
Contents lists available at ScienceDirect 

Accident Analysis and Prevention 

journal homepage: www.elsevier.com/locate/aap 

Traffic volume and crashes and how crash and road characteristics affect 
their relationship – A meta-analysis 
Alena Katharina Høye*, Ingeborg Storesund Hesjevoll 
Institute of Transport Economics, Gaustadalleen 21, 0349 Oslo, Norway  

A R T I C L E  I N F O   

Keywords: 
Crash prediction model 
Meta-analysis 
Traffic volume 

A B S T R A C T   

The present study has investigated the relationship between traffic volume and crash numbers by means of meta- 
analysis, based on 521 crash prediction models from 118 studies. The weighted pooled volume coefficient for all 
crashes and all levels of crash severity (excluding fatal crashes) is 0.875. The most important moderator variable 
is crash type. Pooled volume coefficients are systematically greater for multi vehicle crashes (1.210) than for 
single vehicle crashes (0.552). Regarding crash severity, the results indicate that volume coefficients are smaller 
for more fatal crashes (0.777 for all fatal crashes) than for injury crashes but no systematic differences were 
found between volume coefficients for injury and property-damage-only crashes. At higher levels of volume and 
on divided roads, volume coefficients tend to be greater than at lower levels of volume and on undivided roads. 
This is consistent with the finding that freeways on average have greater volume coefficients than other types of 
road and that two-lane roads are the road type with the smallest average volume coefficients. The results in
dicate that results from crash prediction models are likely to be more precise when crashes are disaggregated by 
crash type, crash severity, and road type. Disaggregating models by volume level and distinguishing between 
divided and undivided roads may also improve the precision of the results. The results indicate further that crash 
prediction models may be misleading if they are used to predict crash numbers on roads that differ from those 
that were used for model development with respect to composition of crash types, share of fatal or serious injury 
crashes, road types, and volume levels.   

1. Introduction 

Crash prediction models are an important tool in many different 
contexts, such as evaluations of road safety measures, black spot ana
lysis, and safety management of road networks. Traffic volume is one of 
the most important predictor variables in such models (besides section 
length and time). The volume predictor used in most published crash 
prediction models is the annual average daily traffic (AADT), and most 
models have been developed for all types of crashes taken together. 

However, the relationship between volume and crash numbers may 
depend on several factors, such as crash type and severity (or dis
tribution thereof), road type, volume level and changes of volume over 
time. Thus, averaging volumes over a whole year and summarizing 
different types of crashes and levels of severity may lead to imprecise or 
biased predictions of crash numbers (Mensah and Hauer, 1998). 

Among the potential moderator variables for the relationship be
tween volume and crash numbers that have been investigated in em
pirical studies, are crash type (Geedipally and Lord, 2010; Mensah and 
Hauer, 1998), high vs. low volume (Martz, 2017), and fatal vs. injury 

crashes (Gates et al., 2015). However, the results from individual stu
dies may not always be generalizable. Other factors, such as the type of 
road, have to our knowledge not yet been investigated systematically. 

Knowledge about potential moderator variables for the relationship 
between volume and crashes is essential because it can guide modelling 
decisions and provide information about possible sources of bias and 
uncertainty. Relevant modelling decisions include whether or not 
models should be disaggregated by, for example, crash type, type of 
road, or volume level. 

Knowledge about typical relationships between volume and crashes 
can also be useful when it is not possible to calculate crash prediction 
models, but when one wants to predict effects of changing volumes on 
crash numbers or compare crash numbers between roads with different 
volumes. In such situations, using typical relationships may be more 
adequate than simply assuming a linear relationship, as is often done in 
the absence of more precise information (Qin et al., 2004). 

Therefore, the aim of the present study is to investigate the re
lationship between traffic volume and crash numbers and factors that 
affect this relationship, by means of meta-analysis. The main research 
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questions to be addressed are:  

▪ Is it possible and meaningful to summarize volume coefficients from 
existing studies to an overall average volume coefficient?  

▪ What are relevant moderator variables for the relationship between 
volume and crashes? 

Background information about the relationship between volume 
and crashes and potential moderator variables to be investigated, are 
addressed in the following section. 

2. Crash prediction models and potential moderator variables 

Crash prediction models are often based on Poisson, Negative bi
nomial, or similar regression models. The present study focuses on this 
type of models because they are the most common types of models and 
considered adequate with respect to the statistical properties of crash 
numbers (Lord and Mannering, 2010; Poch and Mannering, 1996; Lord 
et al., 2005a, 2005b; Noland and Karlaftis, 2005). Such crash prediction 
models have the general form:  

N of crashes = exp[Σi (bi * Xi)]                                                     

where Xi are the predictor variables and bi the regression coefficients 
(Elvik, 2007). Volume is included in the models as one of the coeffi
cients X. In most crash prediction models, a logarithmic transformation 
of AADT is used (Ln(AADT)) to take into account the nonlinear re
lationship between volume and crashes (Wang et al., 2013). The per
centage increase of predicted crash numbers as volume increases by a 
certain percentage, is then the same at all traffic volumes. When the 
coefficient for volume is equal to one, the predicted number of crashes 
is proportional to volume, i.e. an increase of volume by X percent is 
associated with an increase of the predicted number of crashes by X 
percent. A coefficient between zero and one implies that crashes in
crease less than proportional with volume, and a coefficient greater 
than one implies that crashes increase more than proportional with 
volume. 

Potential moderator variables for the relationship between volume 
and crashes are described in the following. Since the study is based on 
meta-analysis, only potential moderator variables are described that 
can be defined on study level (more precisely: for each crash prediction 
model) and for which sufficient information is available from the stu
dies included in meta-analysis for conducting moderator analyses. 

Crash type. As volume increases, the number of opportunities for 
multi vehicle (MV) crashes increases, theoretically at a higher rate than 
the traffic volume (Elvik et al., 2009). Single vehicle (SV) crashes on the 
other hand occur often at low volumes. Amongst other things, 
monotony and boredom which often occur on low volumes roads, are 
typical contributing factors to SV crashes (Armstrong et al., 2008;  
Candappa et al., 2013). Some studies show that estimating separate 
models for SV and MV crashes provides more precise estimates than 
combining all crash types (Geedipally and Lord, 2010). On this back
ground, volume is expected to be more strongly related to MV crashes 
than to SV crashes. 

Crash severity. Increasing volumes may have different effects on 
crashes, depending on the level of severity. Results from studies that 
have investigated crash effects of congestion are inconsistent with re
spect to crash severity. Some studies found that crash severity decreases 
in congestion (Lord et al., 2005a, 2005b) and that crashes with property 
damage only (PDO) increase more with increasing volumes at high 
volumes than fatal and injury crashes (Harwood et al., 2013). A likely 
explanation for such results is reduced speed in congestion and the 
relationship between speed and crash severity (Elvik et al., 2019). 
Other studies did not find any relationship between congestion and 
crashes (Quddus et al., 2009). Harwood et al. (2013) found about the 
same effects of reducing traffic density (passenger cars per lane mile) 

for crashes of different severities. In contrast to these results, Wang 
et al. (2013) found increased crash severity at increasing congestion 
and only little impact of congestion on slight injury crashes. 

A likely explanation for inconsistent results is that different volumes 
are related to numerous other factors that are associated with crash 
severity. Such factors may partly offset each other’s effects (Noland and 
Quddus, 2005). For example, there are on average fewer severe crashes 
on divided roads (where volumes often are high) than on undivided 
roads with lower volumes (Stigson, 2009). At high speed, crashes are on 
average more severe than at lower speed (Elvik et al., 2019), but high- 
speed roads are often high-volume roads with a high level of safety. On 
this background, it is difficult to make general predictions about the 
effect of crash severity on the relationship between volume and crashes. 

Type of road: The relationship between volume and crashes may 
differ between different types of road. Amongst other things, the dis
tribution of SV and MV crashes is different between different types of 
road (Martensen and Dupont, 2013). SV crashes occur more often on 
low volume rural roads, while MV crashes more often occur on high 
volume, multilane roads. Moreover, the same traffic volume may be 
associated with different traffic densities on different roads, and traffic 
density has been found to be associated with crash numbers (Lord et al., 
2005a, 2005b). Therefore, it is investigated in the present study if vo
lume coefficients differ systematically between different types of road. 

Area type (rural vs. urban). On urban roads, the share of MV cra
shes is usually larger than on rural roads (Høye, 2016). In urban areas, 
there are usually more intersections, lower speed limits, more potential 
conflict points, and more pedestrians and cyclists than in rural areas. 
How all these factors taken together may affect volume coefficients, is 
uncertain. It is therefore investigated in the present study if there are 
systematic differences between volume coefficients for urban and rural 
areas. 

Volume level. Volume coefficients are usually calculated for the 
whole range of volume that is available in a data set. However, the 
relationship between volume and crashes may change at increasing 
volumes, especially as volumes approach capacity, i.e. in congestion. 

At low volumes, there are usually more SV crashes than at higher 
volumes (Marchesini and Weijermars, 2010) and volume coefficients 
for SV crashes are expected to be smaller for SV crashes than for MV 
crashes (see above). As volume increases, the number of potential 
conflicts and the share of MV crashes increase (Elvik et al., 2009). One 
may therefore expect greater volume coefficients at higher volumes if 
all else is equal. However, all else is not always equal; for example, 
higher volume roads have on average higher capacity (for example 
more lanes) than lower volume roads. Moreover, as volume approaches 
capacity, speed and crash severity decrease, while the effect on crash 
rate varies between traffic conditions (Golob et al., 2008). In congestion 
at speeds approaching zero there will hardly be any more crashes (Elvik 
et al., 2009). 

In addition to the effects of crash type, several road characteristics 
are related to volume and crash rate. For example, lower volume roads 
are on average narrower and they have sharper curves and steeper 
grades, all of which may be associated with higher crash rates (Ewan 
et al., 2016). 

