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Abstract 

A “Safety in Numbers” effect for a certain group of road users is present if the number of crashes 

increases at a lower rate than the number of road users. The existence of this effect has been 

invoked to justify investments in multimodal transportation improvements in order to create more 

sustainable urban transportation systems by encouraging walking, biking, and transit ridership. 

The goal of this paper is to explore safety in numbers effect for cyclists and pedestrians in areas 

with different levels of access to multimodal infrastructure. Data from Chicago served to estimate 

the expected number of crashes on the census tract level by applying Generalized Additive Models 

(GAM) to capture spatial dependence in crash data. Measures of trip generation, multimodal 

infrastructure, network connectivity and completeness, and accessibility were used to model travel 

exposure in terms of activity, number of trips, trip length, travel opportunities, and conflicts. The 

results show that a safety in numbers effect exists on a macroscopic level for motor vehicles, 

pedestrians, and bicyclists.  
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1 Introduction 

One of the general concerns about investing and planning for more sustainable multimodal 

transportation infrastructure is the increase in exposure of road users who are vulnerable to 

crashes. However, as cities grow and develop, robust multimodal systems are required to enable 

adequate integration of land use and transportation, and provide viable travel options for non-

driving populations. This is where the concept of Safety in Numbers emerges, supported by the 

assumption that more multimodal travel options would lead to more walking and cycling, which 

would be associated with an increase in crashes, but less than proportional with the increase in 

walking and cycling  (Elvik, 2016).  

This paper explores the existence of a Safety in Numbers effect in the context of a major 

city in the U.S., relying on a detailed dataset on multimodal infrastructure, and using a 

combination of exposure measures. The goal of the paper is to determine whether the effect of 

Safety in Numbers exists on a macroscopic level, for vehicular users, pedestrians and bicyclists. 

The research aims to contribute to the current literature on urban safety and inform the practice 

of planning for multimodal solutions with consideration of safety effects. 

This paper uses data from Chicago aggregated on the census tract level, to estimate the 

expected number of vehicle-only (vehicular), vehicle-pedestrian (pedestrian), and vehicle-

bicyclist (bicyclist) total and injurious (severe) crashes. Generalized Additive Models (GAM) are 

used in the Statistical Area Safety Modeling (SASM) framework to model these six crash types 

and address the potential effects of spatial autocorrelation in spatially aggregateddata. Measures 

of exposure are derived from travel demand model estimates and complemented by proxies for 

exposure that include the representation of multimodal infrastructure and accessibility.  

The following section of the paper reviews literature on the safety in numbers effect, as 

well as the interaction between it and the provision of infrastructure facilitating multimodal trips. 



The data and methods are described in the third section of the paper, while the results and the 

discussion follow in section four. The final section provides summary of research findings and 

recommendations for the future research focusing on vulnerable road users on the macroscopic 

level.  

2 Literature Review 

One of the first studies that focused on discovering whether the Safety in Numbers effect exists, 

used data from Oakland, California, to examine the relationship between pedestrian volume and 

the rate of pedestrian-vehicle crashes (Geyer et al., 2006). That study and many later studies have 

confirmed the existence of a safety in numbers effect, but one needs to know the mechanisms 

producing the effect if one aims to exploit it in planning infrastructure to encourage walking or 

cycling (Bhatia and Wier, 2011). The early studies on Safety in Numbers focused on pedestrians 

(Geyer, 2006; Bhatia and Wier, 2011)., There are fewer studies focusing on bicyclists (Johnson 

et al., 2014; Fyhri et al., 2016), and even fewer studies that include both pedestrians and cyclists 

(Elvik, 2016). More recent studies attempt to demonstrate the safety in numbers effect on a 

macroscopic scale for potential use in planning and predictions on the zonal level, but again only 

focus on a single group of road users (Wang and Kockelman, 2014). Previous research generally 

concludes that a deeper understating and more knowledge on Safety in Numbers effect is 

required (Bhatia and Wier, 2011; Elvikand Bjørnskau 2017).  

This paper focuses on exploring whether a “safety in numbers’ effect exists for 

pedestrians and cyclists in a major U.S. city, when safety is evaluated at a macroscopic level.  

3 Methodology 

The City of Chicago served as a case study, and data aggregation on the census tract level 

helped with capturing the integration of land use mixture and multimodal transportation system 



features. Data sources used in this study are provided in Table 1. The measures of exposure used 

in this study are a combination of measures obtained from city transportation agencies and 

measures developed by the research team. The SASM framework relied on Generalized Additive 

Models developed for all six crash types addressed, as this approach was found to be a good 

alternative based on frequentist statistical inference in earlier studies (Tasic et al., 2016). The 

results of the SASM served to explore whether there is a Safety in Numbers effect present for 

multimodal road users. 

