paper assesses the 

international transferability of mathematical functions (accident modification 

functions) that have been developed to relate the radius of horizontal curves to their 

accident rate. The main research problem is whether these functions are similar, 

which enhances international transferability, or dissimilar, which reduces 
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international transferability. Accident modification functions for horizontal curve 

radius developed in the countries listed above are synthesised. The sensitivity of the 

functions to other characteristics of curves than radius is examined. Accident 

modification functions developed in different countries have important similarities. 

The functions diverge with respect to accident rate in the sharpest curves.  

 

Key words: horizontal curves, radius, accident modification functions, international 

transferability, synthesis 
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1 INTRODUCTION 

The international transferability of accident modification functions, i.e. functions 

describing the effects of highway design elements or road safety measures, is a topic 

of great interest and was recently examined by an OECD-group (OECD 2012). 

Small countries cannot always perform national research about every topic, but may 

have to rely on studies made in other countries. It then becomes important to assess 

whether knowledge can be transferred internationally. 

The topic of this paper is the international transferability of accident modification 

functions for horizontal curve radius. An accident modification function for 

horizontal curve radius is a mathematical function that relates accident rates in 

horizontal curves to the radius of the curves. Since horizontal curves are a design 

element of highways in all countries, such functions have been developed in a 

number of countries. The main question to be examined in this paper is whether 

accident modification functions for horizontal curve radius developed in different 

countries are similar, supporting a formal synthesis of these functions in the form of 

an average function, or whether the functions are too different for such a formal 

synthesis to make sense.  

 

2 STUDY RETRIEVAL 

Relevant studies were retrieved by consulting the Handbook of Road Safety 

Measures (Elvik, Høye, Vaa and Sørensen 2009). In addition, relevant papers were 

identified from the online archive of Transportation Research Record by using 
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“horizontal curve radius” as search term. A similar search for papers published in 

Accident Analysis and Prevention was made in ScienceDirect. Studies that have 

developed models of the relationship between horizontal curve radius and either: (1) 

The number of accidents per curve; (2) Accident rate (number of accidents per 

million vehicle kilometres of travel), or: (3) Accident Modification Factors (AMFs) in 

horizontal curves were identified for ten countries (alphabetically): Australia, Canada, 

Denmark, Germany, Great Britain, New Zealand, Norway, Portugal, Sweden and the 

United States. The three measures of safety in curves are not directly comparable; the 

relationship between them is discussed in section 3 (below). 

No attempt was made to identify every study that has dealt with the relationship 

between horizontal curve radius and safety in curves. Priority was given to obtaining 

a sample of studies that included as many countries as possible and spanned as long a 

period as possible. The chief reason for applying these selection criteria was to obtain 

the largest possible range of replications (Elvik 2012), as a large range of replications 

permits a more stringent assessment of international transferability than a smaller 

range of replications. 

 

3 MEASURES OF SAFETY IN HORIZONTAL CURVES 

The literature reviewed for this paper contains three measures of safety in horizontal 

curves: 

1. Number of accidents per curve per unit of time 

2. Accident rate in curves (accidents per million kilometres of travel) 
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3. Accident Modification Factors associated with curves (i.e. the ratio: accidents 

in curves/accidents on straight sections) 

These measures of safety do not necessarily produce the same results. To see why, 

consider Figure 1. 

Figure 1 about here 

Figure 1 contains two curves with the same deflection angle (90 degrees). The radius 

of the lower curve is three times the radius of the upper curve. Vehicles travelling in 

the lower curve will produce three times as many vehicle kilometres as vehicles 

travelling in the upper curve. To see how the different measures of safety can assume 

different values, applying the models developed by Persaud, Retting and Lyon (2000) 

will be instructive. Persaud, Retting and Lyon developed the following accident 

prediction model for horizontal curves: 

Accidents per curve per year =    (1) 

AADT is annual average daily traffic. L is the length of the curve in kilometres. R is 

the radius of the curve in metres. L/R is the ratio of the length of the curve 

(kilometres) to the radius of the curve (metres) and a, b, g, h and p are coefficients 

estimated by means of negative binomial regression. For tangent (straight) sections, 

the following accident prediction model was developed: 

Accidents per section per year =     (2) 

L is the length of a road section; AADT is annual average daily traffic. These models 

will be used to compare the safety of curves with radius 100, 300 and 500 metres. 

The length of curves is highly correlated with their radius. Curves with small radius 
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tend to be shorter than curves with large radius. Persaud, Retting and Lyon provide 

data on radius and length for 15 curves; omitting one of these as an outlying data 

point, Figure 2 gives a plot of radius and length for the remaining 14 curves. 

Figure 2 about here 

The power function fitted to the data points in Figure 2 will be used to describe the 

relationship between curve radius and curve length. According to this function, a 

curve with a radius of 100 metres will have a length of 205 metres, a curve with a 

radius of 300 metres will have a length of 376 metres and a curve with a radius of 500 

metres will have a length of 498 metres. Based on Table 5 in the paper by Persaud, 

Retting and Lyon, an AADT of 6,700 will be assumed. Model coefficients referring 

to injury accidents will be applied. 

