
 
 
 
 

Accepted Manuscript 
 
 
 
 

 
 
 
 
 

This is an Accepted Manuscript of the following article: 
 
 
 

Flügel S, Halse A H, Ortúzar J d D, Rizzi L I. Methodological challenges in modelling the 
choice of mode for a new travel alternative using binary stated choice data – The case of 

high speed rail in Norway. 
 

Transportation Research Part A: Policy and Practice. 78 (August), Year, 438-451.  
0965-8564 

 
 

The article has been published in final form by Elsevier at 
 

http://dx.doi.org/10.1016/j.tra.2015.06.004 
 
 

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 
 

It is recommended to use the published version for citation. 
 
 
 
 
 
 
 

http://dx.doi.org/10.1016/j.tra.2015.06.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

Methodological challenges in modelling the choice of 

mode for a new travel alternative using binary stated 

choice data - the case of high speed rail in Norway 

Stefan Flügela, Askill H. Halseb, Juan de Dios Ortúzarc and Luis I. Rizzic

a Department of Economics and Resource Management, 
Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432 Ås, Norway 

b Institute of Transport Economics (TOI), Gaustadalleen 21, NO-0349 Oslo, Norway 

c Department of Transport Engineering and Logistics, 
Centre for Sustainable Urban Development (CEDEUS), Casilla 306, Cod. 105, Correo 22, Santiago, Chile 

Keywords: High-speed rail, stated choice, group scale parameters, revealed 
choice, cross-nested logit model 

Abstract: 

Binary stated choices between traveller’s current travel mode and a not-yet-
existing mode might be used to build a forecasting model with all (current and 
future) travel alternatives. One challenge with this approach is the identification of 
the most appropriate inter-alternative error structure of the forecasting model.  

By critically assessing the practise of translating estimated group scale parameters 
into nest parameters, we illustrate the inherent limitations of such binary choice 
data. To overcome some of the problems, we use information from both stated 
and revealed choice data and propose a model with a cross-nested logit 
specification, which is estimated on the pooled data set.  
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choices (data from year 2010 in our case). Consequently, a model with a generic 
choice set and utility functions, independent of the original self-selection of 
travellers to travel modes is necessary.   

Of course, aiming for a generic forecasting model based on binary stated choices 
(with only one alternative, HSR, being part of every respondent's choice set) is not 
optimal, as it does not allow considering directly how current car users, say, react 
to the LoS of other current modes (air, bus and traditional train). When specifying 
transport specific coefficients in the utility function, one needs to assume that, for 
example, the current car user's marginal utility (MU) of in-vehicle-time (IVT) by 
car is representative of everyone's MU for IVT by car. Challenges in finding an 
appropriate deterministic utility function are not, however, the focus of this paper; 
moreover, we will  assume - unless specified differently - that we can find 
deterministic utility functions (up to a scale parameter) that fit all user groups 
(defined on the basis current mode choice) "equally well".     

For estimation, the different binary choice datasets are typically merged and a 
mode choice model with a common set of coefficients for HSR is estimated. In 
this procedure, different scale parameters (so called group scale parameters), that 
are inversely proportional to the error variances associated with each experiment, 
ought to be estimated to account for the fact that they might actually differ 
(Louviere et al 2000).  

While the group scale parameters facilitate the estimation of a common 
deterministic utility function based on user-specific binary choices, it is not 
obvious how these parameters may be carried over to a forecasting model with a 
full  choice set. In particular, setting up a nested logit (NL) model by naively 
treating group scale parameters as structural (nest) parameters, as done by Atkins 
(2012) in the official assessment study for HSR in Norway, involves several 
pitfalls: 

(i) The group scale parameters only reflect the relative utility scale in choices
between the different binary choice tasks (i.e. HSR versus one of the current
modes) but not the utility scale difference between existing travel modes. In most
cases, this means that the scale at the upper level of the nesting structure and the
correlation structure among current modes has to be assumed implicitly (see
sections 3.1. and 3.3); we will discuss how RC data between current modes might
be utilized here (see section 4).

(iii) The group scale parameters do not only reflect “similarity”  of transport
modes, (i.e. the degree to which two or more alternatives share unobserved
features, which is the classical interpretation of nest parameters, see Ortúzar and
Willumsen, 2011, section 7.4.2). They might also include other error sources – in
particular unobserved taste heterogeneity – that are associated with characteristics
of the user groups rather than of the modes. We will discuss this in more detail in
section 3.2., and using an empirical example, we will  also show that results
change after accounting for unobserved taste heterogeneity with random
coefficients models (section 3.4.).
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(ii) In many instances a NL model might not be flexible enough to account for the
correlation structure suggested by the various group scale parameters. We propose
the cross-nested logit (CNL) model as a more flexible structure for this purpose.

As the paper is mostly concerned with error variance differences (utility scale 
differences) between various user groups, travel modes and datasets, it is 
important to stress that the error term is, as usual, conditioned by the specification 
of the deterministic part of utility (i.e. the selection of explanatory variables and 
their functional form). For instance, when talking about correlation (or 
“similarity”)  of travel modes, we are always relating to those parts of the utility 
function that are not accounted for by the explanatory variables. Indeed, 
correlation patterns in the error term are nothing desirable in itself and one would 
ideally strive for a multinomial logit (MNL) model by including all the variables 
that might explain correlation among travel alternatives. However, this is often 
not possible in practise (some variables are unobservable, others are just too 
expensive to collect). Thus, a question often asked to the researcher refers to the 
most appropriate correlation (nesting) structure in the forecasting model.  