Table 1 Data Sources, Descriptions, and Formats 

Data Source Year Format 

Crash records Illinois DOT, Chicago Crash Browser 2005-2012 csv 

Socio-economic characteristics U.S. Bureau of Census, ACS 5-Year Estimates 2008-2012 csv 

Land use Chicago Metropolitan Agency for Planning 2010 shp 

Road network City of Chicago 2012 shp 

Travel demand model Chicago Metropolitan Agency for Planning 2010 csv, shp 
Other traffic volume data Illinois DOT 2014 csv 

L Train lines, stops and ridership Chicago Transit Authority 2012 csv, shp 

Bus lines, stops and ridership Chicago Transit Authority 2012 csv, shp 

Bike lanes and bike racks City of Chicago 2012 shp 

Sidewalk City of Chicago 2012 shp 

Commuter trips to work by means U.S. Bureau of Census, ACS 5-Year Estimates 2008-2012 csv 

Spatial units of analysis City of Chicago 2012 shp 

Data Collection 

As shown in Table 1, the combination of official transportation agency data sources as 

well as open source data platforms enabled the development of a dataset consisting of roughly 

one hundred variables that represent the variety of factors potentially influencing safety in major 

U.S. cities. Data collected included crashes, multimodal transportation features (i.e. features 

facilitating the use of more than one mode of transportation on a given trip), road network 

features and traffic conditions, land use data, socio-economic characteristics, and spatial features 

supporting the selection of appropriate spatial units of analysis. Data were obtained from the 

Illinois Department of Transportation (DOT), Chicago Metropolitan Agency for Planning 



(CMAP), Chicago Transit Authority (CTA), City of Chicago, U.S. Bureau of Census, as well as 

the available open data platforms supported by the City of Chicago.  

Variables and Measures 

The variables and measures developed from the data collected for this study can be 

divided into crash-related variables, exposure variables, surrogates for exposure, and variables 

that represent area-wide effects that influence crashes. This study uses six crash-related variables 

to model vehicle-only (vehicular) total crashes, vehicular fatal and injury (severe) crashes, 

pedestrian total crashes, pedestrian severe crashes, bicyclist total crashes, and bicyclist severe 

crashes. Total number of vehicular and nonmotorized trips estimated through the City of Chicago 

Air Quality Conformity Study conducted by CMAP served as primary measures of vehicular, 

pedestrian, and bicyclist exposure. As these are estimates, and additional proxies for exposure 

were needed to represent locations with a high concentration of activity and potential for 

conflicts, data on multimodal infrastructure and accessibility measures served as surrogates for 

exposure. In particular, accessibility measures that reflect the ease of reaching specific 

destinations via walking, biking, and transit mode were developed using the methods from 

previously published research on multimodal accessibility (Tasic et al., 2014a; Tasic et al., 

2014b). In addition, the complexity of urban environment in major cities was captured by adding 

the variables on socio-economic characteristics and land use. All these variables were aggregated 

on the census tract level, as this was found to be the most appropriate unit of analysis for the 

purpose of this study, due to compatibility with socio-economic data, general data availability, as 

well as the size of the unit that adequately captures the characteristics of multimodal 

transportation systems. Table 2 provides the complete list of variables used in the SASM 

process. 



Statistical Area Safety Modeling  

Several approaches based on both frequentist and Bayesian statistical inference were 

explored in the SASM context, particularly making sure that they account for spatial 

autocorrelation that may appear when the data are spatially aggregated. Spatial safety studies 

conducted in the past prove that Bayesian Hierarchical Models have the ability to deal with 

various issues that may arise in spatially aggregated crash data. A more recent study showed that 

GAM (Generalized Additive Models) are able to provide results comparable to Bayesian models, 

while dealing with spatial autocorrelation present in the data, and using frequentist methods of 

statistical inference to interpret the relationships between explanatory and outcome variables. 

This study used GAM as the primary method for SASM of vehicular, pedestrian, and bicyclist 

total and severe crashes. GAM is an additive extension to the family of generalized linear models 

introduced by Hastie and Tibshirani (1990). In addition to the parameters related to explanatory 

variables, these models also estimate smoothing functions of explanatory variables that have 

interactions among each other, or other type of effects that may influence the outcome variables 

estimation, such as spatial or temporal correlation. 