Inserting the values into equation 1, the model-predicted number of accidents was 

estimated to be 0.868 for a curve with radius 100 metres, 0.455 for a curve with 

radius 300 metres and 0.399 for a curve with radius 500 metres. The corresponding 

accident rates (accidents per million vehicle kilometres) were estimated, respectively, 

to be 1.733, 0.496 and 0.328. For straight road sections of the same length as the 

curves (205, 376 and 498 metres), applying equation 2 resulted in a model-predicted 

annual number of accidents of, respectively, 0.101, 0.185 and 0.245. Straight section 

accident rate (accidents per million vehicle kilometres of travel) was 0.201 in all cases.  

Based on these numbers, the effects of curve radius on safety in curves can be stated 

in terms of different estimates of relative risk. Thus, applying the predicted number 

of accidents: 

R (100) : R(300) : R(500) = 0.868 : 0.455 : 0.399 = 2.175 : 1.140 : 1.000. 
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Curves with a radius of 500 metres have then been used as reference and the 

numbers indicate how many more accidents are to be expected in curves with radii of 

300 or 100 metres. Expressing the same ratios in terms of accident rates gives (100, 

300, 500): 

5.284 : 1.512 : 1.000. 

The increase in accident rate associated with smaller curve radius is considerably 

greater than the increase in the number of accidents. Finally, the same two 

comparisons can be made using straight road sections of the same length as the 

curves as reference. Relying on the number of accidents, this gives (100, 300, 500): 

8.603 : 2.462 : 1.627. 

This shows that even curves with a radius of 500 metres are expected to have more 

accidents than a straight road section of the same length as the curves. Applying 

accident rates (accidents per million vehicle kilometres) gives (100, 300, 500): 

8.621 : 2.468 : 1.632. 

These comparisons show that it is not unimportant how safety in curves is measured. 

To meaningfully synthesise models developed in different countries, it is essential 

that safety has been measured the same way in all studies. Unfortunately, this is not 

the case for the studies reviewed in this paper. Most studies report accident rates 

(accidents per million vehicle kilometres) in curves. The following rules were adopted 

to make functions based on other estimators as comparable as possible to accident 

rates: 
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1. The estimates developed for Canada (Persaud, Retting and Lyon) have been 

stated as accident rates, applying a uniform AADT of 6,700. 

2. The AMF for Great Britain (McBean 1982) was developed by applying a 

case-control approach which is quite different from the other studies 

included. It was assumed that case sites and control sites were matched by 

traffic volume, so that estimated relative risks can be interpreted as relative 

accident rates. 

3. The predicted number of accidents in the models for Germany were 

converted to accident rates by assuming that curve length was proportional 

to curve radius. 

4. The AMF for Portugal has traffic volume in the denominator and is therefore 

interpreted as a relative accident rate. 

5. The AMF for the United States was re-estimated as an accident rate; see more 

details in the section about the United States below. 

The available accident modification functions for all other countries included in this 

study are stated in terms of accident rates. 

 

4 ACCIDENT MODIFICATION FUNCTIONS DEVELOPED IN 

DIFFERENT COUNTRIES 

This section presents the accident modification functions that have been developed 

in each of the ten countries included in the study. 
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4.1 Australia 

Jurewicz and Pyta (2010) present a model developed to predict the number of single-

vehicle run-off-road accidents to the left. The model was specified as follows: 

Number of accidents =  (3) 

Here e denotes the exponential function, the βs are coefficients estimated by means 

of negative binomial regression, AADTone is Annual Average Daily Traffic in one 

direction only, radius is horizontal curve radius in metres, grade refers to whether the 

road is flat or on a slope, TLSS is the width of the traffic lane plus sealed shoulder, 

CZ is clear zone width category and ε is the error term. Horizontal curve radius was 

included as a categorical variable with three values: less than 600 metres, between 600 

and 1,500 metres and more than 1,500 metres. Precise values for curve radius were 

not stated. The dependent variable was the number of run-off-the-road accidents to 

the left on sections with a length of 60 metres. 

If the number of accidents in curves with a radius of more than 1,500 metres is set 

equal to 1, the corresponding values were 1.422 for curves with a radius between 600 

and 1,500 metres and 2.437 for curves with a radius less than 600 metres. 

This model was not included in the synthesis of accident modification functions 

developed later in this paper. There are three reasons for not including the model in 

the synthesis: (1) The model refers only to a particular type of accident, whereas the 

other models reviewed in this paper refer to all accidents. (2) Curve radius is only 

represented as a categorical variable; precise values are not stated. (3) The accident 

sample was only 217 accidents with a mean value as low as 0.067 accidents per 

section. 
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4.2 Canada 

An accident prediction model for horizontal curves on rural two-lane roads in 

Ontario, Canada, was reported by Persaud, Retting and Lyon (2000). The function 

was fitted to data for 585 curved sections with a total length of 144 kilometres. 

Curved sections consisted of curves only and did not have any straight segments. 