The main contribution of this paper is an in-depth discussion about the most 
appropriate (alternative specific) correlation structure in a case where the 
deterministic component of the utility functions and the scale parameters are 
estimated from (user group specific) binary SC data. While obviously the 
(relative) size of the scale parameters will depend on the chosen systematic utility 
function, most of the discussion in this paper can be made at a general level 
without being specific about a particular systematic utility function.   

2. Alternative Model Forms

2.1. Multinomial logit (MNL) model 

We describe a standard discrete choice set up where traveller n chooses between 
different transport modes i belonging to a (personal specific) choice set ��,	according to the following choice rule: 

(1) 													��� �
 ��
 	
 �� � ��� � 	
��
	
��									
��	���	�	 ∈ 	 ��	.
where the deterministic component of utility Vin is a function of attributes X and a 
set of parameters β  to be estimated; in a MNL model, the random term�	
�� are 
assumed to distribute IID-Gumbel with mean zero and variance given by: �� � �2��6
where � � 0	is the scale parameter of the distribution. With this, the MNL model 
choice probabilities are given by (McFadden 1974, Ortúzar and Willumsen, 2011, 
Chapter 7): 

(2) ��� � ������ 		
�� � ��� 		
��� � 	 λ!"#∑  λ!%#%	∈	&#  . 
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If the group scale parameters are different in value, the IID-assumption only 
applies within the subgroup but is relaxed for a joint sample that combines choice 
data from different user groups.  

2.3. Nested logit (NL) model 

In a NL model, alternatives are allocated into non-overlapping nests, m, that 
contain alternatives i =1, ..., Jm. NL models (Williams 1977; Daly and Zachary 
1978) can also be derived from the family of GEV-models (McFadden 1978). 
Using GEV-notation, the choice probability for the NL model is given as: 

(4) ��� � 			-∑ ./0123450267 //0 	
∑ -∑ ./0123450267

//08067
 /0193-∑ ./0123450267  

where :; are scale parameters applied to the alternatives in nest m. We refer to 
them as nest or structural parameters. Similar to the group scale parameters '(#
(but arising from a different perspective), the nest parameters are inversely related 
to the corresponding error variance. A restriction of NL model is that nests cannot 
overlap, that is, each alternative can only enter one nest. 

The overall scale of utility, µ, here interpreted as the scale for the choice between 
nests, is an arbitrary positive number and only the ratio 

<<= has a behavioural 

interpretation. It can be shown (e.g. Bhat 1997) that the correlation between the 
utilities of two alternatives i and j is given by: 

(5) �������, ��� � >	1 @ - <<=4�	A	B��
where  B�� is one when i and j belong to nest m and zero otherwise. 

A low error variance in nest m (i.e. :;	relatively larger than :) implies a large 
correlation among utilities between the nested alternatives. For GEV-conditions to 
hold, we need :; C : � 0. This implies that the utility of the nested alternatives 
must be positively correlated. This has to be taken into account when setting up a 
nested structure. 	The choice probability in (4) has a nice two-fold interpretation 
as the product of the probability of choosing between nests (choice at the ‘upper 
level’) and the probability of choosing between alternatives in the chosen nest 
(choice at the ‘lower level’). 
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2.4. Cross-nested logit (CNL) models 

A GEV-model that allows alternatives to enter several nests is the CNL (Williams 
1977; Vovsha 1997; Bierlaire 2006) Choice probabilities in the CNL model are 
given by (Abbe et al. 2007, page 797)2: 

(6) ��� � ∑ 			-∑ D20/0/ ./0123450267
//0 	

∑ -∑ D20/0/ ./0123450267
//08067

D20/0/ ./0193
-∑ D20/0/ ./0123450267

E;FG

Bierlaire (2006, page 293) also derives the following conditions to be met by a 
CNL model: 

1. μI C μ � 0		for	all	O � 1, . . . ,Q
2.αSI C 0 for all j = 1, ... , J , m = 1, ..., M

3.∑ αTIE;FG � 0	 for all j = 1, ..., J.

Following Train (2009), we refer to the α-parameters as allocation parameters3. 
The NL-model is a special case of CNL-model where all αTI	are zero except for 
the nest m the alternative is included in. The exact correlation structure of CNL 
models (Abbe et al. 20074) is much more involved than that for the NL (5). The 
following is an approximation proposed by Papola (2004): 

(7) 														�������, ��� U ∑ αSI7�αTI7� >	1 @ - VV04�	AE;FG 	 
Equation (7) underlines the fact that the allocation parameters affect the 
correlation structure of the model. Equations (6) and (7) can be thought of as 

2 Equation (6) is the resulting choice probability for the most general formulation of the CNL, but 
simpler formulations are available (Ben-Akiva and Bierlaire 1999; Wen and Koppelman 2001). 
BIOGEME 1.8 (and later versions) use the CNL model version in equation (6).  
3 For interpretation and parameter identification, the condition ∑ αTIE;FG � 1	should be imposed.
Then, the allocation parameters are readily interpreted as the portion of an alternative that enters 
each nest. However, the relationship between αSI and μI is not obvious. Intuitively, a high 
correlation between nested alternatives (high μI4 should go along with a relative high portion of a 
particular alternative being associated with that nest. However, we are not aware of suggestions for 
possible functional relationship between αSI	and μI. 
4 See equation (20) in Abbe et al (2007, page 800) for the exact formula of correlation between 
two alternatives in a CNL. 
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‘weighted averages’ of (4) and (5) respectively, where averages are taken over 
nests and the allocation parameters represent weights. 