Table 2 Descriptive Statistics (801 census tract observations) 

Variable Description Mean Std. Dev. Min Max 

Crash Variables 

VehCrash Vehicle-only Crashes 375.176 354.534 5 3920 

Veh_KA Vehicle-only Fatal and Severe Injury Crashes 8.004 8.465 0 71 

PedCrash Crashes Involving Pedestrians 17.750 22.528 0 481 

Ped_KA Fatal and Severe Injury Crashes Involving Pedestrians 2.131 2.555 0 41 

BikeCrash Crashes Involving Bicyclists 9.528 13.178 0 172 

Bike_KA Fatal, and Severe Injury Crashes Involving Bicyclists 0.783 1.293 0 12 
 

Socio-economic variables 

Population Population Size 3.402 1.741 0.000 15.740 

Pop_Dens Population Density per mile squared 18.203 20.206 0.000 485.019 

Employed Percent of Employed Population 6.759 18.955 0.000 86.000 

Unemploy Percent of Unemployed Civil Population 14.970 9.459 0.000 51.000 

PerCapInc Average Income per Capita 27,786.690 20,029.490 0.000 131,548.000 

NoVeh Households with no Vehicles, % 26.537 15.118 0.000 89.400 

Veh1 Households with 1 Vehicle, % 43.589 9.508 0.000 81.300 

Veh2 Households with 2 Vehicles, % 22.558 11.544 0.000 59.100 

Veh3plus Households with 3 or more Vehicles, % 6.814 5.648 0.000 26.900 
 

Infrastructure Variables 



Road Total Length of Roads, miles 6.278 3.910 0.142 30.762 

EXPY Expressways, % of street network 0.219 0.601 0.000 4.302 

Art Arterials, % of street network 0.924 0.790 0.000 7.675 

Exp_Art Expressways and Arterials, % of street network 1.143 1.115 0.000 11.976 

Coll Collectors, % of street network 0.876 0.668 0.000 4.668 

Street Other Streets, % of street network 3.848 2.694 0.000 15.096 

Alley Named Alleys, % of street network 0.000 0.000 0.000 0.000 

BikeLane Total Length of Bike Lanes, miles 0.679 0.723 0.000 6.163 

BusRoute Total Length of Bus Routes, miles 1.541 2.559 0.000 39.980 

Ltrain Total Length of L Train Lines, miles 0.147 0.353 0.000 4.411 

Sidewalk Total Sidewalk Area, feet squared 287.382 198.201 0.000 1,131.373 

Intersect Total Number of Intersections 37.803 27.800 0.000 163.000 

Connect Connectivity Index, intersections/mile of road 5.798 1.531 0.000 16.232 

Signal_P Signalized Intersections, % 0.123 0.141 0.000 1.333 

BusStops Total Number of Bus Stops 13.104 9.099 0.000 75.000 

LStops Total Number of L Train Stops 0.091 0.325 0.000 2.000 

BikeRacks Total Number of Bike Racks 6.446 11.394 0.000 220.000 

DVMT Daily Vehicle Miles Traveled 40,563.580 57,246.750 8.057 522,024.400 

Ped Pedestrian Trips Generated 47.715 103.345 1.191 1581.315 

Bike Bicyclist Trips Generated 2.511 5.439 0.062 83.227 

DriveAlone Drive-alone Trips to Work, % 50.186 15.522 0.000 86.300 

Carpool Carpool Trips to Work, % 9.511 6.560 0.000 39.500 

Transit Transit Trips to Work, % 27.506 12.956 0.000 79.100 

Walk Walk Trips to Work, % 0.603 3.156 0.000 35.000 

OtherMeans Trips to Work by Other Means, % 2.542 2.942 0.000 21.300 

WorkHome Work Home, % 4.058 3.296 0.000 21.300 

TT_min Average Travel Time to Work, minutes 34.019 6.303 0.000 56.500 
 

Connectivity and Accessibility Measures 

NC_Car Network Serving Cars only (%) 0.030 0.076 0 0.543 

NC_Car_W Network Serving Cars and Pedestrians (%) 0.577 0.286 0 1.000 

NC_CarWT Network Serving Cars, Pedestrians and Transit (%) 0.438 0.930 0 1.000 

NC_Car_WB Network Serving Cars, Pedestrians and Bicyclists (%) 0.061 0.078 0 0.528 

NC_Car_WTB Network Serving All Modes (%) 0.085 0.143 0 1.000 

Ped_D15 No.  of destinations accessible within 15 minute walk time 34.491 67.816 0 783 

Ped_A Weighted pedestrian accessibility 21.301 28.609 0 310.65 

Bike_A Weighted bicyclist accessibility 1322.587 1584.606 0 11085.87 

Transit_A Weighted transit accessibility 73.694 52.355 0 342.84 
 

Land Use Variables 

LUDiv Total number of land uses 5.916 1.012 1.000 8.000 

Entropy Land use entropy 0.472 0.123 0.015 0.802 

 