The number of accidents per curve per year was modelled as follows: 

Accidents per curve per year=    (4) 

AADT is annual average daily traffic. L is the length of the curve in kilometres. R is 

the radius of the curve in metres. L/R is the ratio of the length of the curve 

(kilometres) to the radius of the curve (metres) and a, b, g, h and p are coefficients 

estimated by means of negative binomial regression.  

The application of this function was discussed in section 3 above. Based on 

information given in the paper, curve length was modelled as a function of curve 

radius (see Figure 2): 

Curve length (metres) =    (5) 

A value of 6,700 was applied for AADT and the predicted number of accidents per 

curve converted to an accident rate by estimating vehicle kilometres of travel in 

curves, applying equation 5 to estimate curve length. According to Table 5 of the 

paper, radii in the range from 87 metres to 1150 metres were included. Accident rate 

was therefore estimated for horizontal curves with a radius ranging from 100 metres 
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(minimum) to 1000 meters (maximum), in steps of 100 metres. The model 

coefficients for injury accidents were applied. 

 

4.3 Denmark 

Rasmussen, Herrstedt and Hemdorff (1992) present a study of the relationship 

between horizontal curve radius and accident rate (accidents per million kilometres 

of driving) on Danish motorways (freeways). No mathematical model of the 

relationship was developed, but the following accident rates were presented: 

Curves with a radius < 1,000 metres:  0.30 accidents per million veh. km 

Curves with radius 1,000-2,500 metres: 0.15 accidents per million veh. km 

Curves with radius >2,500 metres:  0.12 accidents per million veh. km 

Straight sections:    0.20 accidents per million veh. km 

Despite the few data points, the study is interesting for two reasons. First, it shows 

that accident rate is related to the radius of horizontal curves even when radius is 

more than 1,000 metres. Second, straight sections appear to have a higher accident 

rate than curved sections when curve radius is more than 1,000 metres. 

This study was not included in the synthesis of models developed in different 

countries. The chief reasons for this were that curve radius was only represented as a 

categorical variable and precise values were not stated, and that the study referred to 

freeways, where the relationship between curve radius and safety is not necessarily 

the same as on rural two-lane roads. 
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4.4 Germany 

Dietze and Weller (2011) developed accident prediction models for horizontal curves 

on rural two-lane roads in Germany. The following model was proposed for single 

curves: 

Number of accidents per curve =     (6) 

Accident data for three years was used in developing the model. AADT is annual 

average daily traffic, L is the length of a curve in metres, R is the radius of a curve in 

metres and α, β, γ and δ are coefficients estimated by means of negative binomial 

regression. When plotting this function on graphs, Dietze and Weller used an AADT 

of 1,000. The same value has been used in this paper. Curve radius ranged from 30 

metres to 495 metres. Curve length ranged from 40 metres to 559 metres. Based on 

information given in the report, the mean length of a curve can be estimated at 116 

metres. The function in equation 3 was fitted for curves with radii between 50 and 

500 meters, keeping AADT constant at 1,000 and curve length growing from 40 

metres in curves with radius 50 metres to 550 metres in curves with radius 500 

metres. The predicted number of accidents was converted to accident rates based on 

curve length. 

 

4.5 Great Britain 

McBean (1982) reported a case-control study of the relationship between horizontal 

curve radius and the probability that a certain curve would belong to the case group. 

A total of 197 sites on rural two-lane roads where accidents had been recorded were 

matched to 197 sites located nearby where accidents had not been recorded. 97 of 
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the accident sites were straight sections, 100 were curves. The curves were classified 

in four groups according to radius: < 500 feet, between 500 and 1500 feet, between 

1500 and 3000 feet and > 3000 feet. One foot equals 0.3048 metres. A log-linear 

model was developed to predict the change in the probability that a site would 

belong to the accident (case) group associated with changes in curve radius. A 

coefficient, vi, was estimated for each group of curves. The interpretation of this 

coefficient was as follows: 

P(accident|radius in groupi)/P(accident|straight section) =   (7) 

As an example, the coefficient for the tightest curves was 2.05. The exponential of 

2.05 is 7.768. This means that accidents were about 7.8 times more likely to occur in 

tight curves than on straight road sections. 

When combining this function with functions developed in other countries, the 

following mean values for curve radius in meters were applied in the groups formed 

by McBean: < 500 feet = 100 metres; 500-1500 feet = 300 metres; 1500-3000 feet = 

700 metres; > 3000 feet = 1,000 metres. Relative risks were interpreted as relative 

accident rates. 

 

4.6 New Zealand 

Matthews and Barnes (1988) presented a detailed study of the relationship between 

characteristics of horizontal curves on rural two-lane roads in New Zealand and the 

number of injury accidents per million vehicle kilometres of driving. They fitted the 

following function to the data relating accident rate to curve radius: 
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Accident rate = 8.5 ∙ R-0.64       (8) 

R denotes curve radius in metres. The function in equation 8 was applied to estimate 

how accident rate depends on the radius of a curve. Values from 100 to 1,000 metres 

were used. There is no need to account for different curve lengths, as curve length 

enters the calculation of the denominator used for accident rates. 

