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 
Abstract— This study assessed four types of human-machine 

interfaces (HMIs), classified according to the stages of 
automation proposed by Parasuraman et al. (2000). We 
hypothesized that drivers would implement decisions (lane 
changing or braking) faster and more correctly when receiving 
support at a higher automation stage during transitions from 
conditionally automated driving to manual driving. Twenty-five 
participants with a mean age of 25.7 years (range 19–36 years) 
drove four trials in a driving simulator, experiencing four HMIs 
having different stages of automation: 1. Baseline (information 
acquisition, low), 2. Sphere (information acquisition, high), 3. 
Carpet (information analysis), and 4. Arrow (decision selection), 
presented as visual overlays on the surroundings. The HMIs 
provided information during two scenarios, namely a lane change 
and a braking scenario. Results showed that the HMIs did not 
significantly affect the drivers’ initial reaction to the take-over 
request. Improvements were found, however, in the decision-
making process: When drivers experienced the carpet or arrow 
interface, an improvement in correct decisions (i.e., to brake or 
change lane) occurred. It is concluded that visual HMIs can assist 
drivers in making a correct braking or lane change maneuver in 
a take-over scenario. Future research could be directed towards 
misuse, disuse, errors of omission, and errors of commission. 
 

Index Terms— automated driving, augmented reality, human 
factors, human performance, driver support systems, transitions 
of control  

I. INTRODUCTION 

IGHLY automated driving will probably be introduced 
onto public roads within a number of years. Vehicle 
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manufacturer Tesla was the first to market what can be 
described as a basic Autopilot [1], a partially automated 
highway driving system (SAE Level 2) and is approaching a 
higher level of automation (conditionally automated, SAE 
Level 3) with their Autopilot 2.0 hardware update [2]. Volvo 
will be launching their first trial with the IntelliSafe Autopilot 
system as part of their DriveME project [3], and Daimler is 
piloting Highway Pilot technology among truck drivers [4].  

Conditionally automated vehicles enable extended periods 
of hands- and feet-free driving during which the driver is free 
to engage in non-driving tasks, but with the legal constraint 
that the driver has to be able to switch off or override the 
automation when required [5]. Such automated driving 
systems will prompt the driver, using a so-called take-over 
request (TOR), to resume control when the system’s limits 
(e.g., functional or geographical) are reached.  

A. The importance of HMIs in take-over scenarios 

In a review by De Winter, Happee, Martens and Stanton [6], 
it was found that drivers who have been out of the control loop 
for an extended period of time tend to suffer from degraded 
situation awareness. It has been argued that drivers need to be 
aware of the functional limits of the automation before these 
limits are reached [7-10]. Eriksson and Stanton [9], and 
Stanton [11] proposed a chatty co-driver where the vehicle 
continually informs the driver about its state and limitations.  

Furthermore, conditionally automated vehicles need to 
allow for a “sufficiently comfortable transition time” [12] of 
“several seconds” after presenting a TOR [5]. In an attempt to 
gain an understanding of how long drivers need to resume 
control from an automated vehicle, Eriksson and Stanton [13] 
reviewed the literature on control transitions and found that 
drivers take a median of 2.5 seconds, and in some cases up to 
15 seconds to resume control in urgent scenarios [e.g. 14]. 
Their review also showed that when drivers are requested to 
resume control without time pressure, they take between 2.1 
and 3.5 seconds (median) longer than when under time 
pressure, depending on task engagement [13]. Moreover, they 
argued that only considering the ‘average driver’ is 
insufficient, as this excludes a large part of the driving 
population due to the long tail of the reaction time distribution 
(see also [15, 16]).  

In summary, a challenge of conditionally automated driving 
is to get a driver back to the driving task in a safe manner. 

Rolling out the red (and green) carpet: 
supporting driver decision making in 

automation-to-manual transitions 

*A. Eriksson, S. M. Petermeijer*, M. Zimmermann, J. C. F. de Winter, K. J. Bengler, & N. A. Stanton 
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Human-machine interfaces (HMIs) should be designed to 
support a safe response of the driver during a take-over 
scenario [8, 9]. 

B. Existing HMIs that support take-over scenarios 

According to Petermeijer, Abbink, Mulder, and De Winter 
[19], Zeeb et al. [20], and Kerschbaum et al. [21], resuming 
control from an automated vehicle involves several mental and 
physical stages. The driver resuming control must 1) shift 
visual attention from the non-driving task back to the road, 2) 
scan the driving scene to cognitively process and evaluate the 
traffic situation and make an appropriate decision, 3) move the 
hands and feet to the steering wheel and the pedals so that 
control inputs can be made, and 4) implement the appropriate 
action via the steering wheel and/or pedals. A driver’s 
performance during a take-over scenario can also be described 
at a control level and a tactical level, as per Michon [22]. For 
example, retaking the steering wheel and stabilizing the 
vehicle occur at the control level, while identifying obstacles 
and making an evasive manoeuvre are behaviors at the 
tactical/decision-making level. 