The inclusion of smoothing functions gives GAM more flexibility in terms of model 

specification and description of the relationships between the explanatory variables, than the 

generalized linear models allow for. In the case of this study, GAM is used to incorporate the 

smoothing function across the locations, in order to account for spatial autocorrelation present in 

data aggregated on the census tract level. A two-dimensional spatial trend function included in 

GAM serves to capture these effects in the following manner (Wood, 2006): 

𝑙𝑜𝑔(𝜃𝑖) = 𝛽0 + ∑ 𝛽𝑗  𝑥𝑖𝑗

𝑗

+ 𝑓𝑖(𝑙𝑎𝑡𝑖, 𝑙𝑜𝑛𝑖) + 𝜀 Equation (1) 



Where: 

θi - expected number of crashes for census tract “i” 

β0- intercept 

βi - coefficients quantifying the effect of the “j” explanatory variables characterizing 

spatial unit “i” on θi   

xij – a set of “j” explanatory variables that characterize census tract “i” and influence θi 

εi - disturbance term corresponding to census tract “i” 

fi(lati, loni) –two-dimensional smooth function for modeling spatial trends in census 

tract “i” 

The GAM parameters are estimated by penalized likelihood maximization (Hastie and 

Tibshirani, 1990; Wood, 2006). The essential part of parameter estimation in GAM is estimating 

a smooth function 𝑓𝑖 by choosing an adequate basis to represent the smooth function as a linear 

model. In the case when a smooth function is assumed to be two-dimensional in order to account 

for spatial dependence as it is in the case of this research, the adequate basis is penalized thin 

plate regression spline, explained in detail in Wood (2006). This study estimates six outcome 

variables using GAM, for three user types: vehicles, pedestrians, and bicyclists. The exposure for 

vehicular crashes is defined using the variables DVMT and length of roadway network in miles. 

The exposure for pedestrian crashes is defined using the product of DVMT and the estimated 

number of pedestrian trips generated within the census tract. The exposure for bicyclist crashes is 

defined using the product of DVMT and the estimated number of bike trips generated within the 

census tract. The basic assumption with respect to exposure measures was that no crashes of a 

particular type have occurred within the census tract when at least one of the exposure measures 



used in each model is zero. The example of basic GAM specification used to estimate vehicular, 

pedestrian, and bicyclist crashes is provided in Equations 2, 3, and 4: 

𝜃𝑣𝑒ℎ_𝑖 = 𝑒(𝛽0+𝛽1 ln(𝐷𝑉𝑀𝑇)+𝛽2 ln(Road)+∑ 𝛽𝑗 𝑥𝑖𝑗𝑗 +𝑓𝑖(𝑙𝑎𝑡𝑖,𝑙𝑜𝑛𝑖)+𝜀𝑖)  Equation (2) 

𝜃𝑝𝑒𝑑_𝑖 = 𝑒(𝛽0+𝛽1 ln(𝐷𝑉𝑀𝑇)+𝛽2 ln(𝑃𝑒𝑑)+∑ 𝛽𝑗 𝑥𝑖𝑗𝑗 +𝑓𝑖(𝑙𝑎𝑡𝑖,𝑙𝑜𝑛𝑖)+𝜀𝑖)  Equation (3) 

𝜃𝑏𝑖𝑘𝑒_𝑖 = 𝑒(𝛽0+𝛽1 ln(𝐷𝑉𝑀𝑇)+𝛽2 ln(Bike)+∑ 𝛽𝑗 𝑥𝑖𝑗𝑗 +𝑓𝑖(𝑙𝑎𝑡𝑖,𝑙𝑜𝑛𝑖)+𝜀𝑖)  Equation (4) 

Where: 

θveh_i - expected number of vehicular crashes for census tract “i” 

θped_i - expected number of pedestrian crashes for census tract “i” 

θbike_i - expected number of bicyclist crashes for census tract “i” 

β0- intercept 

βi - coefficients quantifying the effect of the “j” explanatory variables characterizing spatial 

unit “i” on θi   

xij – a set of “j” explanatory variables that characterize census tract “i” and influence θi 

εi - disturbance term corresponding to census tract “i” 

fi(lati, loni) –two-dimensional smooth function for modeling spatial trends in census tract 

“i” 

Statistical model diagnostics 

The following values served as an indicator of model goodness of fit for GAM developed 

for the modeled outcome variables: 

• Smooth terms: Two-dimensional smooth function parameters based on penalized thin-

plate regression splines. Coefficient estimates of smooth terms provided with standard 



errors and p-values indicate the statistical significance of smooth functions included to 

account for spatial autocorrelation 

• Deviance explained: The percentage of deviance explained, based on the sum of squares 

of the deviance residuals, as the model deviance, and the sum of squares of the deviance 

residuals when the covariate effects are set to zero, as the null deviance 

• Adj. R2: Adjusted r-squared as the proportion of variance explained 

• REML: The value of restricted (or penalized) maximum likelihood function 

4 Results and Discussion 

Vehicle-only total and severe crashes 

Table 3 provides the final model specification for vehicle-only total and severe crashes. 