Hauer (1999) re-analysed their data and developed the following accident 

modification functions: 

Accident rate =   (9) 

Accident rate =      (10) 

R denotes the radius of a curve in metres (four values were used: 100, 300, 500 and 

700 meters) and T denotes the length in metres of the tangent (straight) section 

preceding a curve. Equation 9 applies to curves with a radius less than 500 metres 

and a tangent length less than 1,200 metres. Equation 10 applies to curves with a 

radius of 500 metres or more. No correction for tangent length was applied to curves 

with radius larger than 500 metres. The functions developed by Hauer will be 

discussed as part of the sensitivity analysis of study findings. 

 

4.7 Norway 

Sakshaug (1998) presented data on radius and injury accident rate per million vehicle 

kilometres for 10,870 curves on rural two-lane roads in Norway. He did not fit a 

function to the data, but the following function has been found to best fit the data: 

Accident rate = 2.334 ∙ R-0.421       (11) 
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R denotes radius of curve in metres. The fitted function does not account for other 

characteristics of curves than their radius. The data give a hint that accident rate has a 

minimum value at a radius of about 500 metres and increases slightly for larger radii. 

However, analyses in which a polynomial function was compared to the power 

function in equation 8 indicated that the power function fitted best. 

 

4.8 Portugal 

Two studies by Cardoso (1997, 2005) model the relationship between characteristics 

of horizontal curves on rural two-lane roads in Portugal and the excess risk 

associated with curves. There were three stages of model development. The first 

stage was to develop a model of unimpeded driving speeds on tangent sections. The 

second stage was to model how speed changed in curves as a result of curve radius 

and curve length. The third stage was to estimate the ratio of accident rates in curves 

to accident rates on tangent sections as a function of several variables. In this paper, 

the function developed for roads with paved shoulders in the most recent study has 

been applied, as paved shoulders are more common than unpaved shoulders. This 

function is shown in equation 12: 

    (12) 

AR denotes the number of accidents per million vehicle kilometres of driving 

(accident rate), e is the exponential function, ∆VM is the reduction in speed associated 

with horizontal curves, VMR is the average unimpeded speed on the preceding 
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tangent, LC is curve length (metres), AADT is annual average daily traffic, and LF is 

road width (metres). 

To apply equation 12, representative values were selected for the variables included. 

The change in speed associated with a curve was estimated as follows: 

Speed reduction (∆VM) =   (13) 

RC is the radius (in metres) of a curve, LF is road width in metres and VMR is 

unimpeded approach speed on the tangent section. Curve radius was varied between 

50 and 1,000 metres. Road width was assigned a value of 6.75 metres and maximum 

approach speed was set to 105 km/h. Based on the first study, a mean AADT of 

3,017 was applied. The reduction in speed (∆VM) was entered in the model as a 

positive number. 

 

4.9 Sweden 

Brüde, Larsson and Thulin (1980) developed two accident modification functions for 

rural roads in Sweden; one for roads with a speed limit of 90 km/h, one for roads 

with a speed limit of 70 km/h. In this paper, the function developed for roads with a 

speed limit of 90 km/h will be applied. The roads were rural two-lane roads, but 

some of them were wider than two-lane roads tend to be in most countries. The 

functions had the following general form: 

Accident rate (y) =       (14) 

Here  denotes mean accident rate (accidents per million vehicle kilometres) for all 

roads with a speed limit of 90 km/h, B is a correction term for road width, K is a 
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correction term for horizontal curve radius, and L is a correction term for vertical 

grade. These correction terms can be interpreted as accident modification factors 

with which the mean accident rate is multiplied to obtain the accident rate for a 

specific road. Curve radius was given the values of 300, 500, 700, 900, 1500, 3000 

and 99,999 meters. The latter value was intended to indicate a straight road. The 

factor K was obtained as: 

K = 

      (15) 

In equation 15, R denotes curve radius in metres and the equation applies to curves 

with radius 300 metres or larger. 

 

4.10 The United States 

The Highway Safety Manual (2010) presents an accident modification function 

(referred to as a crash modification function) for horizontal curves. The function is 

shown in equation 16: 

Accident modification function =   (16) 

In equation 16, LC is the length of a curve in miles (1 mile = 1.609 kilometres), R is 

radius in feet (1 foot = 0.3048 metres) and S is the presence of a spiral transition 

curve (S = 1 if there is a transition curve at both ends of the curve; 0.5 if there is a 

spiral transition curve at one end of the curve; 0 otherwise). 
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The function given in equation 16 is based on a study by Zegeer et al. (1992). It was 

therefore decided to rely on the original source in order to estimate an accident 

modification function for horizontal curves for the United States. Zegeer et al. (1992) 

developed the following model to predict the number of accidents in horizontal 

curves: 

Number of accidents = [α1(L ∙ V) + α2(D ∙ V) + α3(S ∙ V)](α4)
W + ε  (17) 

In equation 17, L denotes the length of a curve in miles, V is volume of vehicles (in 

millions) in a 5-year period passing through the curve, D is degree of curve, S is the 

presence of a spiral transition curve, W is the width of the road (feet) and ε is an 

error term. The following parameters were fitted: 

Number of accidents = [1.55 (L ∙ V) + 0.014(D ∙ V) – 0.012(S ∙ V)](0.978)W – 30 

The radius of a horizontal curve in metres equals 1748/D (Hauer 1999). Hence, to 

represent curves with a radius (in metres) between 50 and 1,000 metres, D was 

assigned values between 35 and 1.75. A uniform deflection angle of 50 degrees was 

assumed. Based on this assumption, the length of curves varied between 0.027 miles 

(for D = 35) and 0.541 miles (for D = 1.75). Mean AADT was set to 2,000. The 

number of vehicle passages in five years then becomes 3.65 million. No spiral 

transition curve was assumed to be present. Road width was assumed to be 30 feet. 