In summary, it is difficult to make general predictions about how 
the relationship between volume and crashes may change at different 
levels of volume. Only at the highest volumes with high levels of con
gestion, one may expect the relationship to be weaker than at lower 
levels of volume. 

3. Method 

A systematic review has been conducted of published crash pre
diction models in which traffic volume is one of the predictors. Meta- 
analytical methods have been used to calculate pooled volume coeffi
cients and to investigate the effects of potential moderator variables. 

The unit of analysis in the present study is a regression coefficient 
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for traffic volume from a multivariate crash prediction model that has 
the general form of a Poisson or Negative binomial regression model. 
All volume coefficients refer to the natural logarithm of the annual 
average daily traffic (Ln(AADT)). A standard approach to combining 
the results from different regression models is a meta-analysis of the 
estimated regression coefficients (e.g. Becker and Wu, 2007; Cappuccio 
et al., 1995; Hunter and Schmidt, 2015). 

3.1. Literature search 

The aim of the literature search was to find at least 100 studies that 
can be included in meta-analysis. This limit has been set as a compro
mise between finding as many studies as possible and limited resources. 
Finding more studies would have been highly resource demanding but 
would not have been likely to significantly affect the results. 

In order to be eligible for meta-analysis, studies had to have in
vestigated the relationship between volume and crash numbers in 
Poisson or Negative binomial model and to have included Ln(AADT) as 
the only volume predictor. Only studies that are based on real-world 
crash data with road sections (not geographical areas) as the unit of 
analysis were included. Studies that have included additional AADT- 
based predictors (such as AADT2 or dummy variables for high and low 
volume) were not included because the coefficients for Ln(AADT) are 
not directly comparable to those from models with Ln(AADT) as the 
only volume predictor. Studies based only on crashes at intersections/ 
roundabouts or on ramps were not included either. 

The literature search was conducted according to the PRISMA 
checklist, that was slightly modified for the purposes of this study. The 
steps in the literature search are schematically shown in Fig. 1 and 
described in the following. 

Step (1)-(2) Literature search: Two searches were conducted on 
Google Scholar in April 2019 for the following search terms: (1) 
“Negative binomial” AND crash AND model and (2) "Safety perfor
mance function". Since practically all crash prediction models include a 
volume predictor, volume (or AADT) was not included as a search term. 
Both searches were limited by publication year (2005 or later). 
Citations and patens were excluded. The first search yielded more re
sults than can be shown in Google Scholar (10,000). Therefore, addi
tional searches were conducted that were limited to the latest years 
only (2016 and later). The total number of records screened is esti
mated at about 12,000 (step (3)). 

Step (3)-(4) Screening of titles and abstracts: For most of the 
screened records, only the contents shown on Google Scholars hit list 
were screened. In many cases, abstracts were screened as well, but these 

were not systematically documented if they were dismissed im
mediately. Studies were immediately dismissed when they were ob
viously irrelevant, for example studies that are not related to road 
safety, real-time crash prediction models, studies based on specific 
crash types (such as truck crashes, pedestrian crashes, or intersection 
crashes), and simulation studies. 

Step (5)-(6) Full text assessment: 195 studies were selected for full- 
text assessment. Among these, 77 could not be included in meta-ana
lysis. Table 1 shows an overview of the reasons in non-overlapping 
categories (for some of the excluded studies several reasons apply; for 
these studies only the most serious or the most obvious reason is in
cluded in the overview). 

Step (7) Meta-analysis: In total, 118 studies were eligible for meta- 
analysis. Of these, 89 studies provided enough information for calcu
lating weights for meta-analysis, such as standard deviations for coef
ficients, p-values, or t-values. Studies that provided information such as 
“p < 0.001” were not included in weighted meta-analysis. The studies 
included in meta-analysis are listed alphabetically in the appendix. 

3.2. Calculating pooled regression coefficients 

Pooled regression coefficients were calculated as weighted and un
weighted averages of regression coefficients. Weighted averages were 
calculated according to the inverse variance method of meta-analysis as 
follows (Elvik, 2018): 

=Pooled regression coefficient
Coeff W

W
. *i i i

i i (2)  

Coeff.i denotes the volume coefficient from model i and W the 
corresponding weight which is proportional to the inverse of the coef
ficients’ variance. 

For all pooled regression coefficients, 95 % confidence intervals are 
reported. They are calculated according to a random effects model 
which allows the individual volume coefficients to vary between crash 
prediction models, as described by Christensen (2003). 

In the weighted analyses, I2 is reported as a measure of hetero
geneity (Borenstein et al., 2017). I2 denotes the proportion of the total 
variance in the observed effect estimates (here: volume coefficients) 
that is due to variation in the underlying true effects in each study 
(here: crash prediction model). I2 values are independent of the number 
of effect estimates included in meta-analysis. I2 values below 25 % and 
above 75 % are traditionally interpreted as low and high heterogeneity, 
respectively. 

Since information for calculating variances is not available for all 
volume coefficients, additional analyses were made of unweighted 
averages of regression coefficients. The confidence intervals for these 
are based on the variance between the individual volume coefficient. 
The unweighted analyses allow the inclusion of more results in the 
analyses and they provide a sensitivity analysis for the degree to which 
the results are affected by statistical weighing and study selection Fig. 1. Literature search and study selection.  

Table 1 
Reasons for exclusion of 77 studies from meta-analysis (non- 
overlapping categories).    

Reason for exclusion Number  

Untransformed AADT 18 
Same data as other study 12 
Other type of model 11 
Model not reported 10 
Not provided by library 7 
Other volume predictor 6 
Intersections/ramps only 6 
Crash rate dependent 3 
No AADT predictor 3 
Simulated data 1 
Total 77 
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(Elvik, 2005). All weighted analyses were made in R, version 3.6.1, 
with the metafor package (Viechtbauer, 2010). All unweighted analyses 
were made in MS Excel. 

3.3. Moderator analysis 

The effects of potential moderator variables are investigated with 
meta-regression and subgroup comparisons. The types of analyses vary 
between the potential moderator variables, depending on the avail
ability of information. An overview of the investigated moderator 
variables is given in Table 2. 

3.3.1. Meta-regression 
Meta-regression implies the development of regression models with 

the estimated volume predictors from crash prediction models as the 
dependent variable and potential study-level moderator variables as 
predictor variables (Shadish and Sweeney, 1991). Two sets of meta- 
regression models were developed:  

▪ Meta-regression models that are based on all available studies 
(mostly weighted meta-regression) and all potential moderator 
variables, except for volume range/level in some of the models.  

▪ Subgroup comparison meta-regression models that were developed 
specifically for some of the subgroup comparisons, based on limited 
data sets. These models are described in more detail in the re
spective sections. All of them apply weighted meta-regression. 

All meta-regression analyses have been calculated with the metafor 
package in R. 

3.3.2. Subgroup analyses 
In subgroup analyses, pooled volume coefficients are compared 

between subgroups of results (Hedges and Olkin, 1985). In contrast to 
meta-regression, the subgroup analyses focus on only one potential 

moderator variable at a time and they only include directly comparable 
results (for example volume coefficients for crashes of the same type 
and severity). For some of the subgroup analyses, meta-regression 
models have been developed additionally. 

Two types of subgroups analyses were conducted, depending on the 
availability of data:  

▪ Matched pairs comparisons: Subgroups are based on studies that 
have reported models for different levels of a potential moderator 
variable (for example for fatal and injury crashes), based on other
wise identical data (for example, the same type of crashes on the 
same roads). Matched pairs subgroup analyses are conducted for 
crash type, crash severity, and volume level.  

▪ Other subgroup analyses: These analyses are based on coefficients 
from otherwise similar models from different studies. Such subgroup 
analyses are made for road type, area type, and volume level. 

4. Exploratory analysis 

In the exploratory analysis, preliminary results from meta-regres
sion are presented and the distribution of volume coefficients from all 
studies is investigated. Additionally, it is investigated if there are sys
tematic differences between volume coefficients depending on other 
predictor variables in the crash prediction models. 

4.1. Preliminary results from meta-analysis and distribution of results 

Table 3 shows unweighted and weighted pooled volume coeffi
cients, based on all available studies, by crash type and level of severity, 
except for crash prediction models that are based on subsets of data 
(such as peak volume crashes). The latter are excluded to avoid double- 
counting. Volume coefficients for injury and PDO crashes are included 
in “all severities” only if the crashes they are based on, are not included 
in any of the coefficients for unspecified severity; none of the volume 

Table 2 
Definition of study-level moderator variables.      

Description N of vol. coeff.  

Crash type     
All crashes All types of crashes (only results that refer to all crashes combined). 369   
MV crashes Multi vehicle crashes, including results for all MV crashes and results for specific types of MV crashes. 68   
SV crashes Single vehicle crashes, including results for run-off-road crashes. 68 

Crash severity     
Fatal Fatal crashes. 8   
Injury Injury crashes; most results refer to all severity levels, a few refer to specific levels of severity (slight, serious or KSI). 139   
Unspecified severity Unspecified crash severity; most likely including all degrees of severity including injury and property damage only crashes. 351   
Injury/unspecified1 Unspecified and injury crashes without double-counting (injury crashes for which corresponding results for unspecified injury are 

available, are not included). 
380   

Subcategories of injury Serious and slight injuries for which corresponding results for all injury are available (included in moderator analysis, but not in 
analyses for “Injury”). 