Many previous studies on take-over scenarios have 
provided simple auditory and visual warning signals to convey 
a take-over request to the driver (e.g., [20, 23, 24] for a review 
see [13] and [25]). Auditory and vibrotactile take-over 
requests have been shown to elicit faster reaction times than 
visual ones [26]. These effects may be due to the fact that 
auditory and vibrotactile feedback compete less for perceptual 
resources than visual feedback [27] as driving is primarily a 
visual task [28]. Moreover, it has been found that presenting 
bimodal auditory/vibrotactile warnings yielded a slight 
improvement in reaction time compared to their unimodal 
constituents [29]. 

In addition to receiving a take-over warning, a driver could 
also be supported in making decisions. Research has indicated 
that drivers, after receiving a vibrotactile warning, first 
visually assess the outside environment [30, 31]. The 
vibrotactile modality is not particularly effective in conveying 
complex information [32, 33]. Visual and vocal messages, on 
the contrary, can convey complex information that is linked to 
the surrounding scene [33-35]. Thus, auditory [36] and 
vibrotactile signals are recommended as warnings (i.e., they 
are expected to attract attention and support a fast initial 
response), whereas visual and vocal displays are 
recommended for conveying semantics to the driver (i.e., they 
are expected to support cognitive processing and tactical 
decision making). 

C. Automation framework to support decision making 

A framework proposed by Parasuraman et al. [37] stated 
that automation can be divided into four stages: (1) 
information acquisition, (2) information analysis, (3) decision 
selection, and (4) action implementation (in short, acquisition, 
analysis, selection, and implementation). According to 
Parasuraman et al. [37] an automated system may involve 
different levels of automation at each stage. Note that 
Parasuraman et al. [37] based their model on existing models 

of human information processing, which explains the 
similarities between the stages of their framework and the 
information processing stages in the take-over process 
described above. 

When a conditionally automated vehicle (SAE Level 3) 
reaches its functional limits and presents a take-over request to 
the driver, this inherently means that the automated system 
cannot safely implement actions anymore and requires driver 
intervention. Despite no longer being able to implement 
actions, the system could potentially still assist the driver in 
making decisions by means of a HMI displaying information 
available from the remaining three automation stages (i.e., 
information acquisition, information analysis, and decision 
selection).  

A TOR consisting of a notification in the instrument cluster 
combined with an auditory signal, as in Gold, Damböck, 
Lorenz and Bengler [23], would be considered a low level of 
acquisition support (see Fig. 1. acquisition – low), because the 
HMI only informs the driver that she/he needs to take over 
(starting with scanning the environment). A higher level of 
acquisition (acquisition – high) would draw the attention 
towards important elements in the surroundings. An interface 
that also provides information about the surrounding traffic 
situation (e.g., adjacent lane is free/occupied) [38] and 
suggests actions (e.g., change lane/brake) [39] would score 
highly on information analysis and decision selection, 
respectively.  

D. Possible advantages and disadvantages of feedback and 
support systems 

The benefits of feedback and support systems have been 
widely reported in the literature. For example, forward 
collision warning systems are known to decrease brake 
reaction times [40-42], and a vibrotactile gas pedal was found 
to improve eco-driving performance [43]. A simulator study 
by Israel [44] showed that visual head-up displays decreased 
the number of navigational mistakes at intersections. 
Moreover, it has previously been shown that visual augmented 
feedback can be used to improve drivers’ situation awareness 
[27, 45].  

 
Figure. 1. Representation on the four stages of 
information support, namely acquisition – low (red solid), 
acquisition – high (blue dotted), analysis (orange long 
dashes), and selection (green short dashes). Adapted from 
Parasuraman et al. (2000) [37] 
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Detrimental effects of support systems have also been 
reported (primarily in aviation), such as complacency [46] and 
skill degradation [47, 48]. Another issue that arises with 
increasing support is automation bias, in the form of errors of 
omission or commission. An error of omission occurs when an 
operator fails to implement an appropriate action because the 
operator was not informed by the support system [38, 49].  

An error of commission occurs when an operator 
implements an incorrect action suggested by the support 
system, without considering other indicators [50]. In a review 
of the literature, Mosier and Skitka [51] noted that automation 
bias occurs not only for untrained operators but also for 
experienced ones, suggesting that automation bias is a 
persistent problem. These forms of automation bias could lead 
to dangerous situations [e.g. 52], for example when the system 
falsely instructs the driver to change lane whilst the target lane 
is occupied by other vehicles.  

E. Aim of this experiment 

The aim of this experiment was to investigate driver 
behavior in take-over scenarios with different stages of 
support.  

Eriksson and Stanton [53] previously used the so-called 
COntextual COntrol Model (COCOM) [54] to explain driver 
performance in a take-over scenario. This model states that 
successful tactical decision can be invoked by giving operators 
more time or by enhancing the predictability of the situation. 
The authors used this to compare driver-paced transitions [53] 
(which allow for extra planning time) with transitions under 
time pressure (cf. [23], [55-58]). In accordance with the 
predictions of the COCOM model, we expected that 
improvements would occur in driver decision making by 
increasing the predictability of the situation through HMIs that 
involve different stages of automation. We expected that the 
HMIs assessed in this paper would not help reduce the initial 
reaction times (e.g., grabbing the steering wheel) after the 
TOR. The immediate control activity is ‘automatic’ and 
requires little conscious effort to be executed (cf. [59][60]). 