The final term of the equation then becomes 1. 

A recent paper by Findley et al. (2012) has extended the accident modification 

function by including a correction for the distance between adjacent curves. The 

implications of this correction term will be discussed as part of the sensitivity analysis 

presented later in this paper. 
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5 SYNTHESIS OF ACCIDENT MODIFICATION FUNCTIONS 

5.1 Overview of results for eight countries 

Each of the functions presented in section 3, except those for Australia and 

Denmark, was applied to estimate the relationship between the radius of a horizontal 

curve and accident rate. Accident rate in the curve having the largest radius was set 

equal to 1.000. Table 1 shows the resulting estimates of the relative accident rates 

associated with shorter radii. 

Table 1 about here 

There are differences in the shapes of the functions. These differences are most 

noticeable for curve radii of 300 metres or less. Functions that cover the range 

between 100 meters and 1000 meters are available for Canada, New Zealand, 

Norway, Portugal and the United States. Table 1 shows that the relationship between 

horizontal curve radius and relative accident rate varies considerably between these 

countries. The values of relative accident rate for Canada and New Zealand are fairly 

close, but diverge for curves with a radius of 200 meters or less. The functions for 

different countries also differ in terms of the range of curve radii they apply to. 

 

5.2 Developing a summary accident modification function 

It is, unfortunately, not straightforward to apply standard techniques of meta-analysis 

for the purpose of developing a summary accident modification function based on 

the accident modification functions presented in section 4. In standard meta-analysis, 
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each estimate is assigned a statistical weight which is inversely proportional to its 

sampling variance (Elvik 2005). However, the standard errors of the terms entering 

the accident prediction models in section 4 are not always stated. A different 

approach has therefore been taken for developing a summary accident modification 

function. The key steps of analysis are as follows: 

1. The marginal gradient of relative accident rate with respect to curve radius 

was estimated for each accident modification function. By marginal gradient 

is meant the increase in accident rate associated with moving from one point 

on a function to the next point (see example below). 

2. For accident modification functions fitted to data points that increase in steps 

of 200 or 300 metres, values were interpolated for steps of 100 metres. 

3. A simple arithmetic mean of the marginal gradient was estimated for each 

step of 100 metres. 

4. The variance of individual estimates around the arithmetic mean was 

estimated. 

5. Each estimate was assigned a weight inverse proportional to the variance 

associated with it. 

6. A weighted marginal gradient was estimated. 

7. The weighted marginal gradients were multiplied in order to form the 

summary accident modification function. 

The first two of these steps will be illustrated by reference to Table 2. 

Table 2 about here 
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The left part of Table 2 shows the accident modification function fitted for Norway, 

giving relative accident rate according to horizontal curve radius, when the relative 

accident rate in curves with a radius of 1000 metres is given the value of 1.000. The 

marginal gradient of the function denotes the change in relative accident rate for each 

change in curve radius, i.e. the increase in relative accident rate when going from a 

radius of 1000 to 900 metres, 900 to 800 metres, and so on. 

The right part of Table 2 shows the accident modification function fitted for Great 

Britain. There were only four data points for this function (the original data points 

were stated in feet; these were converted to metres). The marginal gradients for the 

function fitted for Great Britain span across several steps. Values for these steps 

were interpolated by assuming that marginal gradients display the same pattern as in 

the countries where all marginal gradients are known and combine multiplicatively. 

These assumptions are most consistent with the evidence for other countries. Thus, 

relative accident rate was 0.932 for a curve radius of 700 metres and 4.759 for a curve 

radius of 300 metres. The marginal gradient for the 300/700 metres ratio is 

4.759/0.932 = 5.106. This gradient spans across the radii of 600, 500, 400 and 300 

metres. Assuming that gradients increase at the same rate as in other countries, the 

marginal gradients become 1.455 (for 700 to 600 metres), 1.473 (for 600 to 500 

metres), 1.509 (for 500 to 400 metres and 1.578 (for 400 to 300 metres) The product 

of these gradients is 1.455 ∙ 1.473 ∙ 1.509 ∙ 1.578 = 5.106 (to the third decimal point). 