4   

PDO Property damage only crashes. 19 
Road category     

Freeways Grade-separated, divided multi-lane roads. 200   
Multilane non-Freeways Multilane roads with at-grade junctions; including divided and undivided roads. 109   
Two-lane Two-lane roads, undivided and not grade separated. 156   
Unspecified/all roads Unspecified road type or all types of road. 56 

Area type     
Rural Roads in rural areas. 279   
Urban Roads in urban areas. 144   
Rural/urban Roads in rural and urban areas, unspecified or other area type. 98 

Volume range     
Very low Mean AADT  <  1000 and max. AADT  <  5000 12   
Low Mean AADT  <  10,000 and not ‘Very low’ 126   
Medium 10,000  <  Mean AADT  <  30,000 124   
High 30,000  <  Mean AADT and not ‘Very high’ 58   
Very high 50,000  <  Mean AADT and min. AADT  >  10,000 56 

Mean volume Mean AADT 375 

1 For 29 of the volume coefficients for injury crashes, corresponding volume coefficients for unspecified severity crashes are available. These 29 vol coefficients for 
injury crashes are not included in “injury/unspecified severity” crashes to avoid double-counting.  
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coefficients for fatal crashes are included. The weighted and un
weighted pooled volume coefficients are for the most part similar in 
size, especially those with large N (see also section 4.2). 

To visualize the distributions of those volume coefficients for which 
weights are available, two types of funnel plots are shown in Fig. 2 (all 
crashes) and Fig. 3 (MV/SV crashes). Each of the funnel plots corre
sponds to one of the weighted results for a specific level of severity in  
Table 3. The vertical lines in the funnel plots represent the respective 
summary effects. In both figures, the funnel plots display the volume 
coefficients of individual studies on the X-axis. The funnel plots on the 
left side show the weights on the Y-axis. These funnel plots are re
commended by Elvik et al. (2009) and Sterne and Egger (2001) for 
meta-analysis in which there is large variation in the size of the in
dividual studies. These funnel plots show most clearly differences be
tween volume coefficients with large weights, while those with the 
lowest weights are close to the bottom line. In the funnel plots on the 
right side in the two figures, the standard errors of the volume coeffi
cients are displayed on the Y-axis. This type of funnel plot is re
commended by Sterne et al. (2011). These plots show most clearly 
differences between volume coefficients with small weights (large 
standard errors) while those with the largest weights are close to the 
top. 

If there is little or no heterogeneity in the results, i.e. if all volume 
coefficients are from the same underlying distribution, representing the 
same “true” effect, one would expect the funnel plots to be symmetrical, 
with most of those volume coefficients with the largest weights / 
smallest standard errors in the middle of the distribution (Christensen, 
2003). One would also expect all or most of the results to lie within the 
funnel shapes (dotted lines). 

Fig. 2 shows very similar distributions of volume coefficients for 
injury and unspecified severity crashes. In both distributions large vo
lume coefficients with small weights and small volume coefficients with 
large weights are overrepresented. For unspecified severity crashes, 
there are additionally a few very small volume coefficients with very 
large standard errors. The distributions for PDO crashes look relatively 
symmetrical. 

Unsymmetrical distributions with an overrepresentation of large 
effect sizes with small weights would in most other meta-analyses be 
interpreted as a possible sign of publication bias. However, the re
gression coefficients in the present meta-analysis are not the main 
outcome of evaluation studies and they do not show the effect of any 
road safety measure. None of the studies had the explicit goal to in
vestigate the relationship between volume and crashes or had a specific 
hypothesis for the outcome. Thus, publication bias is highly unlikely 
and the asymmetry in the distributions is more likely to be due to other 

factors. 
None of the distributions follows the funnel shapes that are in

dicated by the dotted lines, indicating the presence of heterogeneity. 
Possible sources of heterogeneity are discussed in the sections about 
meta-regression and subgroup comparisons. 

In Fig. 3, all diagrams show that volume coefficients on average are 
larger for MV crashes than for SV crashes. The distributions look rela
tively symmetrical, but many volume coefficients are outside the funnel 
lines which indicates heterogeneity and the likely presence of relevant 
moderator variables. 

4.2. Meta-regression analysis 

Meta-regression models were developed to investigate the effects of 
potential moderator variables on the relationship between volume and 
crashes. One set of meta-regression models is based on all available 
studies and includes all potential moderator variables. These meta-re
gression models are shown in Table 4. 

A second set of meta-regression models was developed to in
vestigate the effects of individual potential moderator variables (one 
per model) as a part of the subgroup comparisons. These models are 
shown in Table 5 and described in the next chapter. 

The meta-regression models that are based on all studies in Table 4 
were calculated with different sets of study-level predictor variables:  

▪ Crash types: MV and SV crashes are not evenly distributed over the 
levels of the other predictor variables, and there may be interaction 
effects between crash type and other variables. Therefore, meta-re
gression models were developed (1) based on volume coefficients 
for all crash types (including results for all crashes, MV crashes, and 
SV crashes; models 1–3) and (2) based only on volume coefficients 
for all crashes, not including results referring specifically to MV or 
SV crashes (models 4–6).  

▪ Volume predictor: Information about volume levels is not available 
from all studies. Therefore, for each of the above models, three 
meta-regression models were calculated: (1) without any volume 
predictor (models 1 and 4), (2) with five levels of volume as dummy 
variable predictors (models 2 and 5), and (3) with mean volume as a 
predictor (models 3 and 6).  

▪ Weights: Most meta-regression models are weighted, only model 1c 
is unweighted; it is based on all studies including those without 
weights. It includes the availability of weights as an additional 
predictor variable. 

To avoid double counting of data, the following types of volume 

Table 3 
Unweighted and weighted (RE) pooled volume coefficients by crash type and injury severity (based on all studies, without double-counting; see text) with 95 % 
confidence intervals (CI) and I2.           

Unweighted Weighted  

N Vol coeff. CI N Vol coeff. CI I2  

All crashes          
Fatal 7 0.697 (0.121; 1.272) 6 0.777 (0.572; 0.982) 90.7   
Injury 123 1.061 (0.225; 1.897) 74 1.001 (0.919; 1.084) 99.4   
Unspecified severity 232 0.919 (0.051; 1.787) 143 0.862 (0.810; 0.914) 99.4   
PDO 19 0.886 (0.358; 1.413) 18 0.869 (0.751; 0.986) 95.7   
All severities 242 0.953 (0.075; 1.831) 166 0.875 (0.826; 0.923) 99.4 

MV crashes          
Injury 5 1.033 (-0.139; 2.206) 3 0.960 (0.463; 1.456) 91.7   
Unspecified severity 63 1.331 (0.400; 2.262) 36 1.228 (1.083; 1.373) 99.0   
All severities 64 1.319 (0.375; 2.262) 37 1.210 (1.064; 1.355) 99.0 

SV crashes          
Fatal 1 0.700 (-0.149; 1.449)       
Injury 11 0.650 (0.039; 1.172) 6 0.569 (0.336; 0.801) 93.2   
Unspecified severity 56 0.606 (-0.149; 1.449) 43 0.557 (0.481; 0.632) 99.5   
All severities 58 0.607 (0.036; 1.178) 44 0.552 (0.477; 0.627) 99.5 
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coefficients are excluded from all meta-regression analyses: (1) 
Subgroups of data: Some studies have reported models for a whole data 
set and for parts of this data set (such as peak hour and off-peak crashes 
or day- and night-time crashes). In such cases, only those volume 
coefficients that are based on the most comprehensive set of data are 
included in the analysis. The subgroup results may still be included in 
supplementary analyses. (2) Injury/unspecified severity: From studies 
that have reported results for injury and unspecified severity crashes, 
only those for unspecified injury are included (unless explicitly men
tioned otherwise). Excluding injury crashes implies that information 
that is specific to injury crashes is getting lost. However, including in
jury crashes would have implied that many injury crashes would have 

been counted twice (as injury and unspecified severity crash). (3) 
Volume only models: Volume coefficients from volume-only models are 
not included when a model with additional predictor variables is 
available, that is based on the same set of data. 

The results from all meta-regression models are discussed in the next 
section for each of the moderator variables that have been investigated. 

Availability of weights. In model 1c (Table 4) which is based on all 
studies including those without weights, most coefficients are very similar 
results to those in model 1b (Table 4) which is identical to 1c, except that it 
is a weighted model and does not include the weight availability predictor. 
Only for fatal crashes, the coefficient in model 1c is greater than in model 
1b. P-values are considerably greater for all predictor variables in model 1c 
than in model 1b. The predictor for weight availability has a negative 
coefficient which is short of being statistically significant. This indicates that 
volume coefficients for which weights are available, on average are smaller 
than those for which no weights are available. 

Fig. 2. Funnel plots, regression coefficients for all crashes (injury, unspecified severity, and PDO); semitransparent data points; some outlying volume coefficients are 
outside the diagram areas2 . 

2 (A) does not show two volume coefficients with very large weights (coeff. / 
weight are 0.735 / 27,778 and 0.607 / 34,294); (C) does not show one volume 
coefficient with a very large weight (0.583 / 77160) and one very large coef
ficient (2.924 / 0.013); (D) does not show one coefficient with a very large 
standard error (coeff. / standard error are 2.924 / 8.717). 
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5. Subgroup comparisons 

This section presents the results from subgroup comparisons. In 
each analysis, pooled volume coefficients are compared between the 
levels of one of the potential moderator variables (Table 6). 

5.1. Crash type 

To investigate differences between volume coefficients for all, MV, 
and SV crashes, matched pairs comparisons were made. They are based 
on studies that have reported results for both MV, SV, and all crashes 
from the same set of data (i.e. the SV and MV crashes sum up to all 
crashes in each study). The results are shown in Table 7. 

The results in Table 7 show that volume coefficients are consistently 
larger for MV crashes and smaller for SV crashes than for all crashes. 
The same pattern was found for all available types of road and levels of 
severity and in each of the individual studies that are included in the 
matched pairs comparison. Two studies that have reported results for 
MV and SV but not for all crashes (which is why they are not included 
in the matched pairs comparison) also found far larger volume coeffi
cients for MV crashes (all above one) than for SV crashes (between 0.25 
and 0.57; Islam et al., 2014; Kim et al., 2015). 