3. Deriving a NL Model from a HC Model on Binary SC Data

In this section we will  critically assess the procedure of translating group scale 
parameters obtained from an estimated HL model into nest parameters of a NL 
forecasting model; this approach was applied by Atkins (2012a) in the Norwegian 
HSR assessment study, so the discussion has practical relevance. In this context 
the group scale parameters stem from the different subsets of travellers (using 
various travel modes in practice) being subject to different SC experiments 
(asking them to choose between their current mode and HSR, see Figure 1).   

We assume that no RC data is available to replicate the situation in Atkins (2012) 
that only used SC data in their estimation model. In section 4 we will discuss the 
use of RC data as a supplement.  

3.1. Mathematical conditions 

As mentioned above, group scale parameters ('(#) and nest parameters -:;4 are 
both inversely proportional to their related error variances. The difference lies in 
which error variance is considered. Group scale parameters relate to the error 
variance in choices between (non-nested) alternatives of a particular user group. 
Nest parameters, instead, relate to the choice between alternatives in one nest 
(independent of the user type). An interesting question is under which conditions 
the two types of scale parameters may be equal and have the same behavioural 
implications. To answer this, we examine under what conditions the resulting 
choice probabilities (���) in (4) and (3) would be equivalent; that is, under which 
conditions a NL model can be written as a HL model with scale parameters 
related to groups with (possibly) different choice sets. 

This is shown formally in Box 1. 

			-∑ W<=X%#4Y=�FG <<= 	
∑ -∑ W<=X%#4Y=�FG <<=E;FG

∗ W<=X"#∑ W<=X%#Y=�FG → W\+#X"#∑ W\+#X%#�	∈	]+#
if and only if: 

I) 		�(# � 1,… , JI
II) 			μI � '(# 	
and III) 

			-∑ ./0123450267 //0 	
∑ -∑ ./0123450267

//08067
� `	1			��	, ∈ �(#0		�abW�c,�W d 

Box 1: Mathematical conditions for NL model equalling a HL model with user-
group specific choice sets 
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This implies that the estimated group scale parameters '(# 	could only be used as
nest parameters (in a mathematical sense) if alternatives were nested according to 
the group-specific choice sets (condition I) and if the choice between nests was 
deterministic (condition III). This puts hard/impractical restrictions to the 
methodological correctness of a naive translation and, indeed, strong assumptions 
are required in practical approaches (see section 3.3.). 

The fundamental reason for the immediate mathematical incompatibility between 
group scale and nest parameters goes back to the fact that the former are user 
group specific while the latter are travel mode specific. This point is essential also 
for the interpretation of scale parameters discussed in the next section.  

3.2. Source and interpretation of scale parameters 

The inverse proportionality of the scale parameters to the error variances implies 
that the (classical) sources of the error term in discrete choice models (Manski 
1973, Ortúzar and Willumsen 2011), that is, unobserved attributes, taste 
heterogeneity, measurement errors and use of instrumental/proxy variables, are 
the possible main sources of the utility scale parameters.  

We recall that the NL and HL models are both more flexible than the MNL model 
as they relax the IID assumption of the error terms (which is often a restrictive 
assumption in practise). The relaxation of the IID assumption by the NL model is 
based upon the fact that the error term of the utility functions of different travel 
modes are correlated. Travel modes with (significant) positive correlation should 
be candidates to be nested together.  The idea is to account for non-proportional 
substitution patterns caused by the correlated error terms. The typical 
interpretation is that travel modes that are closer substitutes (those nested 
together) share unobserved attributes (Williams 1977). Relaxing the IID 
assumption and accounting for the patterns of unobserved attributes can be 
important, as illustrated by the well-known blue bus/red bus paradox (Mayberry 
1973, Ortúzar and Willumsen, page 214). 

The relaxation of the IID assumption in the HL model stems instead from 
different error variances associated with different subsets of the data. Various 
reasons for error variances (and thereby scale parameters) to differ are possible. 
An obvious candidate is the potentially variable impact of unobserved attributes 
between travel modes involved in the different choice sets. Common sense 
suggests, for example, that HSR should share more unobserved attributes with the 
traditional train than with car, in which case the binary choices between train and 
HSR are less affected by those unobserved factors. On the other hand, the choice 
between HSR and car is likely to be affected by several unobserved attributes that 
differ between the modes (i.e. the varying utility associated with having a car 
available at the point of destination), making the overall impact of the error term 
more important. 

For example, if the unobserved, and varying, “need to have a car at destination” 
has greater importance, the superior ("observed") LoS of HSR might not impact 
the choice probabilities between car and HSR that much. Thus, a relatively low 
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group scale parameter for the car user group should be expected. From this 
perspective it seems reasonable to use information about group parameter scales 
to derive a NL forecasting model  

However, the scale parameters for the different binary choices might also be high 
when the taste heterogeneity of users within the subgroup is relatively low. Taste 
heterogeneity is, to a large degree, unobserved as it involves unobserved 
factors/preferences relating to the users. The difference with the unobserved 
attributes discussed in the previous paragraph is that the latter are travel mode 
specific while taste heterogeneity is person-specific (or user-group specific). Car 
users, for instance, might have less homogenous preferences of the (observed) 
LoS than train users (e.g. the subjective Value of Time might vary more among 
car drivers than among train users). From this perspective, the error variance in 
the car/HSR choices might be higher than in the train/HSR choices. If (user group 
specific) taste heterogeneity is the predominant source of the error variance, the 
estimated scale parameters are not suitable to represent (travel mode specific) nest 
parameters; the translation of "variance" into "correlation" would not be sound in 
this case.5       

3.3. Validity of Practical Approaches 

In this section we discuss the validity of (and the necessary assumptions required 
for) practical approaches to construct a hierarchical forecasting model based on 
binary SC data. Striving for such a model (instead of applying a simple MNL 
model ignoring the different sizes of group scale parameters), acknowledges the 
fact that there might be indeed non-proportional substitution patterns between 
travel modes worth accounting for when predicting choice probabilities. 