Table 3 shows the marginal gradients that were used to develop the summary 

accident modification function. Note that the data for Australia and Denmark were 

not included and that curve radii larger than 1000 metres were not considered. 
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Table 3 about here 

The third step of analysis was to compute the simple mean of the marginal gradients 

listed in Table 3 row-by-row. Thus, the simple mean of the gradients associated with 

a reduction of curve radius from 200 to 100 metres was (2.352 + 2.306 + 1.427 + 

1.558 + 1.338 + 1.326 + 2.269)/7 = 1.797. The simple means are listed in the next to 

rightmost column of Table 3. The simple mean can be greatly influenced by outlying 

data points. To account for this, the values were weighted in inverse proportion to 

their residual variance: 

Statistical weight =        (18) 

Thus, the residual variance for the Canadian data point for a radius of 100 metres 

was: (2.352 – 1.797)2 = 0.308, and the weight assigned to it 1/0.308 = 3.242. The 

weighted mean estimates of the gradient in accident rate associated with shorter 

curve radius are shown in the rightmost column of Table 3. A summary accident 

modification function was developed by multiplying the marginal gradients. The 

summary accident modification function is shown in Figure 3. 

Figure 3 about here 

The data points of the summary accident modification function for horizontal curve 

radius closely fit a power function. The function is: 

Relative accident rate = 127.1658X–0.7099 

X is curve radius in metres. In figure 4, this function is compared to the accident 

modification functions for horizontal curve radius in the eight countries whose 

functions served as the basis for the weighted mean function. 
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Figure 4 about here 

The summary accident modification function is located in the middle of the accident 

modification functions developed in the eight countries and can, in that sense, be 

interpreted as an average of the functions developed in each country. The only 

exception to this is the very high accident rate associated with curves with a radius of 

100 metres or less in the German model. 

 

6 SENSITIVITY ANALYSES AND PREDICTIVE VALIDITY 

The safety of horizontal curves depends not just on their radius, but also on other 

characteristics, such as length, presence of adjacent curves, the presence of transition 

curves and super-elevation. The previous sections have focused on radius. Some of 

the studies quoted in section 4 permit a sensitivity analysis of the relationship 

between the radius of a horizontal curve and its safety with respect to some of these 

characteristics. In this section, sensitivity analyses of the findings reported in sections 

4 and 5 are performed with respect to: 

1. Excluding countries whose accident modification functions differ markedly 

from the rest of countries. 

2. Other characteristics of horizontal curves than their radius. 

3. Using the summary accident modification function to predict the results of 

new studies of safety in horizontal curves 

 

6.1 Sensitivity to countries included 
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The shape of the accident modification functions reviewed in section 4 and 

synthesised in section 5 varied. A particularly steep function was found for Germany. 

When the accident rate at a radius of 500 metres was set to 1.000, relative accident 

rate in curves with a radius of 100 metres was 13.707 and relative accident rate in 

curves with a radius of 50 metres was 24.363. These values are considerably higher 

than those reported in other countries, but not out of line with what previous studies 

of horizontal curves in Germany have found (Lamm et al. 1999, 2007). The increase 

in accident rate in the sharpest curves in the United States was also larger than found 

in other countries. It is therefore of some interest to see how much the summary 

accident modification function is changed by the omission either of Germany, the 

United States, or both countries. Table 4 reports the results of the analysis. 

Table 4 about here 

It is seen that when Germany, the United States or both countries are omitted, 

relative accident rate in the sharpest curves, with radius less than 200 metres, drops 

considerably. Thus, the accident modification functions developed in Germany and 

the United States predict a larger increase in accident rates in sharp curves than the 

accident modification functions developed in the other countries included in this 

study. Reasons for the difference are not known, but it suggests that international 

transferability could be problematic as far as the sharpest curves are considered. For 

curves with a radius of 200 metres or more, the slopes of the functions developed in 

different countries are more consistent. 

 

6.2 Sensitivity to other characteristics of curves 
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The Canadian model (Persaud, Retting and Lyon 2000) included, in addition to the 

radius of a curve, AADT, curve length and the ratio of length to radius. The shape of 

the function relating curve radius to the expected number of accidents is not 

sensitive to AADT. It is, however, very sensitive to the length of a curve. If curves 

are assumed to be twice as long as assumed in the main analysis, accident rates 

increase dramatically and the slope of the accident modification function becomes a 

lot steeper. In other words, longer curves are associated with an increased accident 

rate. 

The US model (Zegeer et al. 1992) also includes curve length. If all curves are 

assumed to be twice the length applied in the main analysis, the accident 

modification function becomes flatter. This means that longer curves are associated 

with a smaller increase in accident rate as radius becomes smaller; this is the opposite 

tendency of that found in the Canadian model. 

A third study including length of curve as a variable is the German study (Dietze and 

Weller 2011). According to the German model, the relationship between the radius 

of a curve and accident rate was not influenced by the length of a curve. 

Finally, the Portuguese model (Cardoso 2005) included length of curve. Again, 

however, a sensitivity analysis with respect to curve length found that the shape of 

the relationship between curve radius and accident rate was not influenced by the 

length of curve. 

Another characteristic included in some studies is the distance between adjacent 

curves. Hauer (1999) re-analyzed the New Zealand study (Matthews and Barnes 

1988). He developed a set of accident modification factors that account for the 



I:\SM-AVD\3398 Kjerne 21\Artikkelarkiv 2013-\Elvik_10.1016_j.aap.2013.07.010.doc 26 

effects of tangent length. The shorter the tangent section ahead of a curve of a given 

radius, the lower is the estimated number of accidents in that curve. The accident 

modification factors indicate that the effects of a shorter curve radius are larger the 

longer the straight road section ahead of a curve is. 