5.2. Crash severity 

5.2.1. Fatal vs. injury crashes 
To compare volume coefficients between fatal and injury crashes, 

matched pairs comparisons were made, based on studies that have re
ported results for both fatal and injury crashes from the same set of 
data. The results are shown in Table 8. 

The results in Table 8 show that all pooled volume coefficients for 
fatal crashes are clearly smaller than those for injury crashes. Also 
within each of the four studies included in the analyses, volume coef
ficients are smaller for fatal than for injury crashes (Chimba et al., 
2017; Gates et al., 2015; Jones et al., 2011; Kay et al., 2017). 

5.2.2. Serious vs. slight injury 
To compare volume coefficients between serious and slight injury 

crashes, matched pairs comparisons were made, based on studies that 

have reported results for both serious and slight injury crashes from the 
same set of data. The results are shown in Table 9. 

The results in Table 9 show that all pooled volume coefficients for 
serious injury crashes are smaller than those for slight injury crashes. 
Smaller coefficients for serious than for slight injury were also found in 
each of the three studies that has reported such results (Høye, 2016;  
Jones et al., 2011; Montella and Imbriani, 2015). The studies by Høye 
(2016) and Jones et al. (2011) have also reported results for fatal cra
shes and in both studies the volume coefficients for fatal crashes are 
smaller than those for serious injury crashes. 

The study by Lee et al. (2015; not included in this matched-pairs 
comparison) has reported three models, based on the same data set: 
One for unspecified severity (injury and PDO), one for all injuries, and 
one for serious injury. The volume coefficients are consistently smaller 
for more serious crashes (SD in parentheses): Unspecified severity: 
1.023 (0.031); injury: 0.998 (0.034); serious injury: 0.899 (0.037). 

5.2.3. Injury vs. unspecified severity 
To compare volume coefficients for injury and unspecified severity 

crashes, matched pairs comparisons were made. They are based on 
studies that have reported results for both injury and unspecified se
verity crashes from the same set of data. The results are shown in  
Table 10. The two bottom rows in the table show results from the 
weighted analyses with all results from studies by Montella and col
leagues omitted. 

The results from the matched-pairs subgroup analysis indicate that 
volume coefficients for injury crashes on average are larger than those 
for unspecified injury crashes for all crashes on freeways and on un
specified roads, as well as for MV crashes on all roads. The remaining 
comparisons (all crashes on two-lane and unspecified roads, as well as 
for SV crashes, the differences between volume coefficients for injury 
and unspecified severity are only small and partly in the opposite di
rection. 

When one looks at each of the studies that are included in the 
analysis for all crashes, those by Montella and colleagues are clearly 
different from all other studies in that they found exceptionally large 
volume coefficients for injury crashes. One of the Montella-studies 
(Montella et al., 2012) has reported results for PDO, slight, and severe 
injury crashes. In this study, volume coefficients are larger for slight 

Fig. 3. Funnel plots, regression coefficients for all MV and SV crashes (injury and unspecified severity); semitransparent data points.  
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injury than for both severe injury and PDO. Thus, there is no general 
trend of greater volume coefficients for more serious crashes. The re
sults in Table 10 show that when the studies by Montella and colleagues 
are omitted from the matched pairs comparison, there is practically no 
difference between volume coefficients for all crashes on freeways (all 
results from Montella and colleagues refer to freeways). Only for all 
crashes on unspecified roads and for MV crashes, the pooled volume 
coefficients for injury crashes are still larger than those for unspecified 
severity crashes. However, for both comparisons the volume coeffi
cients for injury and unspecified severity are well within each other’s 
confidence intervals. 

5.2.4. Injury vs. PDO crashes 
To compare volume coefficients for PDO and injury crashes, 

matched pairs comparisons were made. They are based on studies that 
have reported results for both PDO and injury crashes from the same set 
of data. The results are shown in Table 11. All results are based on 
models for all crashes. The two bottom rows in the table show results 
from the weighted analyses where all results from studies by Montella 
and colleagues are omitted. 

On freeways, volume coefficients are greater for injury than for PDO 
crashes. However, most comparisons for freeways are based on studies 
by Montella and colleagues. These studies have found exceptionally 
large volume coefficients for injury crashes (see section above about 
injury vs. unspecified severity crashes). 

When the results from Montella and colleagues are omitted, there 
are practically no differences between the volume coefficients for injury 
and PDO crashes. For multilane non-freeways and two-lane roads, the 

Table 5 
Results from meta-regression analysis for subgroup comparisons, models explained in text (statistically significant regression coefficients in bold letters).                  

(7) Crash type 
matched pairs 

(8) Fatal vs. injury 
matched pairs1 

(9) Serious vs. slight 
injury matched pairs1 

(10) Injury vs. 
unspecified severity 
matched pairs 

(10b) Injury vs. 
unspecified severity 
matched pairs (ex. 
Montella) 

(11) Injury vs. 
PDO matched 
pairs1 

(11b) Injury vs. PDO 
matched pairs (ex. 
Montella)1  

Coef. p Coef. p Coef. p Coef. p Coef. p Coef. p Coef. p  

Crash type               
All crashes (ref.)      (ref.)  (ref.)      
MV crashes 0.307 0.001     −0.027 0.871 −0.018 0.902     
SV crashes −0.402 0.000     −0.352 0.000 −0.333 0.000     
Crash severity               
Fatal   −0.158 0.053           
Injury −0.150 0.466 (ref.)    0.082 0.100 0.025 0.573 0.283 0.007 0.014 0.812 
Unspecified 

severity 
(ref.)      (ref.)  (ref.)      

PDO           (ref.)  (ref.)  
Serious injury     −0.246 0.000         
Slight injury     (ref.)          
Road category               
Freeways 0.261 0.028   0.913 0.000 0.298 0.000 0.257 0.000 0.330 0.005 0.303 0.001 
Multilane non- 

freeways 
−0.026 0.833 −0.194 0.096 –  0.062 0.408 0.043 0.514 0.106 0.483 0.088 0.235 

Two-lane roads (ref.)  (ref.)  –  (ref.)  (ref.)  (ref.)  (ref.)  
Unspecified 

roads 
−0.163 0.568   (ref.)  0.174 0.188 0.134 0.242     

Area type               
Rural (ref.)      (ref.)  (ref.)      
Urban 0.162 0.061     0.066 0.346 0.083 0.204     
Unspecified area 0.267 0.109     0.053 0.591 0.077 0.377     
Intercept 0.654 0.000 0.992 0.000 1.082 0.000 0.758 0.000 0.784 0.000 0.737 0.000 0.866 0.000 

1 Meta-regression models are based on volume coefficients for all crashes (no specific results for MV/SV are included).  

Table 6 
Meta-regression model statistics.            

N of studies Tests of heterogeneity  

Tau2 SE(Tau2) Cochran’s Q p I2  

Meta-regression based on all studies       
(1) No vol. predictor 0.089 0.009 264 11,818 0.000 99.2 
(1b) No vol. predictor; injury and unspecified (double counting) 0.085 0.008 333 15,398 0.000 99.2 
(1c) No vol. predictor (unweighted meta-regression) 0.000 0.075 370    
(2) Volume level predictors 0.081 0.010 197 8953 0.000 99.1 
(3) Mean volume predictor 0.083 0.010 196 930 0.000 99.3 
(4) No vol. predictor 0.080 0.010 183 6945 0.000 99.2 
(5) Volume level predictors 0.062 0.009 128 4588 0.000 99.1 
(6) Mean volume predictor 0.065 0.010 128 4567 0.000 99.2 
Subgroup comparison meta-regression       
(7) Crash type matched pairs 0.060 0.016 45 2317 0.000 99.1 
(8) Fatal vs. injury matched pairs 0.015 0.009 13 51 0.000 96.3 
(9) Serious vs. slight injury matched pairs 0.016 0.020 8 11 0.100 53.3 
(10) Injury vs. unspecified severity matched pairs 0.064 0.010 124 4190 0.000 99.2 
(10b) Injury vs. unspecified severity matched pairs (ex. Montella) 0.046 0.008 114 4057 0.000 98.9 
(11) Injury vs. PDO matched pairs 0.087 0.025 36 352 0.000 96.8 
(11b) Injury vs. PDO matched pairs (ex. Montella) 0.015 0.006 26 149 0.000 88.1 
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volume coefficients are also similar between injury and PDO crashes. 

5.3. Type of road 

5.3.1. Four types of road 
Pooled volume coefficients are compared between different types of 

road in Table 12. Comparisons are shown separately for different crash 
types and severity levels. They are based on all results, except for 
subgroups of models or crashes. 

The results in Table 12 show a clear pattern for all crashes (injury 
and unspecified severity): Volume coefficients are greatest on freeways, 
followed by multilane non-freeways, and they are smallest on two-lane 
roads. For MV crashes, a similar pattern was found (greater coefficients 
for freeways than for multilane non-freeways). For SV crashes there are 
no systematic differences between different types of road. 

These results might indicate that the distribution of crash type is the 
main explanatory factor for the differences between road types that 
were found for all crashes. This might be the case if the share of MV 
crashes were larger on freeways, followed by multilane non-freeways, 
and smallest on two-lane roads. However, studies that are included in 
the analyses and that have provided information about SV and MV 
crash numbers, have not found systematic differences between the 
proportions of MV crashes on different types of road that would be 

consistent with the interpretation of the findings for road type in terms 
of different proportions of MV crashes (Table 13). 

In meta-regression (Table 4), positive and statistically significant 
regression coefficients were found for freeways (vs. two-lane roads) in 
the models without AADT as an additional predictor variable. When a 
volume predictor is included in the models (five volume level dummy 
variables or mean AADT), the regression coefficients for freeways are 
still positive, but smaller and no longer statistically significant. For 
multilane non-freeways, the meta-regression coefficients are positive as 
well in the models without additional volume predictors, but they are 
smaller than those for freeways and they fall short of being statistically 
significant. With additional volume predictors included in the meta- 
regression models, they are close to zero and nonsignificant. 