The results indicate that the expected total crash frequency increases as population density 

increases, and similar findings have been reported in the literature (Flask and Schneider, 2013; 

Castro et al., 2013; Noland and Quddus, 2004). Other socio-economic variables were not 

significantly related to the frequency of vehicular crashes. This could be due to the fact that 

vehicular trips can be generated through the census tract areas regardless of economic status of 

the population. The natural logarithm of road mileage and DVMT were used as the exposure 

variable to estimate the expected number of vehicular crashes on the census tract level. Although 

DVMT is calculated from the ADT values related to each link in a census tract multiplied by the 

length of corresponding links, thus incorporating road segments length into this measure, total 

road mileage is still included in vehicular crash models. Suppose there are two census tracts with 

the same DVMT. One of the census tracts could have a denser road network and higher road 

mileage with lower volumes of traffic, while the other census tract could have fewer roads but 

higher traffic volumes resulting with the same DVMT value. It is expected that these two 



hypothetical census tract areas would have different number of vehicular crashes, even though 

their DVMT value is the same, due to differences in the road network structure, and traffic flow 

intensity and its distribution across the network. This is why the road mileage variable was 

included as an additional exposure variable in vehicular crash models. As expected, increases in 

total length of roads in miles and daily vehicle miles traveled, were associated with an increase 

in expected crash frequency at the ninety nine percent confidence level. Intersection-related 

variables, such as intersection density and the percentage of signalized intersections, were found 

to be positively associated with  the number of crashes. Previous studies have found some similar 

relationships between network and intersection densities and crash frequencies (Moeinaddini, 

2014; Siddiqui, 2012). Presence of bus stops was associated with an increase in expected vehicle 

crash frequency.  The total area of sidewalk was associated with a decrease in vehicular crash 

frequency.  

As shown in Table 3, the variables that are found to be associated with the expected 

number of severe vehicular crashes include road mileage, DVMT, percent of signalized 

intersections, bus stops, sidewalk area, L train stops, and land use entropy. Similar to total 

vehicular crashes, the estimated model results show that it can be expected that the number of 

severe crashes is almost proportional to road segment lengths, while the increase in traffic 

volumes is not associated with a proportional increase in crashes. The presence of traffic signals 

is positively associated with both total and severe vehicular crashes. The presence of sidewalk 

was associated with a decrease in severe vehicular crashes. The results of the models estimated 

for total and severe vehicular crashes indicate that increasing sidewalk area could be considered 

as a safety countermeasure in urban environments. A limitation that should be remembered is 



that very few cities would have the available data on sidewalk area coverage, which limits the 

application of the model for different locations.  

Total and Severe Pedestrian Crashes 

The estimated statistical models for the expected number of total and severe pedestrian 

crashes in census tracts are provided in Table 4. The estimated coefficients for the exposure 

variables indicate that the expected number of crashes does not increase proportionally with the 

increase in vehicular or pedestrian trips, and this effect will be discussed in one of the following 

sections. Pedestrian crashes are expected to increase as pedestrian accessibility increases as a 

function of the number of accessible destinations and travel time to destinations. The total 

number of destinations that pedestrians are able to reach within a fifteen-minute walk is 

associated with a decrease in pedestrian crashes. These two variables have different signs, 

indicating that the concentration of destinations in such a way that it decreases the length of 

pedestrian travel time could lead to pedestrian crash reduction. Further analyses of the 

relationships between the accessibility related measures, exposure, and crashes is required 

seeking to incorporate utility-based measures and match accessibility indicators with pedestrian 

exposure. Variables that represent functional classification, conflict points, and intersection 

traffic control are associated with an increase in pedestrian crashes. Street connectivity is 

associated with a reduction of pedestrian crashes. The presence of signalized intersections is 

associated with a higher number of pedestrian crashes, and appears to be the major driver of 

pedestrian crash occurrence among the variables in the pedestrian crash model. Similar effects of 

the presence of signalized intersections on pedestrian crashes have been reported in previous 

research (Ukkusuri et al., 2012; Elvik 2016). The product of DVMT and the number of 

pedestrian trips within census tract estimated from the CMAP trip generation model served as the 



main indicator of pedestrian exposure to crashes. It was assumed that if either of these two 

variables (DVMT or the number of pedestrian trips) is equal to zero, no pedestrian crashes would 

be expected. Additional measures that would serve as a proxy for exposure were considered 