This study assessed how driver’s performance was affected 
as a function of visual support within the automation stages 
(1) information acquisition, (2) information analysis, and (3) 
decision selection. It was expected that drivers would 
implement decisions more correctly and faster when receiving 
a higher stage of support as defined in Figure 1. Moreover, by 
measuring head movements, we aimed to obtain insight into 
whether drivers are prone to automation bias and follow the 
HMI’s suggestion without verifying the safety of the 
suggested action [46]. 

II. METHOD 

A. Participants 

Twenty-five participants (14 male, 11 female) with a mean 
age of 25.7 years (SD = 3.9, min = 19, max = 36, N = 24 
because one participant did not report his age) and an average 
driving experience of 8.3 years (SD = 4.1) took part in the 
study. Two participants indicated to drive daily, 3 participants 

reported 4–6 days a week, 10 reported 1–3 days a week, 5 
reported once a month, 4 reported less than once a month, and 
1 reported they never drove in the past 12 months. The study 
received ethical approval from the Southampton University 
Ethics Committee (RGO number: 19930), and all participants 
provided written informed consent.  

B. Apparatus 

A static simulator, fixed-base, BMW 6-series mock-up, 
operated the SILAB (version 4) software. The simulator 
offered a 180° front view and rear projections for every mirror 
(left, inner, and right), generated by six projectors. Road and 
engine noise was played back, and low-frequency vibrations 
were  provided via a bass shaker in the driver seat. The 
automation could be toggled by pressing a button (with a 
diamond-shaped icon) on the steering wheel. The automation 
adhered to the lane centre by applying light torques on the 
steering wheel. The driver could still steer and brake when the 
automation was active, and accordingly influence the lateral 
position and speed of the vehicle. The automation disengaged 
when the lateral speed of the car exceeded about 1 m/s, or 
when the brake pedal depression exceeded 25%. An icon 
located between the speedometer and tachometer indicated the 
automation status (i.e., unavailable, active, or inactive).  

The participants played ‘Angry Birds’ as a non-driving task 
during the intervals of automated driving. Angry Birds was 
deemed suitable because it is an interruptible [61] task that 
does not penalise the player for switching to another task. The 
driver played the game on a Lenovo A7-50 7-inch tablet that 
was mounted in the centre console, in front of the radio.  

The participants’ head and gaze motion were tracked using 
a three-camera remote system (Smart Eye Pro 6.1). Simulation 
and eye tracking data were synchronized and logged at 60 Hz. 
The vehicle environment was modelled in the Smart Eye 
software to relate eye gaze and real-world objects. The 
windshield was defined as an area of interest.  

C.  Take-over scenarios 

The automated vehicle drove in the right lane on a two-lane 
highway at 110 km/h (68.4 mph) and approached a slow-
moving vehicle (e.g., truck, tractor, or moped) driving at 58 
km/h (36.0 mph) (see Fig. 2). When the time to collision 

 
Figure 2. The two take-over scenarios. Top: the group of 
cars is too close to change lane safely and the driver is 
expected to brake (i.e., braking scenario). Bottom: the 
group of cars is far enough away for the driver to overtake 
the vehicle safely (i.e., lane change scenario). 
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(TTC) with the slow-moving vehicle decreased below 12 s, 
the automation issued a TOR. Simultaneously, a group of 
other vehicles, driving at 150 km/h (93.2 mph), approached in 
the left lane. The group of vehicles was, at the moment of the 
TOR, either approximately 165 m behind (i.e., the first vehicle 
would pass in approximately 1 s) so that the driver could 
safely change lane (i.e., lane change scenario), or 
approximately 50 m behind (i.e., the first vehicle would pass 
in approximately 4.5 s) so that the driver was required to 
reduce the speed of his or her vehicle (i.e., braking scenario). 
In summary, drivers could safely change lane in the lane 
change scenario, whereas they could not safely change lanes 
in the braking scenario until the platoon had passed.  

D. Human-Machine Interfaces for Take-over Requests 

To increase the likelihood that drivers respond successfully 
to a TOR, a bimodal feedback paradigm was used. The HMIs 
in this experiment consisted of vibrotactile stimuli in the seat, 
provided by vibration motors (Fig. 3). Simultaneously, an 
augmented reality display (based on [39, 62, 63]) showed 
warnings, information, or decision suggestions for courses of 
action (Fig. 4). Depending on whether the drivers faced a 
braking or a lane change scenario, the information analysis 
and decision selection visuals were redundantly encoded by 
means of colour (red and green; i.e., having a well-established 
meaning, see also [45]), shape (wide or narrow carpet), and 
direction (left or backwards arrows).  

More specifically, this study tested four types of 
information support conditions during six take-over scenarios 
per condition (three lane change conditions, and three braking 
conditions) with various stages of support (see Fig. 1): 
1. Information acquisition–low: A vibrotactile warning 

indicating that the driver had to resume control. The 
vibration seat (Fig. 3) presented a series of three 320 ms 
pulses (70 ms engaged, 250 ms disengaged) in all 48 
motors in the seat to inform the driver he/she needed to 
resume control. No extra visuals were presented in this 
condition. Hence, the driver did not receive any additional 
information from the interface other than the vibrotactile 
TOR (Fig. 4 top left). This vibration was the baseline 
condition. 