In the meta-regression model 1b which includes all available vo
lume coefficients for injury crashes (including double counting), the 
coefficients for freeways is even greater, but this is mainly due to the 
results from the studies by Montella and colleagues. These studies found 
large volume coefficients for injury crashes, all of which refer to free
ways (these volume coefficients are not included in the other meta- 
regression models). 

Freeways have on average far higher volumes than other roads, and 
multilane non-freeways have higher volumes than two-lane roads 
(Table 13). Thus, differences in volume may be at least a part of the 

Table 7 
Matched pairs comparison for crash type; unweighted and weighted (RE) pooled volume coefficients for all, MV, and SV crashes by severity and road type with 95 % 
confidence intervals (CI) and I2.                

All crashes  MV crashes  SV crashes   

N Vol coeff. CI I2 N Vol coeff. CI I2 N Vol coeff. CI I2  

Unweighted             
Injury               

All roads 3 0.991 (-0.155; 2.136)  3 1.098 (-0.201; 2.396)  3 0.559 (-0.012; 1.131)  
Unspec. sev.               

Freeways 6 0.987 (0.295; 1.679)  6 1.517 (0.483; 2.55)  6 0.485 (-0.098; 1.069)    
Multilane non-freeways 9 0.999 (0.322; 1.139)  9 1.164 (0.928; 1.109)  9 0.594 (0.099; 1.089)    
Two-lane roads 2 0.730 (0.324; 1.675)  2 1.019 (0.427; 1.902)  2 0.360 (-0.298; 1.686)    
All roads 17 0.963 (0.317; 1.610)  17 1.272 (0.407; 2.137)  17 0.528 (0.023; 1.033)  

Weighted 
Injury               

All roads 2 0.711 (0.608; 0.814) 0.0 2 0.749 (0.376; 1.123) 83.0 2 0.459 (0.330; 0.588) 1.7 
Unspec. sev.               

Freeways 6 0.959 (0.724; 1.195) 93.1 6 1.514 (1.105; 1.922) 96.1 6 0.408 (0.201; 0.614) 99.8   
Multilane non-freeways 5 0.767 (0.700; 0.834) 85.3 5 0.917 (0.775; 1.059) 95.2 5 0.448 (0.300; 0.595) 93.6   
Two-lane roads 2 0.730 (0.441; 1.019) 99.7 2 1.016 (0.952; 1.079) 89.7 2 0.357 (0.282; 0.431) 90.6   
All roads 13 0.831 (0.729; 0.932) .98.3 13 1.194 (0.957; 1.431) 99.5 13 0.404 (0.306; 0.502) 99.7 

Table 8 
Matched pairs comparison for fatal vs. injury crashes; unweighted and weighted (RE, unless denoted otherwise) pooled volume coefficients for fatal and injury 
crashes by crash type and road type with 95 % confidence intervals (CI) and I2.            

Fatal  Injury   

N Vol coeff. CI I2 N Vol coeff. CI I2  

Unweighted analysis         
All crashes           

Multilane non-freeways 1 0.384   1 0.895     
Unspecified roads** 5 0.819 (0.324; 1.314)  6 0.991 (0.675; 1.307)    
All roads** 6 0.746 (0.183; 1.310)  7 0.977 (0.680; 1.275)  

SV crashes           
Multilane non-freeways 1 0.700   1 1.005   

Weighted analysis 
All roads           

Multilane non-freeways 1 0.384 (0.059; 0.709) 0.0* 1 0.895 (0.822; 0.968) 0.0*   
Unspecified roads** 5 0.851 (0.688; 1.013) 84.7 6 0.961 (0.920; 1.001) 83.0   
All roads** 6 0.777 (0.572; 0.982) 90.7 7 0.952 (0.913; 0.991) 82.6 

* Fixed effects model. 
** The number of available volume coefficients is not equal for all crashes on unspecified roads because of one study that has reported two models for injury 

crashes (one for slight and the other for serious injury crashes) but only one for fatal crashes.  
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explanation for the differences in volume coefficients between the dif
ferent types of road. 

5.3.2. Divided vs. undivided multilane roads (non-freeways) 
For multilane non-freeways, comparisons have been made between 

divided and undivided roads (Table 14). The results are based on all 
combinations of crash type and severity for which at least one volume 
coefficient is available for divided and undivided multilane non-free
ways. 

In the weighted analysis, the pooled volume coefficients are con
sistently greater for divided roads than for undivided multilane non- 
freeways. In the unweighted analysis, MV and SV crashes with un
specified severity have greater volume coefficients on undivided than 
on divided roads. Otherwise, the results are similar to those from the 
weighted analysis. 

To test the difference between divided and undivided multilane 
non-freeways, three meta-regression models were developed (not 
shown in Table 5) with the following predictor variables in all three 
models: Divided (vs. undivided), crash severity (injury vs. unspecified), 

crash type (MV / SV vs. all crashes). In the second model, volume range 
dummy variables are included as well and in the third model, mean 
AADT is included. In the model without volume predictor, the regres
sion coefficient for divided (vs. undivided) roads is positive (0.073) but 
non-significant (p = .306). In the models with additional AADT-pre
dictors, the regression coefficients for divided roads are closer to zero 
(0.021 and -0.044, respectively) and non-significant (p = 0.752 and 
p = .505, respectively). Despite the relatively large differences between 
volume coefficients for divided vs. undivided roads, the results from 
meta-regression do not indicate that there are significant differences. 

5.3.3. Number of lanes on freeways 
Five studies have reported separate models for roads with different 

numbers of lanes on freeways (Gan et al., 2012; Kiattikomol et al., 
2008; Srinivasan and Carter, 2011; Srinivasan et al., 2016; Zheng et al., 
2018). The results are highly inconsistent. Unweighted pooled volume 
coefficients are as follows: 1.166 on four-lane roads, 1.127 on roads 
with six or more lanes, and 0.998 on roads with eight or more lanes. 
Thus, it cannot be concluded that volume coefficients are systematically 

Table 9 
Matched pairs comparison for serious vs. slight injury crashes; unweighted and weighted (RE) pooled volume coefficients for serious and slight injury crashes by road 
type with 95 % confidence intervals (CI) and I2; all results refer to all crashes.            

Serious injury  Slight injury   

N Vol coeff. CI I2 N Vol coeff. CI I2  

Unweighted analysis           
Freeways 2 1.739 (1.077; 2.400)  2 2.017 (1.652; 2.381)    
Unspecified roads 2 0.846 (0.833; 0.860)  2 1.132 (0.659; 1.605)    
All roads 4 1.292 (0.213; 2.372)  4 1.574 (0.516; 2.633)  

Weighted analysis           
Freeways 2 1.731 (1.264; 2.198) 55.8 2 2.014 (1.746; 2.281) 0.0   
Unspecified roads 2 0.842 (0.788; 0.895) 0.0 2 1.109 (0.778; 1.440) 85.8   
All roads 4 1.259 (0.728; 1.789) 94.8 4 1.550 (1.016; 2.084) 95.4 

Table 10 
Matched pairs comparison for injury vs. unspecified severity crashes; unweighted and weighted (RE) pooled volume coefficients for injury and unspecified severity 
crashes (based only on studies that have reported results for both injury and unspecified severity crashes) by road and crash type with 95 % confidence intervals (CI) 
and I2.            

Injury  Unspecified   

N Coeff. CI I2 N Coeff. CI I2  

Unweighted analysis         
All crashes           

Freeways1 35 1.253 (0.464; 2.043)  35 1.183 (0.133; 2.233)    
Multilane non-freeways 18 1.010 (0.021; 2.000)  18 1.032 (0.041; 2.024)    
Two-lane 29 0.831 (0.460; 1.203)  29 0.796 (0.395; 1.197)    
Unspecified roads 8 1.065 (0.058; 2.072)  8 0.983 (-0.151; 2.117)    
All roads1 90 1.052 (0.232; 1.872)  90 1.010 (0.081; 1.94)  

MV crashes           
All roads 3 1.400 (0.508; 2.293)  3 0.943 (0.290; 1.597)  

SV crashes           
All roads 8 0.703 (-0.110; 1.516)  8 0.705 (-0.057; 1.466)  

Weighted analysis 
All crashes           

Freeways1 17 1.306 (1.117; 1.495) 92.2 17 1.039 (0.871; 1.207) 94.4   
Multilane non-freeways 11 0.812 (0.713; 0.912) 97.8 11 0.872 (0.750; 0.994) 96.1   
Two-lane 21 0.807 (0.744; 0.870) 97.8 21 0.792 (0.730; 0.854) 98.7   
Unspecified roads 6 1.129 (0.777; 1.482) 99.7 6 1.039 (0.597; 1.480) 99.9   
All roads1 55 0.989 (0.897; 1.081) 99.4 55 0.897 (0.823; 0.971) 99.5 

MV crashes           
All roads 2 1.161 (0.649; 1.673) 86.6 2 0.829 (0.360; 1.299) 88.1 

SV crashes           
All roads 5 0.611 (0.354; 0.867) 94.4 5 0.605 (0.462; 0.748) 88.9 

Weighted analysis (without Montella) (random effects models)      
All crashes           

Freeways 12 1.165 (0.995; 1.334) 88.5 12 1.146 (0.962; 1.331) 94.2   
All roads 50 0.922 (0.849; 0.994) 98.9 50 0.911 (0.833; 0.988) 99.5 

1 Includes results from Montella-studies.  
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different depending on the number of lanes on freeways. For other 
roads than freeways, no such comparisons are available. 