The German model (Dietze and Weller 2011) also included a term representing the 

length of a straight section ahead of a curve. The coefficient for this term shows that 

the longer the straight section ahead of a curve with a given radius, the higher is the 

accident rate in the curve. According to the model specification, however, there is no 

interaction between the length of a tangent section and the shape of the relationship 

between horizontal curve radius and accident rate. 

Findley et al. (2012) developed a model of how the number of accidents in horizontal 

curves, as predicted by the Highway Safety Manual model, is influenced by the 

distance to adjacent curves. The model shows that the closer curves are spaced the 

lower becomes the number of accidents in each curve. Their model confirms the 

findings of Hauer for New Zealand and Dietze and Weller for Germany. 

 

6.3 Predictive accuracy 

At least two American studies modelling the relationship between various 

characteristics of horizontal curves and accident occurrence in curves have been 

published after publication of the Highway Safety Manual (Bauer and Harwood 2013; 

Khan, Bill, Chitturi and Noyce 2013). How well does the accident modification 

function presented in the Highway Safety Manual, based on the work of Zegeer et al. 

(1992), predict the findings of these more recent studies? 
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In order to answer this question, the functions developed by Bauer and Harwood 

(2013) and by Khan et al. (2013) were fitted to the same combinations of values for 

curve radius and curve length as used in the main analysis. Both functions were 

found to be very close to the function developed by Zegeer et al. (1992) for curve 

radii larger than 200 metres. For smaller curve radii, the function developed by Bauer 

and Harwood (for level sections) indicated an accelerating increase in accident rate, 

yet a considerably smaller increase than found by Zegeer at al. (1992). Thus, relative 

accident rate for a curve radius of 50 metres (1,000 metres = 1.00) was 4.89 

according to Bauer and Harwood (2013), versus 12.35 according to Zegeer et 

al.(1992). Khan et al. (2013) found an even smaller increase in accident rate in curves 

with a radius of 50 metres, giving a relative accident rate of only 1.74. 

It would therefore seem that sharp curves are associated with a smaller increase in 

accident rate now than at the time when Zegeer et al. collected their data (1982-86). 

Although reasons for this difference are not known, one may speculate that a higher 

share of very sharp curves are warned and marked today than about 30 years ago, 

that vehicle steering has improved, that electronic stability control has reduced the 

risk of running off the road, and that drivers are collectively more experienced today 

than thirty years ago. 

 

7 DISCUSSION 

Does the radius of a horizontal curve influence the accident rate in the curve the 

same way in all countries? That was the main research problem that motivated the 

research reported in this paper. The answer is yes and no. Yes, in all countries that 
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have developed accident prediction models for horizontal curves, a tendency is 

found for accident rate to increase as curve radius gets smaller. The increase in 

accident rate is monotonic, i.e. it does not have turning points, and accelerating, i.e. 

reducing curve radius from 200 to 100 metres is associated with a larger increase in 

accident rate than reducing curve radius from, say, 600 to 500 metres. In these 

respects, the relationship between the radius of a curve and its accident rate appears 

to be the same in all countries. 

There are, however, important differences between countries too. In particular, the 

accident prediction functions differ greatly for curves with a radius smaller than 

about 200 metres. The functions developed for Germany and the United States 

predict a considerably sharper increase in accident rate in these curves than the 

functions developed in other countries. Reasons for these differences are not known. 

Moreover, the relationship does not appear to be stable over time. Recently 

developed accident predictions model for horizontal curve in the United States 

predict a much smaller increase in accident rate in the sharpest curves than the model 

that was implemented in the Highway Safety Manual. Again, reasons for this change 

are not known, but one can speculate that the most hazardous curves are better 

signed than before and that vehicle steering and handling has improved over time. 

As for the differences between countries, a possible reason could be the general 

alignment of the road system. It is noteworthy that the relative accident rate in curves 

with a radius of 50 metres is lower in Norway than in the other countries included in 

the study. Norway has a very high frequency of curves on many roads. Norwegian 

drivers are used to driving in curves and expect roads to have many of them. 
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The study has a number of limitations. The sample of countries was small; only eight 

countries were included in the formal synthesis of accident modification functions. 

Except for Portugal and the United States, only one accident modification function 

had been developed in each country. Ordinary techniques for meta-analysis could not 

be applied, because the precision of model coefficients was not always stated. It was 

not possible to test for the presence of publication bias. 

 

8 CONCLUSIONS 

The main conclusions of this study can be summarised in the following points: 

1. Horizontal curves are associated with an increased number of accidents, the 

more so the sharper a curve is. 

2. Models of the relationship between horizontal curve radius and accident rate 

in curves (accident modification functions for horizontal curve radius) have 

been developed in many countries. Models developed in ten countries are 

reviewed in the paper. 

3. Accident modification functions in different countries differ both in terms of 

their mathematical form (exponential, power, etc) and in terms of the 

variables included. 