The mathematical conditions (section 3.1.) require making some assumptions. A 
HL model as in equation (3), does not include the respondent's 'choice' about 
which user group s/he belongs to (this is predefined by the researcher based on the 
non-modelled RC). Thus, the scale in choices between current modes is 
unobserved. In the absence of further information, it is necessary to assume the 
relative scale at the upper level of that hierarchical forecasting model. The choice 
is restricted by the fact that the scale at the upper level in a NL or CNL model 
cannot be larger than the scale at the lower level. A sensible choice, resulting in 
the least complex implicit structure, is to assume that the scale at the upper level 
equals the lowest estimated group scale parameter yielding a degenerate nest with 

5 Another potential source of group scale variability are the different degrees of measurement 
errors in the subsamples. Arguably this is not an issue in CE where attribute values are directly 
coded as they are presented in the respondent's screen. The use of proxy variables can also be a 
source for different scale parameters. This applies when a specified proxy variable is a precise 
representation of the actual variable for the binary choices of one user group, but an imprecise one 
for the choices of another user group. We will not discuss this further here but maintain the 
assumption made at the introduction, that the specification of the deterministic utility function 
could be done "equally well" for all user groups.      
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the current travel mode characteristic for the user group with the lowest group 
scale parameter.  

Based on the discussion in section 3.2, it is evident that we have to make sure that 
the group scale parameters do represent different substitution patterns of transport 
modes. For now we assume that taste heterogeneity could be controlled for in the 
systematic utility function and that measurement errors and proxy variables are 
not an issue. With these assumptions, different error variances in subsamples can 
indeed be interpreted as representing different substitution patterns (correlation) 
across travel modes and HSR should be nested with the current travel mode(s) 
associated with the highest group scale parameter(s). If two (or more) group scale 
parameters are different from each other, the different degrees of correlation 
between HSR and the corresponding transport modes should be taken into account 
with a CNL specification.  

To make things more specific, Table 1 discusses four potential cases of estimated 
group scale parameters. The group scale parameter for car-users is fixed to unity 
in these examples. If all estimated group scale parameters were close (and 
insignificantly different) to unity (i.e. case 1 in Table 1), a MNL would be 
obtained.  

Table 1: Possible nesting structures suggested by group scale parameters (SC 
data only) 

Case 1 Case 2 Case 3 Case 4 

Estimated group 
scale parameter 
in SC “current 
mode vs. HSR" 

car-users ≡1 ; 
train-users ≈ 1; 

air-user ≈1; 

car-users ≡1 ; 
train-users ≈ 1; 

air-user ≈3; 

car-users ≡1 ; 
train-users ≈ 3; 

air-user ≈3; 

car-users ≡1 ; 
train-users ≈ 2; 

air-user ≈3; 

Proposed nest 1 - car Car car 

Proposed nest 2 - train train, air, HSR train, HSR 

Proposed nest 3 - air, HSR - air, HSR

Proposed 
structure of 
forecasting 
model* 

MNL NL NL CNL 

*Under the assumption that the overall scale (at the upper level) is one.

As much of the discussion provided here is (implicitly) about the reasonability of 
translating “variance” into “covariance”, it is useful to take a closer look at the 
covariance structure associated with the estimation and forecasting model. Let x 
and y denote the following vectors: 
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(8) xf �
g
hhh
i Uklmnop.m,klmUqmlSrnop.m,qmlSrUlSmnop.m,lSmUklmnop.m,stuUqmlSrnop.m,stuUlSmnop.m,stu v

www
x,			yf � z UklmUqmlSrUlSmUstu

{ 

Then, Cov (xfx4	is the covariance matrix consistent with the HL model, while Cov 
(yfy4 would be the covariance structure for the proposed forecasting model. For 
case 1 we would need to translate: 	
(9) Cov-xfx4 � ~�� g

hhi
100000

010000

001000

000100

000010

000001v
wwx 		into	Cov	-yfy4 � ~�� �1000

	0100
0010

0001� 

While being logical, the validity of this translation rests on the aforementioned 
assumptions regarding the size of the upper level scale parameter, which in this 
case implies that the scale in choices between current modes is assumed to 
be equal to the scale in choices between single current modes and HSR, 
which happens to be the same. If there is only SC survey data, the correctness 
of this assumption is not testable (without additional data on choice 
between all alternatives) due to the inherent missing information in binary 
choice data with only one common travel mode.  