5.4. Area type 

Table 15 compares pooled volume coefficients between rural and 
urban areas. For all crashes, most results indicate that volume coeffi
cients are greater in urban than in rural areas. The unweighted results 

indicate also that volume coefficients for MV crashes are greater in 
urban than in rural areas, while volume coefficients for SV crashes are 
greater in rural than in urban areas. However, the results for all crashes 
are not consistent between crash types. The results for MV and SV 
crashes are not consistent between unweighted and weighted results. 

In meta-regression (Table 4), all regression coefficients for urban 
(vs. rural) roads are small (below 0.03) and far from being statistically 
significant. When volume is statistically controlled for, the regression 

Table 11 
Matched pairs comparison for injury vs. PDO crashes; unweighted and weighted (RE) pooled volume coefficients by road type (RE meta-analysis for weighted 
analysis); all results refer to all crashes.            

Injury  PDO   

N Coeff. CI I2 N Coeff. CI I2  

Unweighted analysis           
Freeways 9 1.574 (0.831; 2.317)  7 0.835 (0.018; 1.652)    
Multilane non-freeways 8 0.877 (0.739; 1.015)  8 0.879 (0.631; 1.128)    
Two-lane 3 0.985 (0.688; 1.283)  3 1.006 (0.600; 1.411)    
All roads 20 1.207 (0.370; 2.044)  18 0.866 (0.350; 1.382)  

Weighted analysis           
Freeways 8 1.596 (1.326; 1.865) 84.0 6 0.784 (0.436; 1.132) 93.3   
Multilane non-freeways 3 0.988 (0.780; 1.197) 72.0 3 0.930 (0.763; 1.097) 64.0   
Two-lane 8 0.870 (0.816; 0.924) 65.1 8 0.874 (0.777; 0.971) 92.5   
All roads 19 1.178 (0.991; 1.365) 97.7 17 0.865 (0.740; 0.989) 96.1 

Weighted analysis (without Montella)   
Freeways 2 1.179 (0.739; 1.620) 88.0 2 1.132 (0.611; 1.652) 93.3   
All roads 13 0.938 (0.846; 1.030) 89.5 13 0.929 (0.827; 1.031) 93.8 

Table 12 
Subgroup comparison analysis for type of road; unweighted and weighted (RE) pooled volume coefficients for each type of road by crash type and severity.             

All crashes MV crashes SV crashes  

N Coeff. CI N Coeff. CI N Coeff. CI  

Unweighted          
Fatal          
Freeways 1 0.398        
Multilane non-freeways 1 0.384        
Unspecified/all roads 5 0.819 (0.324; 1.314)    1 0.700  
Injury          
Freeways 46 1.292 (0.434; 2.150) 1 1.448  2 0.682 (-0.469; 1.833) 
Multilane non-freeways 22 1.052 (0.119; 1.985) 2 1.377 (0.120; 2.633) 5 0.888 (0.147; 1.629) 
Two-lane roads 33 0.818 (0.458; 1.177)    2 0.412 (0.029; 0.795) 
Unspecified/all roads 12 1.016 (0.145; 1.886) 1 0.540  1 0.310  
Unspecified severity          
Freeways 76 1.110 (0.107; 2.112) 29 1.453 (0.505; 2.402) 23 0.591 (-0.099; 1.281) 
Multilane non-freeways 39 0.945 (-0.031; 1.920) 22 1.195 (0.254; 2.136) 14 0.670 (0.015; 1.324) 
Two-lane roads 63 0.754 (0.312; 1.195) 10 1.381 (0.671; 2.091) 17 0.575 (0.291; 0.860) 
Unspecified/all roads 27 0.927 (0.084; 1.771) 2 0.815 (0.684; 0.947) 2 0.580 (0.464; 0.696) 
PDO          
Freeways 7 0.835 (0.018; 1.652)       
Multilane non-freeways 3 1.006 (0.600; 1.411)       
Two-lane roads 8 0.879 (0.631; 1.128)       
Unspecified/all roads 1 0.930        
Weighted analysis 
Fatal          
Multilane non-freeways 1 0.384        
Unspecified/all roads 5 0.851 (0.688; 1.013)       
Injury          
Freeways 24 1.280 (1.100; 1.460) 1 1.448  2 0.691 (-0.123; 1.505) 
Multilane non-freeways 15 0.956 (0.798; 1.115) 1 0.923  2 0.544 (0.423; 0.666) 
Two-lane roads 25 0.795 (0.741; 0.850)    1 0.550  
Unspecified/all roads 10 1.035 (0.821; 1.249) 1 0.540  1 0.310  
Unspecified severity          
Freeways 50 0.964 (0.862; 1.065) 18 1.371 (1.143; 1.600) 22 0.564 (0.424; 0.703) 
Multilane non-freeways 28 0.842 (0.761; 0.924) 11 0.948 (0.786; 1.110) 7 0.537 (0.384; 0.690) 
Two-lane roads 46 0.770 (0.713; 0.828) 7 1.228 (0.996; 1.460) 12 0.556 (0.456; 0.655) 
Unspecified/all roads 23 0.902 (0.735; 1.069)    2 0.618 (0.581; 0.654) 
PDO          
Freeways 6 0.784 (0.436; 1.132)       
Multilane non-freeways 3 0.930 (0.763; 1.097)       
Two-lane roads 8 0.874 (0.777; 0.971)       
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coefficients are even closer to zero. 

5.5. Volume levels and ranges 

5.5.1. Volume levels (categorical variable) 
In meta-regression (Table 4), statistically significant positive effects 

were found for very high (vs. medium) volume, indicating that volume 
coefficients are greater at very high volumes than at medium volumes. 
The regression coefficients for the other volume levels also indicate a 
trend towards greater volume coefficients at higher volumes. However, 
none of these regression coefficients is statistically significant and in the 
model that also includes results for MV and SV crashes, the relationship 
is not monotonic. 

5.5.2. Mean AADT and volume coefficients 
In meta-regression (Table 4), mean AADT has statistically sig

nificant positive meta-regression coefficients in both models, with and 
without results for MV and SV crashes. In the following, the relationship 
between mean volume and volume coefficients is investigated more 
closely by inspecting scatterplots. 

All crashes on all roads, by severity: Fig. 4 shows the relationships 
between mean volume and volume coefficients for all crashes (not in
cluding specific results for MV and SV crashes) by severity. 

The diagrams in Fig. 4 show for the most part positive relationships 
between mean volume and volume coefficient, except for the volume 
coefficients for fatal crashes which are only few. This is in accordance 
with the findings from meta-regression. However, there is large varia
tion of volume coefficients around the trend lines. The logarithmic 
trend lines fit better than the linear trend lines for injury and un
specified severity. However, the trend lines differ mainly at the highest 
volumes (mean AADT above 150,000) and both change substantially 
(get steeper) when the highest volumes are omitted (not shown in  
Fig. 4). 

MV and SV crashes: Fig. 5 shows the relationships between mean 

volume and volume coefficients for MV and SV crashes. The results 
refer to unspecified severity crashes. They include all types of road. 

The trend lines in Fig. 5 show only weak relationships between 
mean volume and volume coefficients for MV and SV crashes. Loga
rithmic and other trend lines do not give higher values of R2 and all are 
close to the linear trend lines (not shown in Fig. 5). 

5.5.3. Within study comparisons of volume levels 
Several studies have developed separate models for otherwise 

comparable roads with volumes above and below a certain threshold.  
Table 16 summarizes results from such studies. All results refer to rural 
two-lane roads. 

The results in Table 16 show that the volume coefficients for the 
higher volume roads in most cases are greater than those for the lower 
volume roads. Exceptions are the results from Cook (2010) for injury 
crashes (where the coefficient for the lower volume roads is highly 
uncertain) and from Garach et al. (2016). On average, the volume 
coefficients are 0.148 greater for the higher volume roads. 

6. Summary and discussion 

The present study has investigated the relationship between volume 
and crash numbers by means of meta-analysis, based on 521 crash 
prediction models from 118 studies. Pooled volume coefficients by 
crash type are 0.875 for all crashes, 1.210 for MV crashes, and 0.552 for 
SV crashes. These coefficients refer to all levels of severity (mostly 
unspecified severity). 

There is large heterogeneity in the results, indicated by I2 values 
above 90 %. Heterogeneity can also be seen in the distributions of the 
results (weights or standard errors against the individual volume 
coefficients). Heterogeneity indicates different underlying distributions 
and thus the likely presence of relevant moderator variables 
(Viechtbauer, 2007). Several relevant moderator variables could be 
identified by means of meta-regression and by comparing pooled 

Table 13 
Average mean volumes and distribution of volume levels for the four types of road.             

MV crashes (%)1 Mean AADT AADT range  

N Mean N Very low vol. (%) Low vol. (%) Medium vol. (%) High vol. (%) Very high vol. (%)  

Freeways 54 % 58 52,533 58  9% 29 % 31 % 31 % 
Multilane non-Freeways 68 % 23 25,982 24  21 % 42 % 21 % 17 % 
Two-lane 60 % 49 4266 49 10 % 78 % 12 %   
Unspecified road 46 % 22 12907 22  55% 27 % 18 %  
All roads  152 27,220 153 3% 39 % 25 % 18 % 14 % 

1 proportions of MV crashes are based on 15 different data sets in the studies by Geedipally and Lord, 2010; Kaaf and Abdel-Aty, 2015; Montella, 2009; Srinivasan 
et al., 2011.  

Table 14 
Subgroup comparison analysis for divided vs. undivided multilane non-freeways; unweighted and weighted (RE) pooled volume coefficients for each type of road by 
crash type and severity.            