2. Information acquisition–high: At the same moment as the 
TOR (i.e., the vibrotactile warning), an augmented sphere 
highlighted the slowly moving vehicle ahead (Fig. 4, top 
right; similar to [39, 64]). Thus, in addition to the TOR, 
the driver received a visual cue to direct his/her attention 
towards the cause of the TOR (the leading vehicle). The 
vibrations together with the sphere overlay are referred to 
as the sphere condition. 

3. Information analysis: In addition to the vibrotactile 
warning, an augmented-reality overlay informed whether 
there was a gap in the left lane. In the lane change 
scenario, a wide green carpet in the left lane informed 
drivers about available space in the other lane (like in 
[39]; Fig. 4 middle left), whereas in the braking scenario, 
a narrow red barrier between the lanes emphasized a no-
passing zone (inspired by the H-Mode visuals [63]; Fig. 4 
middle right). The vibrotactile warning and visual 
information formed the carpet condition. 

4. Decision selection: At the same moment as the 
vibrotactile warning, augmented reality arrows at a fixed 
distance from the driver indicated that the driver could 
change lane or brake (Fig. 4 bottom left and right; see also 
[39]). The vibrotactile warning with the arrow is referred 
to as the arrow condition. 

In all scenarios, the HMI was hidden when the host vehicle 
crossed into the adjacent lane. Additionally, the green carpet 
and green arrow disappeared when the approaching vehicles 
on the left lane were too close (TTC = 2 s). In the braking 
scenario, the HMI disappeared when the platoon had passed. 
Additionally, the red arrow disappeared when TTC to the lead 
vehicle became larger than 12 seconds, as this was an 
indication that the participant had already braked sufficiently.  
 

E. Experimental Design and Instructions to Participants 

A within-subject design was used for the different HMI 
conditions. The participants drove a 1.5-minute practice run 
during which they could familiarise themselves with the 
automation and the take-over, after which four trials were 
driven in counterbalanced order, each trial with a different 
HMI: (1) information acquisition–low, (2) information 
acquisition–high, (3) information analysis, and (4) decision 
selection.  

Participants were provided with an instruction form, which 
stated that they would be driving an automated car that 
controls speed and stays in the lane. The form also explained 
the automation-status icons on the dashboard, and instructed 
participants to have their hands off the steering wheel and 
their feet off the pedals while the automation is active. 
Participants were instructed to play Angry Birds on the tablet 
in the car and were informed that they did not have to look at 
the road. Participants were also informed that they will be 
approaching a slow-moving vehicle ahead, at which moment 
the automation will ask them to take back control of the car, 
via vibrations in the seat and one of four assistance systems. 
The form included a picture and text explaining each HMI. 
Finally, participants were informed that the automation will 
function perfectly and does not need any monitoring, except 
when it provides a take-over request. Participants were not 
informed about the behavior of the approaching platoon in the 
left lane. 

 
Figure 3. Illustration of the vibrotactile seat and the 
location of the 48 vibration motors (i.e., white circles). 
The motors are arranged in two matrices of 6x4 motors 
(one matrix in the seat back, the other matrix in the seat 
bottom. 
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During each trial, the participant experienced six take-over 
procedures of which three took place in the braking scenario 
and three in the lane change scenario. Specifically, the lane 
change (LC) and brake (B) scenarios were presented in the 
following order: B, LC, B, LC, B, LC for the baseline and 
arrow trials, LC, B, LC, B, LC, B for the carpet trial, and LC, 
B, B, LC, LC, B for the sphere trial. Each trial lasted 
approximately 12 minutes, with a request to resume control in 
a braking or lane change scenario occurring about every 110 
seconds. After each trial, participants stepped out of the 
vehicle to have a break and to complete two questionnaires. 

F. Dependent measures 

The experiment employed several objective measures to 
capture performance and reaction times, namely: 
 Success rate: In the lane change scenario, a manoeuvre 

was considered successful if the driver changed lanes 
before the cars in the adjacent lane passed. In the braking 
scenario, a manoeuvre was regarded as successful when 
the participant made a lane change after all cars in the 
adjacent lane had passed. The definition of a lane change 
was that the host vehicle’s centre of gravity had crossed 
the lane boundary. 

 Braking rate: The percentage of scenarios in which the 
participants used the brake pedal. Application of the 
brakes in the lane change scenario is an indication of 
unnecessary deceleration. 

 Eyes-on-windshield reaction time: The time between the 
onset of the TOR to the moment the eye gaze of the driver 
was first detected in the windshield area.  

 Hand-on-wheel reaction time: The time between the onset 
of the TOR to the moment the drivers put a hand back on 
the steering wheel, measured with induction coils in the 
steering wheel. 

 Steer move time: The time between the onset of the TOR 
and the first detectible steering input (i.e., above sensor 
noise threshold). The steer move time is equivalent to the 
hand-on-wheel reaction time but was measured from the 
steering wheel angle instead of induction coils in the 
steering wheel. 

 Brake reaction time: The time between the onset of TOR 
to the onset of a depression of the brake pedal [23]. 

 Lane change time: The lane change time is the time from 
the onset of the TOR to the moment that the host 
vehicle’s centre of gravity had crossed the lane boundary. 