In case 2, if the group scale parameter for air-users was estimated as significantly 
higher than those for the remaining groups, this would indicate that air and HSR 
are closer substitutes and a NL structure with air and HSR in one nest and two 
degenerate nests for car and train could be proposed. In that case the following 
translation would apply: 

(10) 
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Thus, the variance in the binary choices between air and HSR for current air users 
would be used to set the covariance between air and HSR for the full forecasting 
model (via equation 5).  This is only valid if the group scale parameters can really 
be interpreted as accounting for different degrees of similarity (related to 
unobserved attributes) regarding the transport modes (see the discussion above). 
Given the above assumption of :	= 1, the group scale parameter estimated as 
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equal to three can be directly used as the structural parameter in the nest 
containing air and HSR. 

In case 3, if the scale parameter for train-users is estimated as significantly greater 
than one and insignificantly different from the air-user scale parameter, train, air 
and HSR might be nested together. Similar to the second case, the following 
correlation structure in the forecasting model would be proposed:  -114 
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Note, that the correlation between the train and air alternatives is derived from the 
correlation between train and HSR, and air and HSR (assuming that taste 
heterogeneity is controlled for). This is not obvious and cannot be assessed 
without choice data between train and air (see the discussion in section 4).      

Finally, in case 4, if the train-user scale is greater than one but significantly lower 
than the air-users scale, the only valid option would be to allow for HSR entering 
one nest with train and another nest with air. In that case a CNL model would be 
required6 and the following correlation structure would be desirable7: -124 
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Note that it may be difficult, in application, to find a CNL model that implies this 
correlation structure, as the choice of allocation parameters in conjunction with 
the nest parameters is a non-trivial task. This suggests estimating a CNL model 
from the data rather than to try to infer one such model from a HL model (see 
section 4).  

3.4. Empirical Illustration on Own SC Data 

This subsection provides some estimation results that supplement the theoretical 
discussion of the previous sections. We use data from an independent SC study 
conducted by the Institute of Transport economics (TØI) in 2010 (Halse 2012, 

6 Apart from a CNL model, a fully general mixed logit (ML) model (Train 2009), might be an 
alternative and provide an even better way to handle this issue at the expense of more complex 
estimation, interpretation and application. 
7 As for case 3, the correlation assumed for train and air is somewhat arbitrary. It might be 
reasonable to allow for correlation between air and train as well, but this cannot be directly derived 
from the given binary data alone. 



14 

Flügel and Halse 2012a). Similar to the official assessment study (Jernbarnverket 
2012, Atkins 2012), the SC consisted of binary choices and were pivoted on 
observed RC data (Figure 1). In fact, the RC stem from an on-side, pen-and-pencil 
study that asked travellers to provide general information about their current mode 
choice in the main long distance corridors in Norway8 (Denstadli and Gjerdåker 
2011). In the last item, travellers were asked to leave their e-mail address to 
receive a web-based survey concentrating on high-speed rail.  

In the SC-survey, each respondent had to make 14 choices between its current 
mode of transport (as observed in the on-side study) and a hypothetical HSR. The 
attributes characterizing the transport modes were: total travel costs, in-vehicle 
travel time, travel time to station/airport (‘access time’), travel time from 
station/airport (‘egress time’), frequency (number of departures per day) and the 
share of the ride spent in tunnels ('tunnel share'). In the first eight choice tasks 
('CE1'), the attributes of the current mode were kept fixed to their reported values, 
while they varied within certain percentage changes in the last six choice tasks 
('CE2') (see details in Halse 2012). CE2 included also an opt-out option ('neither 
of the two alternatives'), which was, however, seldom chosen and not considered 
in the models of this paper. 

A sample of 893 respondents completed the online SC-study (about 33% of the 
invited respondents). We focus here on the subsample of leisure trips for which 
607 respondents were considered. The general choice behaviour of the subsample 
is summarised in Table 3. 

Table 3: Sample size of user groups and general choice behaviour (leisure trips) 

User group 
as defined 
by the RC 
choices 

Group 
size RC 

Group 
size SC* 

Percent of SC choices 
(%)  

Percent of respondents 
always choosing only one 
mode in SC ("Non-
Traders") (%) 

Final 
sample 

Final 
sample 

Current 
mode 

HSR  Opt-
out 

Current 
mode 

HSR Switch 
between 

Car 3833 320 61.6 37.7 0.6 31.3 13.8 55.0 

Air 920 76 34.5 64.7 0.8 1.3 31.6 67.1 

Train 2867 176 40.8 57.2 2.0 6.3 18.2 75.6 

Bus 480 35 41.0 58.5 0.6 0.0 17.1 82.9 

*Compared to a representative dataset (Denstadli and Gjerdåker 2011), we have under-sampled current air 
users somewhat and over-sampled current car and train-users. External weights were used during estimation.

Car drivers are least likely to choose HSR in the SC data and a considerable share 
of car-users (31.3%) choose car over HSR in each of the 14 SC situations. This 
indicates that unobserved factors may have affected many of the choices between 
car and HSR.   

Table 4 provides estimation results for HL models on pooled data of different 
binary SC. As a first benchmark, we include a model where all group scale 
parameters are fixed to one; in this case the HL model collapses to an MNL 

8 Oslo-Trondheim, Oslo-Bergen and Stavanger-Bergen. For the SC-study, only the former two 
corridors were considered. 
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model. The difference between SC_HL_1 and SC_HL_2 is that the latter has 
random coefficients (normally distributed over decision makers) related to the 
most important level-of-service (LoS) attributes: in-vehicle time, access/egress 
time, travel cost and (the inverse) of the frequency measured as the number of 
departures per day. All models were estimated with BIOGEME (Bierlaire 2003, 
2008).  