Divided roads  Undivided roads   

N Vol. coeff. CI I2 N Vol. coeff. CI I2  

Unweighted         
All crashes - Injury 10 0.963 (0.193; 1.734)  7 0.930 (0.217; 1.643)  
All crashes - Unspecified severity 19 0.966 (0.034; 1.898)  13 0.785 (-0.050; 1.621)  
All crashes - PDO 1 1.230   2 0.893 (0.696; 1.091)  
MV crashes - Unspecified severity 11 1.131 (0.573; 1.688)  10 1.221 (-0.050; 2.493)  
SV crashes - Injury 1 1.005 (1.005; 1.005)  2 0.684 (0.140; 1.227)  
SV crashes - Unspecified severity 6 0.551 (0.187; 0.915)  6 0.628 (0.083; 1.172)  
Weighted analysis         
All crashes - Injury 7 0.969 (0.661; 1.278) 98.4 5 0.831 (0.676; 0.985) 89.4 
All crashes - PDO 1 1.230   2 0.882 (0.743; 1.02) 60.0 
MV crashes - Unspecified severity 6 0.977 (0.721; 1.233) 95.3 4 0.875 (0.712; 1.038) 85.5 
SV crashes - Unspecified severity 3 0.541 (0.274; 0.807) 97.7 3 0.468 (0.231; 0.705) 91.9 
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volume coefficients between levels of each of the moderator variables 
for otherwise comparable results. 

Crash type: The results show consistently that volume coefficients 
are larger for MV crashes and smaller for SV crashes than for all crashes. 
Meta-regression analyses (models based on all studies and matched 
pairs comparisons) show statistically significant effects of crash type. 

In all subgroup comparisons, the pooled volume coefficients are 
greatest for MV crashes and most of them are close to or above one. This 
means that MV crashes increase at a higher rate as volume. The largest 
pooled volume coefficient was found on freeways for unspecified se
verity MV crashes (1.514 in the weighted analysis). This implies that an 
increase of volume by 10 % is associated with an increase of MV crashes 
by 15.5 %. Pooled volume coefficients for SV crashes are around 0.5 in 
the weighted analyses. A coefficient of 0.5 implies that crashes increase 
by 4.9 % as volume increases by 10 %. 

The same pattern of differences between crash types was found for 
all available types of road and crash severity. Lord et al. (2005a, 2005b; 
not included in meta-analysis) show that even models that include the 
volume-capacity ratio predict increasing crash rates for MV crashes at 
increasing volumes but decreasing crash rates for SV crashes. 

Crash severity: Volume coefficients are consistently smaller for fatal 
crashes than for injury crashes and they are smaller for serious than for 
slight injury crashes. These results are consistent in all subgroup com
parison and meta-regression analyses. In meta-regression (Table 4), the 
coefficients for fatal crashes (vs. unspecified severity) are negative in all 
models but far from being statistically significant. 

The comparisons between volume coefficients for injury vs. un
specified severity and for injury vs. PDO crashes are inconsistent. At 
first glance, the results seem to indicate that volume coefficients are 
greater for injury crashes than for unspecified severity and PDO crashes 
on freeways. However, these comparisons are strongly influenced by 
four studies by Montella and colleagues on Italian motorways. When 
the results from these studies are omitted, differences between volume 
coefficients for injury vs. unspecified severity and for injury vs. PDO 
crashes are inconsistent, small, and non-significant. Only for MV cra
shes, volume coefficients for injury crashes are larger than those for 
unspecified severity crashes (even when the Montella-studies are 
omitted), but the results are based on only three studies and the volume 
coefficients have large confidence intervals, indicating high un
certainty. 

Type of road: Subgroup comparisons and meta-regression models 
without additional volume predictors indicate that volume coefficients 
are larger on freeways than on multilane non-freeways and larger on 
multilane non-freeways than on two-lane roads, at least for injury and 
unspecified severity crashes when all types of crashes are regarded 
together. 

In meta-regression, the effects of road type get smaller or vanish 
altogether when volume is statistically controlled for. Thus, difference 
in volume are a likely explanation for the differences in volume coef
ficients between different types of road. Another possible explanation 
might have been differences in the share of MV crashes. However, this 
is not supported by the available data. 

The fact that freeways are (per definition) divided while all two-lane 
roads in the present study are undivided, may also contribute to the 
differences in volume coefficients between different types of road. 
Subgroup comparisons for multilane non-freeways show that volume 
coefficients for the most part are larger for divided than for undivided 
roads. However, only small and non-significant effects of divided vs. 
undivided roads were found in meta-regression 

Area type: Subgroup comparisons show for the most part that vo
lume coefficients are greater in urban than in rural areas for all and MV 
crashes, and that they are greater in rural than in urban areas for SV 
crashes. However, the results are inconsistent between road types and 
between weighted and unweighted analyses. Meta-regression (Table 4) 
does not indicate that there are systematic differences between volume 
coefficients for roads in urban vs. rural areas. Ta
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Volume levels and ranges: Positive relationships between volume 
levels and volume coefficients were found in different types of analysis. 
Increasing mean volumes are for the most part associated with larger 
volume coefficients. However, mean volumes only explain small pro
portions of variation. For fatal crashes and SV crashes, the relationships 
may be negative, but these results are based on few studies and none of 
the results for fatal crashes refers to volumes above 20,000. 

Meta-regression analyses show that volume coefficients on average 
are greater at higher volumes. Models with dummy predictors that re
present different ranges of volume, indicate that it is mainly roads with 
very high volumes that differ from roads with medium volumes and 
that the relationship is not necessarily monotonic. Also, within study 
comparisons show that volume coefficients for higher volumes for the 
most part are greater than volume coefficients for lower volumes. 

7. Limitations 

Model form and volume predictor: The present meta-analysis in
cludes only crash prediction models that have the general form of 
Poisson or Negative binomial models and that have Ln(AADT) as the 
only volume predictor. Volume coefficients from other types of models 
(such as Poisson lognormal models or zero inflated Poisson or Negative 

binomial model) are not directly comparable to those from Poisson / 
Negative binomial models and could therefore not be included in the 
meta-analysis. The same is true for volume coefficients from models 
that include additional other volume predictors. For example, Caliendo 
et al. (2013; Caliendo and Guida, 2014; Caliendo et al., 2016) have used 
two additional dummy variables for volumes below 5000 and above 
13000. Høye (2015 A,B) has included Ln(AADT2) as a volume predictor 
in addition to Ln(AADT). In both studies, the additional volume pre
dictors have improved model fit compared to models with Ln(AADT) as 
the only volume predictor. 

Instead of AADT, some crash prediction models have used dis
aggregated volume, for example hourly volumes (Martin, 2002). Use of 
average volume may attenuate the relationship between volume and 
crashes (Qin et al., 2004), but this is not necessarily the case. On the 
contrary, Wang et al. (2018) found that model results for AADT yield 
good estimates for hourly crash numbers, when the predictions are 
weighted with the actual hourly volumes. Based on the results from the 
present meta-analysis, one might expect stronger relationships between 
crashes and disaggregated volume than between crashes and AADT. 

Weight availability: Volume coefficients for which weights are 
available, are on average smaller than those for which no weights are 
available. The difference is short of being statistically significant and 

Fig. 4. Scatterplots of original volume coefficients and mean volume; results for all crashes at different levels of severity with linear (unbroken) and logarithmic 
(dotted) trend lines. 

Fig. 5. Scatterplot of original volume coefficients and mean volume; results for MV and SV crashes with unspecified severity.  
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there is no reason to believe that specific properties of crash prediction 
models are related to whether or not the authors report standard errors 
or confidence intervals. Meta-regression indicates that weighting results 
has practically no effect on the effects that are found for potential 
moderator variables. This means that the pooled volume coefficients 
from the weighted analyses may underestimate the “true” volume 
coefficients somewhat, but the results from the moderator analyses are 
unlikely to be affected by weighting of results. 

Is meta-analysis of regression coefficients adequate? The present 
meta-analysis is based on volume coefficients from crash prediction models 
with different model specifications. According to a very strict view on meta- 
analysis, it is not defensible to meta-analyze coefficients from regression 
models, unless all models contain the same covariates (Card, 2015). 
Amongst other things, omitted variable bias and collinearity may contribute 
to difference between volume coefficients depending on model specifica
tions (Elvik and Goel, 2019; Koetse et al., 2005). However, others regard a 
requirement of identical model specifications as overly restrictive, unless 
there is evidence for the regression coefficients being strongly affected by 
the sets of additional predictor variables (Becker and Wu, 2007; Elvik and 
Bjørnskau, 2017; Elvik and Goel, 2019; Hauer, 2010). 

As an informal test of the appropriateness of meta-analyzing regression 
coefficients from models with different sets of predictor variables in the 
present meta-analysis, the relationship between volume coefficients in vo
lume only models and in full models as been investigated. The comparison 
is based on studies that have reported both types of models for the same set 
of data. In “volume only models” volume is the only predictor variable 
(possibly in addition to section length and time). “Full models” include 
additional road-related predictor variables (such as number of lanes, speed 
limit, etc.). Ten such comparisons are available, based on the results from 
seven studies (Cafiso et al., 2010; Ackaah and Ackaah and Salifu, 2011;  
Abdel-Aty et al., 2014; Garach et al., 2016; Kaaf and Abuzwidah and Abdel- 
Aty, 2015; Mehta and Lou, 2013; Shankar et al., 2016). There is a strong 
relationship between the volume coefficients from volume only and full 
models (r = .7715; p = .009). The unweighted averages are similar in the 
full models (0.736; 95 % CI [0.215; 1.257]) and in the volume only models 
(0.705; 95 % CI [0.246; 1.164]). These results do not indicate that there are 
large or systematic differences between volume coefficients, depending on 
model specifications. 

8. Conclusions and practical implications 

The results from the present study indicate that volume coefficients 
in crash prediction models that have the general form of Poisson or 
Negative binomial models, may be affected by the composition of crash 
types, crash severity, volume, and type of road:  

▪ Crash type: Volume coefficients are on average larger for MV and 
smaller for SV crashes than for all crashes. 