 Head angle: The mean and standard deviation of the angle 
of the head as a function of travelled distance was used to 
represent the direction of the participant’s visual attention. 
The head angle was defined as the nose angle (a vector 
originating at the middle of the head and pointing out of 
the nose) in world coordinates (perpendicular to the front 
screen with its origin approximately at the vanishing point 
of the road). Thus, the head angle is zero when the 
driver’s head is pointing straight to the road. Note that we 
used head movements instead of eye movements, because 
eye movement data was deemed less robust according to 
our data quality assessment. Considering that head 
orientation is a proxy for glance direction [65], head 
orientation was deemed suitable for our purpose of 

assessing whether the participants looked at the road or to 
at secondary task display.  

Two questionnaires were utilized as subjective measures for 
workload and acceptance: 
 The NASA raw TLX was used to evaluate the perceived 

workload per condition [66, 67]. The questionnaire 
consists of six items: mental demand, physical demand, 
temporal demand, performance, effort, and frustration. 
The items had a 21-tick Likert scale, ranging from “very 

low” to “very high”, except the Performance item, which 
ranged from “perfect” to “failure”. 

 A nine-item technology acceptance questionnaire [68] 
was used to measure the usefulness and satisfaction of the 

  
Baseline condition    Sphere condition 

 

  
Carpet condition      Carpet condition 
(lane change scenario)  (braking scenario) 

 

  
Arrow condition      Arrow condition 
(lane change scenario)  (braking scenario) 

 
Figure 4. The visual interface for the four levels of 
support. Top left (baseline condition): No visual support 
in both scenarios. Top right (sphere condition): a blue 
sphere highlighting the slow-moving vehicle ahead in both 
scenarios. Middle left (carpet condition): a green carpet in 
the left lane for the lane change scenario. Middle right 
(carpet condition): a red barrier covering the lane 
markings for the braking scenario. Bottom left (arrow 
condition): a green arrow pointing left for the lane change 
scenario, Bottom right (arrow condition): a red arrow 
pointing backwards, for the braking scenario. 
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different support types. The usefulness score was 
calculated from the following five items on a semantic-
differential five-point scale from −2 to +2.: 1. useful–
useless, 3. bad–good, 5. effective–superfluous, 7. 
assisting–worthless, and 9. raising alertness–sleep-
inducing. The satisfaction score was calculated from the 
following four items: 2. pleasant–unpleasant, 4. nice–
annoying, 6. irritating–likeable, 8. undesirable–desirable. 
Sign reversals were conducted for items 1, 2, 4, 5, 7, and 
9, so that a higher score indicates higher 
usefulness/satisfaction. 

G. Statistical Analyses  

Due to the expected non-normal distribution of the response 
time data (these types of data are known to have a high-
kurtosis distribution) [13, 18], non-parametric Friedman tests 
with Wilcoxon signed-rank tests (with the alpha level 
corrected for multiple comparisons) were used. Effect sizes of 
the Friedman’s test were represented by Kendall’s W, defined 
as W = χ2/N(k−1), where χ2 is the test statistic, N is the number 
of participants (25), and k is the number of conditions per 
participant (4).  

For the Wilcoxon signed-rank tests, effect sizes were 
calculated as r = |Z/N0.5|, where Z is the Z-statistic, and N is the 
number of participants.  

 For the comparison of the head movements between HMIs, 
Wilcoxon signed-rank tests of the head eccentricity were 
performed for every time sample (see Fig. 6). The level of 
significance was visualized as the negative base-10 logarithm 
of the p-value, where large values represent small p-values in 
a similar fashion to the ‘Manhattan’ plot [53, 69-71]. Our use 
of multiple Wilcoxon signed-rank tests allows for a high 
temporal resolution (as opposed to using larger bin-sizes and 
fewer tests). It must be noted that despite relatively 
conservative corrections of the significance level, the results 
should only be seen as indicative. The interpretability of the 
analysis has been increased through the addition of the effect 
size measure r Additionally, two animated clips of the head 
movements represented as a heatmap over time, for the same 
section of road as in Fig. 5 have been made (see 
supplementary materials). 

All statistical tests were performed at the level of the 
participant. Average values of the dependent measures per 
participant were calculated across the three braking or three 
lane-change scenarios within a trial. For an alpha of 0.05, a 
sample size of 25, and a medium-to-strong effect size (dz = 
0.60), the achieved statistical power for a two-tailed test is 
80%. 

III. RESULTS 

From the 600 scenarios (25 participants x 4 trials x 6 
scenarios per trial), 13 scenarios were excluded due to 
improper data recording or a participant already touching the 
steering wheel at the moment of the TOR.  In 81.3% of the 
braking scenarios, the participants made a lane change after 
the cars in the adjacent lane had passed, whereas in 95.7% of 
the lane change scenarios the participants performed a lane 
change ahead of the cars (Table 1). In events that were 
counted as unsuccessful, the participants either hazardously 

changed lanes (causing the platoon to brake) or waited until all 
vehicles had passed before changing lanes (braking and lane 
change scenario, respectively).  