during the statistical modeling process, including the total road mileage and sidewalk area. In the 

case where roadway mileage was included in the models, sidewalk area was treated as a form of 

pedestrian safety countermeasure. A better, more complete measure that indicates pedestrian 

presence on roadway facilities, particularly in the context of the potential conflicts between other 

modes of travel, was the indicator of network completeness, expressed as the percentage of 

network that serves all four modes. Statistical models that serve to estimate pedestrian crash 

outcome, particularly on a spatially aggregated level, should include some indicators related to 

pedestrian infrastructure that would complement the measures of exposure. Whether simply road 

mileage, or sidewalk area, or in this case an indicator of the presence of complete streets in the 

network is used, will depend primarily on the data availability and the complexity of networks. 

The variables that were associated with the expected number of severe pedestrian crashes 

include DVMT, the number of pedestrian trips within the census tract, weighted pedestrian 

accessibility, the number of destinations accessible within fifteen minute walking time, and the 

percent of signalized intersections (Table 4).  

Total and Severe Bicyclist Crashes 

The estimated statistical models for the expected number of bicyclist crashes in census 

tracts are provided in Table 5. The variables that were associated with the expected number of 

bicyclist crashes include the estimated DVMT, the number of bike trips within the census tract, 

weighted bicyclist accessibility, intersection density, bus stops, bike lanes mileage, CBD, and the 

presence of L Train lines. The estimated DVMT and the number of generated bike trips were 



used as the primary measures of exposure. The estimated coefficients for volumes of vehicles 

and bicyclist trips in census tracts show non-linear relationship with the number of bicyclist 

crashes. Similar to pedestrian crashes, the expected number of bicyclist crashes is increasing 

much less than proportional to vehicular and bicyclist volume. Bike lanes mileage, weighted 

bicyclist accessibility, and intersection density served as approximate measures of the 

opportunities for conflicts between bicyclists and vehicles. It was found that doubling the 

mileage of bike lanes is not associated with a proportional increase in bicyclist crashes. This is 

probably due to the fact that biking may also be present on road segments that do not include 

bike lanes. Weighted bicyclist accessibility is an indicator of the s concentration of locations 

accessible by bike in the city, and is included in the model as a statistically significant variable. 

Intersection density proved to be statistically significant in the total bicyclist crashes model 

specification. Bicyclists are more exposed to crashes than pedestrians in terms of spatial 

opportunities for conflicts, as the conflicts may occur anywhere along the roadway segments, 

which may be the reason why the type of intersection traffic control is less significant. The CBD 

area, presence of bus stops and the presence of L Train facilities proved to be significantly 

related to the expected number of bicyclist crashes. The downtown area in Chicago tends to be 

more oriented towards non-motorized modes, with better defined biking facilities network. 

However, additional analysis is needed to determine if different types of biking facilities (e.g., 

protected bike lanes), tend to lead to reduction of biking crashes. Biking trips do have higher 

concentrations in the downtown area, and given the estimated coefficient that indicates that 

bicyclist crashes are less likely to occur in CBD area, this could confirm the non-linear 

relationship between the number of people biking and bicyclist crash outcome. The L Train 

facilities was associated with fewer bicyclist crashes.. It is important to acknowledge here that 



this association may not be the result of the presence of train facilities, but the environment that 

is created due to the particular design of train line and station facilities in Chicago.  

The variables that were associated with the expected number of severe bicyclist crashes 

include the estimated DVMT, the number of bike trips within the census tract, weighted bicyclist 

accessibility, and bike lanes mileage. All variables that were statistically significant in the 

estimated severe bicyclist crash model were already included in the total bicyclist crashes model 

specification.  

Figures 2 and 3 show the visualization of GAM models for the six outcome variables 

modeled in this study. Selected significant variables are included in these visualizations to 

demonstrate how the expected number of all crash types changes with the change in these 

variables. The influence of smooth terms representing spatial dependence among the census tract 

entities is also included in the figures, showing how different outcome variables have different 

level of sensitivity to spatial autocorrelation. Generally, stronger spatial dependence exists 

among total crashes than among severe crashes, for all crash types. 

  Safety in Numbers Effect 

Figures 4-6 show the relationships between the exposure variables and associated crash 

rates for total and severe crashes.  

As previously explained, non-motorized crashes were estimated using the combinations 

of exposure measures for private vehicles (DVMT) and the non-motorized modes (pedestrian 

trips or bicyclist trips). The relationships between crash rates for all crash types and the related 

exposure measures are non-linear. The estimated coefficients for the exposure variables in all 

estimated models have a value lower than one. This means that while the crashes are expected to 

increase as the exposure increases, the increase in crash rate is expected to be much lower than 



the rate at which the exposure increases, and this is true for all crash types. This effect is known 

in the literature as the “Safety in Numbers” effect (Hauer, 1982; Elvik and Bjørnskau 2017). 