Table 4: MNL and HL models on SC data 

Model Index SC_MNL SC_HL_1 SC_HL_2 (random 

coefficients*) 

Coefficient Value Rob. t-

stat (0) 

Value Rob. t-

stat (0) 

Value Rob. t-

stat (0) 

Travel cost (NOK) -0.00283 -10.45 -0.00189 -6.69 -0.00963 -6.08

sigma cost 0.00551 4.19

Interaction: Dummy "missing 

income" - travel cost 
-0.00709 -3.1 -0.00476 -3.85 -0.00778 -1.27

Interaction: Dummy "did not 

pay" - travel cost 
0.00155 2.87 0.00105 2.92 0.0051 10.32 

In-vehicle* (min) -0.0023 -2.41 -0.00176 -2.98 -0.0155 -5.64

sigma in-vehicle time 0.0119 8.95

Access + egress time** 

(min)  

-0.00169 -0.99 -0.00235 -2.29 -0.00842 -4.82

sigma acc+eg time 0.034 2.75 

Dummy (travel time <6h) 0.496 3.06 0.229 2.11 0.145 1.03 

1/frequency -1.15 -3.09 -0.474 -2.68 -2.75 -4.34

sigma 1/ frequency 4.37 5.75

Tunnel share (%) -0.00232 -0.47 -0.00251 -0.9 -0.0175 -2.74

ASC-HSR 0.248 0.86 0.184 0.95 0.724 1.53

ASC-Car 0 fixed 0 fixed 0 fixed 

ASC-Air -0.819 -2.92 -0.511 -2.98 -1.42 -1.73

ASC-Train -0.111 -0.5 0.00269 0.02 0.218 0.37

ASC-Bus 0.3 0.96 0.374 2.08 0.331 0.63

Group scale parameters Value Rob. T-

stat (1) 

Value Rob. T-

stat (1) 

Value Rob. T-

stat (1) 

Car-users 1 fixed 1 fixed 1 fixed 

Air-users 1 fixed 1.88 1.89 2.51 2.25 

Train-users 1 fixed 2.74 3.43 1.75 1.81 

Bus-users 1 fixed 4.35 2.66 2.42 1.77 

No. of parameters 12 15 19 

No. of observations 8402 8402 8402 

No. of respondents 607 607 607 

Null-LL -5822.44 -5822.44 -5822.44

Final-LL -4677.25 -4572.47 -2612.68

Adjusted rho-square 0.195 0.215 0.548 

*U sing 500 Halton draws
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Comparing first the MNL model with the HL model, we see that the latter has a 
considerably better final log-likelihood statistic indicating that the inclusion of the 
group scale parameters improved the estimation on the joint SC data set.      

As none of the estimated group scale parameters was below one, the lowest group 
scale parameter (e.g. the highest error variance) is related to the choices between 
car and HSR. This seems to fit well with the intuition that car and HSR share the 
least unobserved attributes with each other (see the discussion above). 
Surprisingly, the highest group scale parameter appears to be the one 
corresponding to the SC choices of bus-users.  A naive interpretation of this result 
would indicate that bus and HSR are the closest substitutes and that this should be 
considered in a forecasting model by nesting bus and HSR in the nest associated 
with the highest structural parameter. However, from the discussion in 3.2 we 
should recall that different degrees of unobserved taste heterogeneity in the 
different subsamples (user groups) should be considered as well.  

The estimation results for the random coefficients model (SC_HL_2) show 
controlling for taste heterogeneity among decision makers lead to considerable 
changes in the estimated group scale parameters. For example, the group scale 
parameters for bus and train users are reduced while that for air users is increased. 
All group scale parameters are not significantly different from two. In the context 
of finding a plausible structure for a forecasting model, this may suggest a NL 
model with a (degenerate) nest for the car alternative and a single nest including 
all public transport options (Figure 3).  

Figure 3: A possible nesting structure for a forecasting model as suggested from 
SC   

While being intuitive and more plausible than what might have been suggested 
from the results that do not control for unobserved taste heterogeneity, this 
derivation still rests on two strong implicit assumptions required as a consequence 
of the missing data issue in the binary stated choices: (i) that the scale between 
both nests (car and "public transport") equals the scale in the binary choice 
between car and HSR and (ii) that the correlation in the choices between the 
current public transport modes (bus, train and air) is derived from the scale in the 
binary choice between these modes and HSR.   

choice lower level

(mu_nestPT ≈2, mu_nestcar=1)

choice upper level (mu=1)

Travel by 

public 
transport

Bus Train Air HSR

Car

Car
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4. Using Additional RC Data among Current Travel Modes

4.1. Motivation 

The typical motivation for additional RC data and the joint SC-RC paradigm is 
the need to ground the SC models in reality (Louviere et al. 2000). We will not 
discuss here the "classical" method of rescaling the SC scale by the RC scale, 
which became popular after the seminal work of Taka Morikawa (Morikawa 
1989; Ben-Akiva and Morikawa 1990) and which is relevant for any kind of SC 
data (both binary and multinomial). In our context, RC data may provide some of 
the missing information inherent in binary SC data. In what follows, the focus will 
be on the correlation structure among current travel modes, which is not 
"observable" using binary SC data alone.  