4. An attempt was made to synthesize the accident modification functions 

developed in different countries. To the extent the summary accident 

modification function can be compared with the national accident 

modification functions, it appears to be a representative summary of these 

functions. 
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5. Accident rates in horizontal curves are influenced by other characteristics of 

the curve, such as the length of the curve and the distance to neighbouring 

curves. A sensitivity analysis with respect to these characteristics found that 

the shorter the distance is between adjacent curves, the lower is the accident 

rate in each curve. Findings were inconsistent as far as the length of curves is 

concerned. Some studies indicate that shorter curves have higher accident 

rates than otherwise identical longer curves, some studies indicate the 

opposite and some studies indicate that accident rate in curves is unrelated to 

the length of the curve. 
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Table 1: 

 

 Relative accident rates in horizontal curves with different radii in eight countries. Accident rate in curves with largest radius = 1.000 

Radius (metres) Canada Germany Great Britain New Zealand Norway Portugal Sweden United States 

50  24.360   3.525 5.640  12.348 

100 8.227 13.707 7.099 4.365 2.634 4.415  3.816 

200 3.498 5.943  2.801 1.968 3.330  1.682 

300 2.353 3.074 4.759 2.161 1.659 2.796 2.167 1.285 

400 1.844 1.712  1.798 1.470 2.449  1.148 

500 1.555 1.000  1.558 1.338 2.191 1.539 1.085 

600 1.368   1.387 1.240 1.981  1.050 

700 1.236  0.932 1.256 1.162 1.781 1.360 1.029 

800 1.138   1.154 1.098 1.603  1.016 

900 1.061   1.070 1.045 1.399 1.240 1.006 

1000 1.000  1.000 1.000 1.000 1.000  1.000 

1500       1.086  

3500       1.000  
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Table 2: 
 

 Accident modification function for Norway Accident modification function for Great Britain 

 
Radius of curve (metres) 

 
Relative accident rate 

Marginal gradient of 
accident rate 

 
Relative accident rate 

Marginal gradient of 
accident rate 

Interpolated marginal 
gradient 

100 2.634 2.634/1.968 = 1.338 7.099 7.099/4.759 = 1.492 1.427 

200 1.968 1.968/1.659 = 1.186   1.045 

300 1.659 1.659/1.470 = 1.129 4.759 4.759/0.932 = 5.106 1.578 

400 1.470 1.470/1.338 = 1.099   1.509 

500 1.338 1.338/1.240 = 1.079   1.473 

600 1.240 1.240/1.162 = 1.067   1.455 

700 1.162 1.162/1.098 = 1.058 0.932 0.932/1.000 = 0.932 0.9773 = 0.932 

800 1.098 1.098/1.045 = 1.051   0.9772 = 0.955 

900 1.045 1.045/1.000 = 1.045   0.977 

1000 1.000  1.000  1.000 
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Table 3: 
 

 Marginal gradients for effects of shorter horizontal curve radius on accident rate and mean values of gradients 

Curve radius 
(metres) 

 
Canada 

 
Germany 

 
Great Britain 

 
New Zealand 

 
Norway 

 
Portugal 

 
Sweden 

 
United States 

 
Simple mean 

Weighted 
mean 

50  1.777   1.338 1.277  3.236 1.907 1.750 

100 2.352 2.306 1.427 1.558 1.338 1.326  2.269 1.797 1.680 

200 1.487 1.933 1.045 1.296 1.186 1.191  1.308 1.350 1.304 

300 1.276 1.795 1.578 1.202 1.129 1.142 1.213 1.119 1.307 1.260 

400 1.186 1.712 1.509 1.154 1.099 1.118 1.161 1.058 1.250 1.169 

500 1.137  1.473 1.124 1.079 1.106 1.071 1.033 1.146 1.132 

600 1.107  1.455 1.104 1.067 1.112 1.057 1.020 1.132 1.105 

700 1.086  0.977 1.089 1.058 1.111 1.047 1.013 1.055 1.056 

800 1.072  0.977 1.078 1.051 1.146 1.047 1.010 1.054 1.051 

900 1.061  0.977 1.070 1.045 1.399  1.006 1.089 1.062 

1000 1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 
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Table 4: 
 

 Relative accident rate in horizontal curves (1.00 for curves with radius 1,000 metres) depending on countries included in synthesis 

 
Curve radius (metres) 

 
All countries – simple mean 

All countries – weighted 
mean 

Weighted mean – Germany 
excluded 

Weighted mean – United 
States excluded 

Weighted mean – Germany 
and USA excluded 

50 11.87 8.32 6.32 6.10 5.40 

100 6.22 4.76 4.15 4.47 4.13 

200 3.46 2.83 2.68 2.88 2.67 

300 2.57 2.17 2.13 2.21 2.19 

400 1.96 1.72 1.75 1.75 1.74 

500 1.57 1.47 1.47 1.48 1.48 

600 1.37 1.30 1.30 1.32 1.32 

700 1.21 1.18 1.18 1.19 1.19 

800 1.15 1.12 1.12 1.13 1.13 

900 1.09 1.06 1.06 1.06 1.06 

1000 1.00 1.00 1.00 1.00 1.00 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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