As the exposure increases for private vehicle users, both total vehicular crashes and 

severe vehicular crashes increase at almost the same rate, which is much lower than the increase 

in DMVT, implying that risk goes down as shown in Figure 4. Similar conclusions can be drawn 

for pedestrian and bicyclist crashes (Figures 5 and 6), as it is expected that with the increase in 

exposure (both vehicular and non-motorized), the number of crashes increases at a lower rate 

than increase in exposure. 

The estimated crash rates based on the models for severe vehicular and severe pedestrian 

crashes show that for the same rate of change in the estimated DVMT, while all other variables 

(including the pedestrian user exposure) remain constant, the expected rate of severe vehicular 

crashes is two times higher than the expected rate of severe pedestrian crashes. . Severe 

pedestrian crashes are more sensitive to change in pedestrian exposure than to change in 

vehicular exposure, while according to the estimated models severe bicyclist crashes are almost 

equally strongly related to bicyclist and vehicular exposure.  



 

Table 3 Recommended Model for Total & Severe Vehicle-only Crash Estimation 

 
 

 

Vehicular Crashes

Variables Coeff. Std. Err. P>|z|

Population Density 0.0086 0.0009 0.000

ln (Road Mileage) 0.9912 0.0600 0.000

ln (DVMT) 0.2607 0.0199 0.000

Intersection Density 0.0011 0.0003 0.000

Signalized Intersections (%) 1.5351 0.1202 0.000

Bus Stops 0.0071 0.0023 0.002

Sidewalk Area -0.2282 0.0421 0.000

Intercept 1.1410 0.1737 0.000

Smooth terms 7.7200 8.1730 0.000

Deviance explained 76.30% Adj. R2 0.801

REML = 4923

Generalized Additive Model

Severe Vehicular Crashes

Variables Coeff. Std. Err. P>|z|

ln (Road Mileage) 0.9600 0.0925 0.000

ln (DVMT) 0.2641 0.0309 0.000

Signalized Intersections (%) 1.3066 0.1707 0.000

Bus Stops 0.0054 0.0030 0.000

Sidewalk Area -0.1536 0.0546 0.074

L Train Stops -0.0856 0.0614 0.005

Intercept -2.5875 0.2541 0.078

Smooth terms 6.0100 7.0520 0.001

Deviance explained 63.20% Adj. R2 0.721

REML = 2109

Generalized Additive Model



Table 4 Recommended Model for Total & Severe Pedestrian Crash Estimation 

 
 

Severe Pedestrian Crashes Generalized Additive Model 

Variable Coeff. Std. Err P>|z| 

ln (DVMT) 0.1685 0.0351 0.000 

ln (Pedestrian Trips) 0.3491 0.0441 0.000 

Weighted Ped. Accessibility 0.0130 0.0027 0.000 

Destinations within 15-min Walk -0.0044 0.0011 0.000 

Signalized intersections (%) 1.0195 0.2296 0.000 

Intercept -2.4664 0.3398 0.000 

Smooth terms 1.7340 1.9980 0.000 

 20.80% Adj. R2 0.281 

 REML = 1479 
 
 

 

Pedestrian Crashes

Variables Coeff. Std. Err. P>|z|

ln (DVMT) 0.0493 0.0277 0.075

ln (Pedestrian Trips) 0.2949 0.0363 0.000

Weighted Ped. Accessibility 0.0114 0.0021 0.000

Average Daily Transit Accessibility 0.0045 0.0006 0.000

Destinations within 15-min. Walk -0.0038 0.0009 0.000

Percentage of Arterials 0.1271 0.0421 0.003

Intersection Density 0.0027 0.0005 0.000

Signalized Intersections (%) 1.1283 0.1909 0.000

Street Connectivity -0.0834 0.0189 0.000

Network Completeness 0.5031 0.1741 0.004

Intercept 0.6620 0.2694 0.014

Smooth terms 1.003 1.006 0.0011

Deviance explained 43.70% Adj. R2 0.5600

REML = 2895

Generalized Additive Model



Table 5 Recommended Model for Total & Severe Bicyclist Crash Estimation 

 
 

Severe Bicyclist Crashes Generalized Additive Model 

Variable Coeff. Std. Err P>|z| 

ln (DVMT) 0.2199 0.0552 0.000 

ln (Bicyclist Trips) 0.2684 0.0639 0.000 

Weighted Bike Accessibility 0.0001 0.0000 0.046 

Bike Lanes (miles) 0.2932 0.0605 0.000 

Intercept -3.1670 0.5374 0.000 

Smooth terms 6.5230 7.4470 0.000 

 31.70% Adj. R2 0.35 

 REML = 874 
 
 