Participants in the braking scenario changed lanes 
erroneously more often (i.e., a lower success rate) in the 
baseline and sphere conditions than in the carpet and arrow 
conditions (Table 1). In the lane change scenario, the sphere 
yielded fewer successful lane changes and more unneeded 
braking actions compared to baseline, carpet, and arrow. 
Furthermore, a learning effect was observed, where 
participants braked less often as they experienced additional 
lane change events (supplementary material); this observation 
is consistent with findings from Petermeijer et. al. [29]. 
Descriptive statistics for the objective measures are shown in 
Table 2. There were no significant effects for the HMIs on the 
steer move times in both the braking scenario, χ2(3, N = 
25) = 1.42, p = 0.702, W = 0.02, and the lane change scenario, 
χ2(3, N = 25) = 5.30, p = 0.151, W = 0.07. In the braking 
scenario, there were significant differences in brake reaction 
time (χ2(3, N = 21) = 14.2, p = 0.003, W = 0.23. The arrow in 
particular evoked a rapid and strong braking input in the 
braking scenario (see supplementary materials). 

Table 1. Success rate and braking rate for steering and 
braking scenarios as a function of the support condition. 
 Braking 

scenario 
 Lane change 

scenario 
 Success 

rate (%) 
Braking 
rate (%) 

 Success 
rate (%) 

Braking 
rate (%) 

Baseline 77.3 88.0  96.0 12.0 
Sphere 78.7 86.7  86.7 33.3 
Carpet 85.3 96.0  100 2.7 
Arrow 84.0 96.0  100 6.7 
Overall 81.3 91.7  95.7 13.7 

Table 2. Medians and interquartile ranges (IQR) for the 
dependent measures across participants 
Reaction time (s)  Baseline 

Median 
(IQR) 

Sphere 
Median 
(IQR) 

Carpet 
Median 
(IQR) 

Arrow 
Median 
(IQR) 

Lane  
change  
scenario 

Eyes on 
windshield 

1.42 
(0.53) 

1.59 
(0.53) 

1.47 
(0.42) 

1.43 
(0.58) 

Hand on 
wheel 

2.12 
(1.30) 

1.89 
(1.22) 

1.86 
(0.63) 

1.98 
(0.87) 

Steer move 2.01 
(0.88) 

2.34 
(1.52) 

2.06 
(0.62) 

2.13 
(0.82) 

Braking – – – – 
Lane change 6.97 

(1.94) 
6.65 

(2.76) 
5.54 

(2.07) 
5.54 

(1.19) 
Braking  
scenario 

Eyes on 
windshield 

1.47 
(0.43) 

1.51 
(0.59) 

1.49 
(0.61) 

1.41 
(0.53) 

Hand on 
wheel 

2.16 
(0.95) 

2.20 
(1.14) 

1.85 
(0.61) 

1.99 
(1.18) 

Steer move 2.22 
(0.99) 

2.33 
(1.11) 

2.15 
(1.33) 

2.21 
(1.21) 

Braking 3.56 
(2.17) 

3.14 
(1.41) 

3.33 
(2.26) 

3.04 
(1.34) 

Lane change 20.46 
(5.01) 

20.94 
(3.50) 

21.36 
(2.04) 

20.76 
(2.92) 

Note. Brake reaction times are not reported in the lane change 
scenario because participants often did not brake (see Table 1). 
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A significant effect of the HMIs was also found for the lane 

change time in the braking scenario, χ2(3, N = 25) = 8.47, 
p = 0.037, W = 0.11. Post-hoc analysis showed a significantly 
slower lane change time for the carpet as compared to the 
arrow (Table 3), which may be due to the red barrier which 
remained present until the traffic stream had passed.  

A significant main effect of the HMIs was also found for 
the time it took to change lane in the lane change scenario, 
χ2(3, N = 25) = 15.84, p = 0.001, W = 0.21. Wilcoxon signed-

rank post-hoc tests showed a significantly faster execution of 
the lane change for the arrow compared to the sphere and 
baseline, and for the carpet compared to baseline (Table 3). 

A. Head movements 

Figure 5 shows the mean head angle (with respect to 
looking to the road straight ahead) across participants in the 
four driving conditions, for the lane change and braking 
scenarios. The shaded area represents the standard deviation 
across the means of participants. Before the TOR, participants  

 
Table 3. Paired comparisons between the four HMIs regarding the lane change time after the TOR. 
Lane change scenario 
 Baseline Sphere Carpet 
 Z p r Z p r Z p r 
Sphere 0.69 0.493 0.14       
Carpet -2.64 0.008* 0.53 -2.49 0.013 0.50    
Arrow 
 

-3.16 0.002* 0.63 -3.86 < 0.001* 0.77 -0.70 0.484 0.14 

Braking scenario         
Sphere -0.87 0.382 0.17       
Carpet 2.38 0.017 0.48 1.99 0.046 0.40    
Arrow 0.20 0.840 0.04 1.09 0.276 0.22 -2.92 0.004* 0.58 
* indicates a significant difference at the Bonferroni-corrected alpha level (0.0083) 

 
Figure 5. Mean head angle across participants (N = 25) as a function of travelled distance for braking (left) and lane 
change (right) scenarios. The shaded area around the (black) mean indicates the standard deviation across the means of 
the participants in all conditions. The vertical dashed line indicates the moment of the take-over request. 

  

 
Figure 6. Top: Mean and standard deviation (shaded area) of head angle across participants (N = 25) as a function of 
travelled distance for the baseline and arrow conditions. The vertical dashed line indicates the moment of the take-over 
request. Bottom: p-values from Wilcoxon signed-rank tests for the head angle between the baseline and arrow 
conditions. The horizontal dashed line indicates a threshold of p = 0.01. 
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exhibited a large head angle, because they were performing 
the secondary task located at their bottom right. After the TOR 
was issued, participants shifted their attention back to the road. 