▪ Crash severity: The relationship between volume and crash num
bers is weaker for more serious crashes when only fatal and injury 
crashes are regarded. No systematic differences were found between 
crashes involving and not involving personal injury.  

▪ Volume: The results indicate that the relationship between volume 
and crash numbers is stronger at higher volumes than at lower vo
lumes. However, for fatal crashes and for SV crashes, the relation
ship between volume and volume coefficients may be weaker at 
higher volumes.  

▪ Type of road: The relationship between volume and crash numbers 
is strongest on freeways, followed by multilane non-freeways, and 
weakest on two-lane roads. On multilane non-freeways it is stronger 
when the road is divided than when it is undivided. These differ
ences may be due to differences in mean volume (highest volumes 
on freeways, lowest volumes on two-lane roads). They are unlikely 
to be due to differences in the share of MV crashes. 

These results indicate that crash prediction models are likely to be 
more precise when crashes are disaggregated by crash type, crash se
verity, and road type. Disaggregating models by volume level and dis
tinguishing between divided and undivided roads may also improve the 
models. 

The results indicate further that crash prediction models may be 
misleading if they are used to predict crash numbers on roads that differ 
from those that were used for model development with respect to 
composition of crash types, share of fatal or serious injury crashes, road 
types, and volume levels. 
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Table 16 
Volume coefficients for roads with “high” vs. “low” volumes (above vs. below split volume) from five studies.                 

Volume coefficients Δ vol coeff. for high - low vol.   

Volume Low volumes High volumes 

Study Crashes Min. Split Max. Coeff. CI Coeff. CI  

Cook (2010)1 All, injury 1 100 400 1.055 (0.063;2.047) 0.406 (0.137;0.675) −0.649 
Cook (2010) All, unspec. 1 100 400 0.242 (-0.016;0.501) 0.760 (0.759;0.760) 0.518 
Garach et al. (2016) All, unspec. 500 4000 21,600 0.836  0.377  −0.459 
Martz (2017) All, injury 90 7500 21,800 0.865 (0.818;0.912) 1.238 (0.973;1.503) 0.373  

All, unspec. 90 7500 21,800 0.797 (0.764;0.83) 1.290 (1.045;1.535) 0.493 
Mayora et al. (2006) All, unspec. 0 8000 20000 0.761  1.491  0.730 
Stapleton et al. (2018)2 All, injury 0 400 13000 0.584 (0.384;0.784) 0.741 (0.674;0.808) 0.157  

All, unspec. 0 400 13000 0.674 (0.556;0.792) 0.698 (0.660;0.736) 0.024 
Average     0.727  0.875  0.148 

1 Discontinuous paved roads (result for unspecified severity crashes refers to paved roads). 
2 Some of the low volume roads are unpaved.  
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Appendix A. Studies included in meta-analysis     

N of vol. coeff. Sum of weights  

Abdel-Aty et al., 2014 (USA) 34 240.0 
Abdel-Aty et al., 2009 (USA) 27 – 
Abdel-Rahim and Khan, 2012 (USA) 3 28.0 
Abuzwidah and Abdel-Aty, 2015 (USA) 4 – 
Ackaah and Salifu, 2011 (Ghana) 2 12.3 
Alhasan et al., 2018 (USA) 1 52.6 
Avelar and Dixon, 2011 (USA) 1 9.3 
Awad and Parry, 2018 (Great Britain) 4 24.2 
Bektas et al., 2016 (USA) 3 – 
Bornheimer et al., 2012 (USA) 1 – 
Brimley et al., 2012 (USA) 1 – 
Cafiso et al., 2010 (Italy) 3 43.7 
Camacho-Torregrosa et al., 2013 (Spain) 1 – 
Chen et al., 2011 (USA) 1 5.8 
Chimba et al., 2017 (USA) 2 – 
Chiou and Fu, 2015 (Taiwan) 1 11.6 
Cook, 2010 (USA) 4 20.8 
Dixon and Avelar, 2015 (USA) 1 3.4 
Dixon et al., 2012 (USA) 1 4.0 
Donnell and Mason, 2006 (USA) 2 49.4 
Donnell et al., 2009 (USA) 2 8.4 
Donnell et al., 2014 (USA) 2 366.7 
El-Basyouny and Sayed, 2006 (Canada) 1 18.5 
El-Basyouny and Sayed, 2010 (Canada) 2 23.2 
Fitzpatrick et al., 2005 (USA) 2 54.9 
Gan et al., 2012 (USA) 20 – 
Garach et al., 2016 (Spain) 4 – 
Garber et al., 2006 (USA) 3 – 
Gates et al., 2015 (USA) 6 323.2 
Gaweesh et al., 2019 (USA) 2 – 
Geedipally and Lord, 2010 (USA) 6 101.0 
Geedipally et al., 2010 (USA) 6 201.4 
Geedipally et al., 2012 (US) 1 11.0 
Gianfranco et al., 2018 (Italy) 1 30.2 
Gooch et al., 2016 (USA) 2 135.7 
Haas et al., 2010 (USA) 4 525.7 
Haleem et al., 2013 (USA) 2 42.9 
Hosseinpour et al., 2016 (Malaysia) 1 4.8 
Hou, Meng et al., 2019 (China) 1 5.8 
Hou, Meng et al., 2018 (China) 1 47.6 
Hou et al., 2018a, 2018b (China) 1 5.3 
Høye, 2016 (Norway) 5 271.1 
Iliadi et al., 2016 (Netherlands) 1 – 
Islam et al., 2014 (USA) 4 32.5 
Jones et al., 2011 (UK) 3 22.6 
Kaaf and Abdel-Aty, 2015 (Saudi-Arabia) 6 42.7 
Kay et al., 2017 (USA) 6 325.0 
Khan et al., 2015 (USA) 1 7.7 
Khan, Bill et al., 2012 (US) 1 52.6 
Kiattikomol et al., 2008 (USA) 4 – 
Kim et al., 2015 (USA) 6 – 
Kim et al., 2013 (South Korea) 1 19.6 
Kweon et al., 2015 (USA) 1 – 
Labi, 2006 (USA) 6 – 
Lee et al., 2015 (USA) 3 88.6 
Liu et al., 2008 (USA) 2 6.8 
Liu et al., 2017 (USA) 1 27.8 
Lord and Bonneson, 2007 (USA) 1 11.7 
Lord et al., 2007 (USA) 1 45.5 
Lu et al., 2013 (USA) 1 5.9 
Manuel et al., 2014 (Canada) 2 14.4 
Martz, 2017 (USA) 6 235.2 
Martz et al., 2017 (USA) 2 101.9 
Mayora et al., 2006 (Spain) 4 – 
McArthur et al., 2013 (USA) 3 26.4 
Mehta and Lou, 2013 (USA) 4 96.8 
Mohammadi et al., 2014 (USA) 2 20.0 
Monsere and Fischer, 2008 (USA) 4 36.8 
Montella, 2009 (Italy) 7 36.3 
Montella and Imbriani, 2015 (Italy) 18 108.5 
Montella et al., 2008 (Italy) 2 – 
Montella, 2010 (Italy) 2 12.3 
Montella et al., 2012 (Italy) 10 99.7 
Mothafer et al., 2017 (USA) 1 8.2 
Naznin et al., 2016 (Australia) 1 2.5 
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Park and Abdel-Aty, 2015 (USA) 4 – 
Park and Abdel-Aty, 2017 (USA) 2 34.8 
Park et al., 2014 (USA) 4 – 
Park et al., 2016 (USA) 6 – 
Park et al., 2015a (USA) 2 – 
Park et al., 2015b (USA) 2 – 
Park et al., 2012a (USA) 2 – 
Park et al., 2012b (USA) 2 57.6 
Park et al., 2010 (USA) 4 41.9 
Patel et al., 2007 (USA) 2 96.5 
Peel et al., 2017 (USA) 2 – 
Peng et al., 2012 (USA) 3 19.0 
Persaud et al., 2013 (USA) 6 34.3 
Potts et al., 2007 (USA) 20 – 
Rengarasu et al., 2009A (Japan) 1 – 
Rengarasu et al., 2009B (Japan) 1 23.8 
Robicheaux and Wolshon, 2015 (USA) 8 – 
Roque and Cardoso, 2014 (Portugal) 2 – 
Rusli et al., 2017 (Malaysia) 1 11.0 
Russo and Savolainen, 2018 (USA) 1 40.0 
Saleem and Persaud, 2017 (Canada) 18 401.2 
Shankar et al., 2016 (USA) 8 717.6 
Shaon and Qin, 2016 (USA) 1 32.3 
Singh et al., 2016 (India) 1 10.8 
Srinivasan and Carter, 2011 (USA) 44 2,372.3 
Srinivasan et al., 2016 (USA) 8 40.9 
Stapleton et al., 2018 (USA) 6 151.8 
Tarko et al., 2008a (USA) 12 239.0 
Tarko et al., 2008b (USA) 5 76.0 
Taylor et al., 2018 (USA) 2 32.9 
Tegge et al., 2010 (USA) 23 158.1 
Uhm et al., 2012 (USA) 1 19.9 
Vangala et al., 2014 (USA) 2 82.4 
Venkataraman, Ulfarsson et al., 2011 (USA) 1 13.5 
Villwock et al., 2010 (USA) 5 76.1 
Wang et al., 2009 (UK) 4 10.2 
Wood and Porter, 2013 (USA) 3 35.4 
Wood et al., 2015 (USA) 2 22.9 
Ye et al., 2013 (USA) 1 36.0 
Zeng and Schrock, 2012 (USA) 2 29.1 
Zheng et al., 2018 (China) 3 51.5 
Zhou et al., 2013 (USA) 3 15.8 
Zou et al., 2018 (USA) 2 30.6  

Appendix B. Supplementary data 

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.aap.2020.105668.  
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