 

 

 

Bicyclist Crashes

Variables Coeff. Std. Err. P>|z|

ln (DVMT) 0.2183 0.0278 0.000

ln (Bicyclist Trips) 0.4933 0.0449 0.000

Weighted Bicyclist Accessibility 0.0000 0.0000 0.006

Intersection Density 0.0022 0.0004 0.000

L Train Line (miles) -0.1412 0.0743 0.057

Bike Lanes (miles) 0.2650 0.0365 0.000

Central Business District -0.4601 0.1656 0.005

Intercept -1.0690 0.2814 0.000

Smooth terms 7.351 7.955 0.000

Deviance explained 62.20% Adj. R2 0.578

REML = 2297

Generalized Additive Model



 
 

a) Vehicle-only crashes b) Pedestrian crashes c) Bicyclist crashes 

 

Figure 2 Visualization of GAM for some of the Statistically Significant Explanatory 

Variables in Total Crash Models



 

 
 

a) Vehicle-only KA crashes b) Pedestrian KA crashes c) Bicyclist KA crashes 

 

Figure 3 Visualization of GAM for some of the Statistically Significant Explanatory 

Variables in Severe Crash Models 

 



 

 

 

 

Figure 4 The “Safety in Numbers” Effect for Private Vehicle Users 



 

 

 

Figure 5 The “Safety in Numbers” Effect for Pedestrian Users 



 

 

 

Figure 6 The “Safety in Numbers” Effect for Bicyclist Users 

 

 

 

 

 



5 Conclusions and Recommendations 

There is a general understanding that improved multimodal transportation systems may 

lead towards resolving multiple long-term issues related to sustainability and efficiency of travel 

in urban environments. There is also a need to continue to explore the effects of investments in 

multimodal infrastructure on safety for different road user types, particularly vulnerable road 

users (pedestrians and cyclists). Walking and cycling is essential in developing sustainable 

transportation solutions. These modes require less space in terms of right-of-way and parking, 

increase active travel behavior prevents obesity, contributes to reducing emissions associated 

with motor vehicle usage, and may contribute to reducing person-level travel delay as a 

significant portion of these users tend to combine walking or cycling with the use of public 

transportation.  

The research presented in this paper is focused on exploring the safety in numbers effects 

for pedestrians and cyclists in urban environments at a macroscopic level. The goal of this 

research was to provide a detailed set of indicators that could represent exposure as well as 

exposure surrogates in multimodal transportation systems, and relate these indicators to the 

expected number of crashes for vehicles, pedestrians, and bicyclists. 

A safety in numbers effect is found in all estimated SASM models for all crash types. 

This indicates that within the spatial units of analysis used, an increase in exposure would not be 

associated with a proportional increase in the expected number of crashes. This applies to all the 

three groups examined: cars, pedestrian and cyclists. These findings are consistent with previous 

research on the safety in numbers effect. In addition to exploring the relationships between the 

available measures of exposure and safety, proxies for exposure such as accessibility to 

destinations for various users are also explored in this paper. Generally, cumulative accessibility 



has a stronger association with the expected number of crashes than weighted accessibility, and 

is negatively associated with pedestrian crashes. This indicates that there is a need to further 

explore the association between the measures of accessibility and the available indicators of 

multimodal exposure, and see if perhaps similar surrogates can be used to better represent 

multimodal exposure in complex urban environments. The finding that the relationship between 

exposure (and surrogates for exposure) and crashes is mode-dependent should be further 

explored in the future research efforts. 

The results of this research show that crash rate per unit of exposure decreases with the 

increase of the exposure in the defined spatial unit of analysis. A finding such as this could be 

used to support long range transportation plans for what is considered to be sustainable 

infrastructure, while partially addressing concerns about negative safety effects, particularly for 

pedestrians and cyclists. Using a set of exposure indicators that includes the surrogate measures 

to properly represent the complexity of urban transportation and land use in major cities, as well 

as access to destinations that in this case served as a proxy for activity concentration, could 

strengthen efforts to justify area-wide transportation improvements in both short-term and long-

term transportation planning. The SASM framework based on GAM approach has rarely been 

used in previous safety studies, particularly at a macroscopic level. A comprehensive overview 

and statistical safety modeling in the existing research, rarely captures more than one or two user 

types, which could be considered as another contribution of this study. There is an obvious need 

to continue to improve the way exposure data are collected, particularly for non-motorized users, 

as this would help to improve the safety estimates in all types of environments. This however 

should not serve as an impediment to further considerations of investments in multimodal 

infrastructure, and further development of safety evaluation methods in a multimodal context.   
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