Figure 6 is a detailed version of Figure 5, which compares 
the baseline with the arrow condition. The bottom graphs 
show the results of Wilcoxon signed-rank tests between these 
two conditions. It is worth noting that the values in the bottom 
graphs are negative base-10 logarithms of p, meaning that 
high values represent low p-values. The horizontal dashed 
lines show the threshold for significant differences (p < 0.01). 
Significantly larger head angles were found for the 

baseline condition compared to the arrow condition, in the 
braking scenario around 70 meters post-TOR. This effect may 
be due to the arrow reducing the need to check the status of 
the left lane. Another explanation is that participants were 
focusing on the arrow, which appeared in the centre of the 
lane (Fig. 4). 

 

B. Satisfaction and usefulness scale 

The results of a Friedman test showed significant 
differences in perceived usefulness of the different HMIs, 
χ2(3, N = 25) = 22.72, p < 0.001, W = 0.30.  

As shown in Figure 7, the sphere condition yielded the 
lowest scores of the four HMIs. Post-hoc Wilcoxon signed-
rank tests showed that the arrow and carpet yielded a 
significantly higher usefulness than the baseline and sphere 
(Table 4). 

A Friedman test of perceived satisfaction also showed 
significant differences between the HMI, χ2(3, N = 25) 
= 12.30, p = 0.006, W = 0.16. Post-hoc Wilcoxon signed-rank 
tests showed significantly higher satisfaction for the carpet 
compared to the sphere condition (Table 4). 

 
C. Overall workload 

Table 4. Paired comparisons between the perceived usefulness and satisfaction of the four HMIs. 

Usefulness 
 Baseline Sphere Carpet 
 Z p r Z p r Z p r 
Sphere -1.63 0.102 0.33       
Carpet 1.81 0.071 0.36 3.39 < 0.001* 0.68    
Arrow 
 

2.99 0.003* 0.60 3.54 < 0.001* 0.71 0.61 0.540 0.12 

Satisfaction         
Sphere -1.89 0.059 0.38       
Carpet 0.73 0.464 0.15 3.24 0.001* 0.65    
Arrow 1.09 0.276 0.22 2.40 0.016 0.48 -0.19 0.847 0.04 
* indicates a significant difference at the Bonferroni-corrected alpha level (0.0083) 

Table 5. Mean and standard deviation of the self-reported 
workload per HMI condition. Results are shown on a scale 
from 0 (very low/perfect) to 100 (very high/failure). 

 Baseline Sphere Carpet Arrow 

 M 
(SD) 

M 
(SD) 

M 
(SD) 

M 
(SD) 

Mental demand 
36.8 

(22.6) 
37.2 

(22.6) 
31.0 

(21.7) 
30.2 

(22.3) 

Physical 
demand 

20.2 
(12.8) 

21.8 
(16.1) 

17.8 
(14.2) 

19.6 
(14.9) 

Temporal 
demand 

39.4 
(20.0) 

41.0 
(22.3) 

31.0 
(21.3) 

31.4 
(22.6) 

Performance 
30.4 

(17.3) 
29.2 

(17.1) 
27.6 

(19.8) 
27.4 

(16.5) 

Effort 
34.2 

(19.8) 
28.2 

(13.6) 
27.6 

(18.7) 
25.6 

(16.5) 

Frustration 
32.0 

(18.1) 
34.2 

(21.3) 
29.0 

(21.1) 
28.8 

(20.4) 

Total 
32.2 

(14.0) 
31.9 

(13.6) 
27.3 

(15.0) 
27.2 

(15.1) 

 
Figure 7. Mean usefulness and satisfaction score per 
condition. The grey error bars indicate the mean ± 1 
standard deviation across participants. Mean (SD) 
usefulness: 0.66 (0.87), 0.33 (0.94), 1.08 (0.80), and 1.16 
(0.74), for baseline, sphere, carpet and arrow, respectively. 
Mean (SD) satisfaction: 0.67 (0.91), 0.13 (0.97), 0.89 
(0.83), 0.81 (0.94), for the baseline, sphere, carpet, and 
arrow conditions, respectively.  
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 The results of a Friedman’s ANOVA showed significant 
differences in self-reported overall workload as measured by 
the NASA-TLX levels χ2(3, N = 25) = 10.74, p = 0.013, W = 
0.14 (Table 5). No significant difference was observed when 
carrying out a Bonferroni-corrected Wilcoxon signed-rank 
post-hoc analysis between pairs of conditions.  

IV. DISCUSSION 

A. Success rate and braking rate 

The results showed that drivers had an overall success rate 
of 81.3% in the braking scenario and 95.7% in the lane change 
scenario. The success rates for the carpet and arrow conditions 
were higher than for the baseline and sphere conditions, 
indicating that drivers were better assisted when they received 
higher stages of support. Similar effects with respect to a 
baseline condition without visual support have been shown by 
Lorenz, Kerschbaum and Schumann [45], who used a green 
and red augmented reality carpet that indicated a safe versus a 
restricted way of travel, and by Zimmermann et al. [39], who 
reported higher success rates when employing a combination 
of a carpet and an arrow. The high success rates of the carpet 
and arrow may be due to the use of salient green and red 
colors, which are well-established indicators of safety and 
danger/urgency, respectively [72, 73]. One difference between 
the carpet and the arrow in the braking scenario was that the 
arrow yielded stronger and more immediate braking than the 
carpet (i.e., red barrier) (see also supplementary materials). 
This can be explained by the fact that the arrow represents a 
directive to brake (i.e., decision-selection automation). 