As RC data involves more than two alternatives in the respondents’ choice sets, it 
is possible and meaningful to estimate hierarchical logit models (NL or CNL) on 
the RC data. The correlation obtained in a RC model can provide information 
needed to define plausible correlation structures in the full forecasting model. 
That is, if estimations on our RC model indicate a nesting structure with one 
degenerate car nest and another nest including all public transport alternatives (air, 
train and bus), then the proposed structure from our SC-data in Figure 2 would get 
empirical support.     

4.2. Empirical illustration with RC and SC/RC models 

Our RC data includes all relevant travellers in the on-side study (see section 3.4) 
independent of whether they left or not an e-mail address or whether they were 
included in the SC study (see sample size in Table 2). Based on the reported 
geographical information of the trips’ start and ending locations, we imported 
zonal level-of-service data for the related O-D pairs from the Norwegian National 
Travel Model (Hamre et al. 20029).  

We tested all possible nesting structures for the four alternatives in the RC dataset 
(car, bus, train and air), including the same explanatory variables as in the SC data 
in Table 310. Somewhat surprisingly, the structure shown in Figure 4 had clearly 
the best fit to our RC data. 

An alternative NL model, where air is nested together with bus and train did 
perform considerably worst (see Table A1 in the appendix for estimation results). 
Hence, our RC data did not provide immediate support for the correlation 
structure suggested from the SC-data alone (Figure 3), as air seems to be more 
highly correlated with car than with bus or train.  

9 The LoS data contain representative values for the relevant zone pairs and are, in some instances, 
not updated, such that the RC data must be considered as rather imprecise.   
10 The tunnel attribute was not available from zonal data and was therefore omitted in the RC 
dataset. Full choice sets were assumed for all decision makers except for the fact that car was only 
available to respondents that reported owning a car. 
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 Figure 4: Nesting structure indicated from RC data alone 

Combining the information from the RC and SC datasets, the nesting structure 
shown in Figure 5 might be proposed.   

Figure 5: A possible nesting structure for a forecasting model suggested from the 
information in SC and RC  

This structure takes into account the correlation patterns between the current 
modes as indicated in the RC model and the information from the SC model that 
HSR is a closer substitute to public transport modes than to car.  The nest air/HSR 
is included (separated from the nest of other public transport modes) to 
acknowledge the indication from our RC data that the utility for air is not 
correlated with the utility from bus and train. Both HSR and air enter two nests, 
thus a CNL model seems to be required.  

Two CNL models with the implicit structure in Figure 5 were estimated on the 
pooled RC/SC data to infer the underlying parameters values (Table 5). The 
models assume generic coefficients in RC and SC11. CNL_1 uses only fixed 
coefficient while CNL_2 replicates the specification of model SC_HL_2, 
assuming normal distributed coefficients for the most important LoS-variables.12 

We can use (7) to approximate the inter-alternative variance-covariance matrix for 
the two model versions13 as shown in Box 2. 

Table 5: Cross-nested logit models on pooled RC/SC data 

11 This is a restrictive assumption and, indeed, seems not to hold for our data as indicated by a 
likelihood ratio tests (Ortúzar and Willumsen 2011, p. 325). We suspect that the main reason for 
this is the different measure of attributes in RC and SC; however, it could also be that preferences 
change when the HSR gets available in the choice sets (see also footnote 13 in section 5).      
12 The estimated parameter for nest bus/train/HSR is not significant different from one which 
might lead to the suggestion to collapse this nest. However, the value is high, indicating that the 
related correlation might be important (despite the result not being very reliable). 
13 The actual correlation structure in estimation model CNL_2 may also be affected by the random 
terms underlying the normal distributed error terms.  
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Model Index CNL_1 CNL_2** 

Coefficient Value t-stat (0) Value t-stat (0) 

Travel cost (NOK) -0.00264 -31.95 -0.00684 -37.66

sigma cost 0.00308 0***

Interaction: Dummy "missing income" - travel cost -0.00061 -6.25 -0.00061 -2.04

Interaction: Dummy "did not pay" - travel cost 0.001 7.49 0.0029 13.02 

In-vehicle* (min) -0.00094 -5.25 -0.00822 -13.87

sigma in-vehicle time 0.0128 15.84

Access + egress time** (min) -0.00533 -18.93 -0.0276 -19.13

sigma acc+eg time 0.0193 21.48

Dummy (travel time <6h) 0.389 11.25 0.188 2.16

1/frequency -0.298 -5.74 -4.9 -7.51

sigma 1/ frequency 6.63 8.81

Tunnel share (%) -0.00404 -2.84 -0.0181 -6.79

ASC-HSR (SC) 0.945 12.23 2.76 13.86 

ASC-Air (SC) -0.372 -4.44 0.0144 0.09 

ASC-Train (SC) 0.204 3.14 1.94 8.49 

ASC-Bus (SC) 0.363 4.09 2.41 4.89 

ASC-Air (RC) 0.947 10.35 0.41 1.53 

ASC-Train (RC) -0.0641 -1.61 1.66 9 

ASC-Bus (RC) -0.193 -3.54 0.307 1.52 

Structural parameters Value T-stat (1) Value T-stat (1)

Car/Air 1.8 5.3 7.84 12 

Air/HSR 1.57 1.4 6.99 2.35 

Bus/train/HSR 4.57 10.61 5.88 0.94 

Allocation parameters*  Value T-stat (1) Value T-stat (1) 

Air to nest Car/Air 0.845 -2.18 0.232 -16.53

Air to nest Air/HSR 0.155 -11.83 0.768 -4.99

HSR to nest Air/HSR 0.527 -12.91 0.595 -6.19

HSR to nest Bus/train/HSR 0.473 -14.36 0.405 -9.09

No. of parameters 22 26 

No. of observations 16852 16852 

No. of respondents 9057 9057 

Null-LL -16868.4 -16868.4

Final-LL -11099.5 -9310.01

Adjusted rho-square 0.341 0.447

* The remaining allocation parameters were fixed to 0 or 1 according to Figure 5. 