In the lane change scenario, there was a lower braking rate 
for the arrow and carpet conditions as compared to the 
baseline and sphere conditions, indicating that drivers 
receiving a higher stage of support (cf. Fig. 1) made more 
successful lane changes. The relatively high braking 
percentages in the baseline and sphere conditions in the lane 
change scenario may be because participants were uncertain 
about which action to undertake, or because they intended to 
increase their time budget for making a decision. 

Contrary to our expectations, the sphere yielded a lower 
success rate than the baseline condition in the lane change 
scenario (Table 1). An explanation could be that the meaning 
of the sphere was unclear or that the sphere was interpreted as 
a danger, thereby triggering an unneeded braking reaction. 
Another explanation is that the sphere masked some of the 
intrinsic visual cues, such as optical looming [74], which 
drivers normally use in braking. While this is a possibility, 
some of the looming information was still provided by the 
sphere overlay, as the sphere scaled with the distance to the 
lead vehicle. 

 

B. Reaction times 

The reaction times of the eyes on the windshield and the 
steering wheel were not significantly affected by the visual 
information presented to the driver. This is expected, as these 
measures reflect a shift of attention, which is unrelated to the 
type of visual support. Lorenz, Kerschbaum and Schumann 
[45] and Langlois and Soualmi [64] also found no significant 

differences in initial reaction times between visual interfaces 
(i.e., augmented red or green carpets) and a control condition. 

C.    Head movements 

The head movements for the four HMIs were relatively 
similar (Fig. 5). However, there were subtle but significant 
differences after the TOR: the carpet and arrow attracted 
visual attention, whereas participants in the baseline condition 
were less likely to look straight ahead (Fig. 5 & 6).  

The increase in forward attention could be a manifestation 
of attentional tunnelling [75], as participants focus on the 
augmented feedback, while paying less attention to the rest of 
the scene (e.g., checking the mirrors to see whether the left 
lane is free). 

According to theories in linguistics [7][76][77], effective 
communication is achieved when messages are relevant and 
not more informative than required. Extrapolating this idea to 
HMI design, we may recommend that HMIs should not 
present too much information (e.g., visual clutter, multiple 
symbols), as this may cause participants to focus on the HMI 
itself rather than the surrounding environment.  

D. Subjective data 

In terms of perceived usefulness and satisfaction of the 
HMIs, there was no statistically significant difference between 
the carpet and arrow conditions, but drivers found both the 
carpet and the arrow more useful than the sphere. Previous 
research by Werneke et al. [78] found that augmented 
feedback in the form of a bird’s eye view received more 
positive ratings from drivers than a late warning in the form of 
a sphere that highlighted a dangerous vehicle. Schwarz et al. 
[79] found that augmented reality warnings (i.e., scenario-
specific icons accompanied by arrows coming from the 
direction of danger) were rated more highly than unspecific 
visual or auditory warnings. 

 The relatively poor driving performance in the sphere 
condition may indicate that the information it conveyed was 
insufficient for making a proper decision. It is possible that 
drivers needed time to interpret the sphere, leading to lower 
satisfaction and usefulness scores. 

V. CONCLUSION 

This study assessed four types of HMIs, classified along the 
stages of automation suggested by Parasuraman et al. [37]. We 
hypothesized that drivers would benefit from visual feedback 
on the information acquisition, information analysis, and 
decision selection stages during transitions to manual control 
following conditionally automated driving.  

The HMIs in this paper did not benefit initial reaction times. 
Improvements appeared, however, in decision making, where 
participants had to assess whether to brake or to change lane 
after the request to resume control. The carpet (information 
analysis) and arrow (decision selection) conditions 
outperformed the sphere and baseline conditions in terms of 
manoeuver success rates. Merely highlighting an obstacle via 
a sphere (information acquisition, high) did not improve 
decision making, but rather increased unnecessary braking.  
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In our study, the HMIs always provided reliable 
information, yet some participants still made unsafe lane 
changes in the braking scenario (Table 1). Future research 
could investigate more authoritative HMIs (e.g., by adding 
speech feedback) to increase driver compliance. Future 
research could also investigate driver behavior when the HMI 
does not appear when it should (potentially resulting in an 
error of omission) and when the HMI provides incorrect 
advice (potentially resulting in an error of commission). In our 
study, braking and lane changes scenarios were presented in 
an alternating fashion. Furthermore, future research should be 
carried out in a larger variety of randomized traffic situations. 
Finally, the participants experienced the HMIs for a rather 
short time (approximately 12 min), but showed learning in the 
form of a reduction of unneeded braking as a function of 
scenario number. A longitudinal study on actual roads should 
be performed to study whether participants develop 
complacency/misuse (e.g., whether the HMI causes drivers to 
fail to check the blind spot and change lanes when braking 
would be safer) and disuse (e.g., whether drivers disengage the 
HMI). 
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