** We used 500 Halton draws. 

*** Seemingly some numerical issues were present in the estimation of this standard deviation.
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Box 2: Correlation pattern suggested by CNL models 

The main difference between CNL_1 and CNL_2 is that the latter model (i.e. that 
controls for unobserved taste heterogeneity) suggests a higher correlation between 
HSR and air (this corresponds to the comparison between models SC_HL_1 and 
SC_HL_2 in Table 4). The indicated correlation has approximately the same 
magnitude as the correlation between HSR, train and bus; something that seems 
plausible.     

It has to be underlined that covariance structure cannot be transformed to other 
scenarios. They are particular to our data (both RC and SC) and to the 
specification of our model (i.e. the predefined structure of the CNL model and the 
chosen deterministic utility function). 

With the combined RC/SC modelling, the relative scale between the upper and 
lower levels is estimated from the data and does not need to be assumed as in the 
method of translating group scale parameters (from binary SC data) to structural 
parameters (section 3).    

5. Discussion

Modelling the choice of a new alternative (in this case HSR) is a non-trivial task. 
One important reason for this goes back to the limited data access to revealed 
choice (RC) data for new travel modes making the collection of stated choice 
(SC) data a necessity. The papers by Cherchi and Ortúzar (2006; 2011) and Yánez 
et al (2010) have addressed important challenges in the combined analysis of RC 
and (multinomial) SC data. They discuss how to fit alternative specific constants, 
to account for taste heterogeneity and to define inter-alternative error structures 
respectively, and have attempted to provide guidelines on how to cope with these 
challenges in practice. Our paper acknowledges that analyst's judgment is needed 
to determine the best way to fit models to SC data for real world forecasting of 
new alternatives in specific application scenarios. This applies in particular to 
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situations where the new travel alternative is likely to change the competitive 
structure of the travel market, as is arguable the case for HSR in Norway. 

To the extent that introducing a HSR has the potential to change the correlation 
structure among current modes, it is not guaranteed that information about the 
current correlation structure among existing travel modes - as indicated by a RC 
model - has guaranteed validity for future travel decision making14.  

Despite these caveats it would have been interesting to compare the correlation 
structure in RC and SC models more rigorously. However, a direct comparison as 
done by Yáñez et al (2010) based on multinonial SC data, is not possible with 
binary SC data, with only one alternative (the new travel mode) being common to 
all subgroups. Therefore, identifying the most appropriate inter-alternative 
correlation structure for a forecasting model (i.e. preferring the nesting structure 
of Figure 5 from those in figures 3 and 4) is somewhat arbitrary and subject to the 
assumption that the translation from "variance" into "correlation" related to the SC 
data on HSR is reasonable.  

Given the shortcomings of SC binary choice data as discussed in this paper, it 
seems indispensable to consider having at least three alternatives in choice 
experiments, even though this is likely to increase the complexity of the choice 
tasks. Good practise is found in Yáñez  et al. (2010) where each SP-respondent 
had to consider four transport modes: the current mode, the new HSR and two 
other transport modes that were added to the choice experiment on a random 
basis.   
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Appendix 

Table 5: Multinomial and Nested logit model on revealed choice data 

Model Index  RC_MNL RC_NL_1 RC_NL_2 

Coefficient Value Rob. T-
stat (0)  

Value T-stat
(0)

Value Rob. T-
stat (0)  

Travel cost (NOK)  -0.0064 -19.17 -0.0064 -22.04 -0.00526 -14.24

Interaction: Dummy "missing 
income" - travel cost  

-3.03E-06 -0.01 -3.03E-06 -0.02 0.000271 1.38

Interaction: Dummy "did not 
pay" - travel cost  

0.000943 2.3 0.000943 2.23 0.000817 2.21

In-vehicle* (min)  -0.00087 -1.42 -0.00087 -1.21 -0.00066 -1.27

Access + egress time** 
(min)  

-0.00678 -6.99 -0.00678 -7.45 -0.00694 -7.63

Dummy (travel time <6h)  1.18 7.37 1.18 6.78 1.04 7.19 

1/frequency -0.591 -2.48 -0.591 -2.51 -0.655 -3.02

ASC-Car  0 fixed  0 fixed  0 fixed  

ASC-Air 2.54 8.88 2.54 8.58 1.87 6.86 

ASC-Train -0.486 -3.26 -0.486 -3.34 -0.503 -3.73

ASC-Bus  -1.35 -7.46 -1.35 -6.52 -1.21 -7.53

Value Rob. T-
stat (1)  

Value T-stat
(1)

Value Rob. T-
stat (1)  

Nest car/air  1 fixed 1.41 17.44 

Nest train/bus  1 fixed 1.46 7.05 

Nest car 1 fixed 

Nest air/train/bus 1.00 0.89 

No. of parameters  10 11 12 

No. of observations  5406 5406 5406 

No. of respondents  5406 5406 5406 

Null-LL  -5767.51 -5767.51 -5767.51

Final-LL  -2360.81 -2360.81 -2337.68

Adjusted rho-square 0.589 0.589 0.593




