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A B S T R A C T

With climate change, weather has emerged as an important theme in transport research and
planning. Although recent studies demonstrate profound weather effects on mobility in single case
study areas, international cross-comparisons are required to reveal how effects differ between cities
with different transport and climate regimes. This paper provides an international cross-compar-
ison of the simultaneous effects of weather on destination choices, distances, trip chaining, and
transport modes in the urban regions of Utrecht (Netherlands), Oslo and Stavanger (Norway), and
Stockholm (Sweden). Hereto, regional subsamples of national travel survey data were linked to
meteorological records for the three respective countries and analysed in generalised Structural
Equation Models. Our findings generally indicate that light, calm, dry and warm atmospheric
conditions may positively affect cycling and the selection of outdoor leisure destinations, while
cold and to a lesser extent wet and windy weather conditions reduce cycling and enhance car use
and travel optimising strategies like trip chaining, to reduce weather exposures. A positive effect of
air temperature on cycling flattens out above 20–25 °C in most of our study areas, but hot weather
does not seem to reduce cycling strongly. However, our findings also show considerable regional
differences in the effects of weather on mobility. Both general effects and differences are inter-
preted in relation to geographical context, transport and land use, climate conditions, cultures,
habits and adaptations and are discussed to formulate policies to mitigate active transport mode
users’ exposures to adverse weather and make walking and cycling (even more) year-round modes.

1. Introduction

Climate and transport are complexly related (Chapman, 2007). On the one hand, motorised transport is one of the largest con-
tributors to global climate change: it roughly accounts for 23% of all anthropogenic CO2 emissions worldwide and even 30% in
developed countries (UNECE, 2018). On the other hand, many transport activities – especially walking and cycling – are weather-
exposed and highly sensitive to changes in climate conditions. So far, the majority of attention has gone out to the effects of weather
extremes such as heat, drought, heavy precipitation, flooding and storm on the performance and safety of transport systems
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(Transportation Research Board, 2008; Jaroszweski et al., 2010). Yet, increasingly scholars have also started looking at the effects of
more gradual changes in everyday weather conditions on mobility decisions such as transport mode and destination choices, that
could over time have profound impacts on mobility patterns and emissions (Sabir, 2011; Böcker et al., 2013; Creemers et al., 2014;
Liu et al., 2015). Such knowledge is becoming more relevant given the fact of global warming and more importantly to support more
effective policy and planning strategies that combine mitigation and adaptation elements (IPCC, 2018) in the transport sector.
The existing knowledge on weather and daily mobility – including from the Dutch (e.g. Sabir, 2011; Creemers et al., 2014;

Thomas et al., 2013; Böcker and Thorsson, 2014), Norwegian (e.g. Aaheim and Hauge, 2005) and Swedish contexts (e.g. Bergström
and Magnussen, 2003; Liu et al., 2015) examined in this paper – centres around the effects of weather on transport mode choices,
usually based on (national) travel survey data linked to meteorological data from nearby weather stations. Findings generally indicate
that warm, dry, calm and sunny weather stimulate usage of active (especially cycling) over motorised transport modes (especially car
use), with effects generally being larger for recreational than for utilitarian purposes. Regarding temperature, some studies find non-
linear bell-shaped effects that indicate that not only cold but also hot temperatures above optimums ranging from 24° to 33 °C
decrease walking in Montpellier, VT (Aultman-Hall et al., 2009), Knoxville, TN (Burchfield et al., 2012) and cycling in Melbourne,
Australia (e.g. Phung and Rose, 2008), Montreal, Canada (Miranda-Moreno and Nosal, 2011), Boulder, CO (Lewin, 2011), Portland,
OR and Brisbane, Australia (Ahmed et al., 2012), Rotterdam, the Netherlands (Böcker and Thorsson, 2014) and Washington, DC
(Gebhart and Noland, 2014). Others use thermal comfort indicators that combine air temperature with wind speed, humidity and
solar radiation to demonstrate that thermal conditions are perceived as more than air temperature alone (Creemers et al., 2014).
While most studies analyse only weather effects on mobility at the moment of travel, some show that weather variables, such as
precipitation, also have lag and lead effects (Gebhart and Noland, 2014; Zhao et al., 2018).
Mobility decisions other than transport mode choices have been studied less extensively. Some find positive effects of temperature

and negative effects of precipitation on trip generation in the Netherlands (Cools et al., 2010), Scotland (Hassan and Barker, 1999) and
Melbourne, Australia (Keay and Simmonds, 2005), on travel distance in Norway (e.g. Aaheim and Hauge, 2005) and on travel time in
Rotterdam, the Netherlands (e.g. Böcker and Thorsson, 2014). Others point at the significance of weather for participation in dif-
ferent types of activities. Warm and dry weather encourages outdoor active leisure activities around the world (e.g. Tucker and
Gilliland, 2007; Chan and Ryan, 2009) and attendances of outdoor destinations in Chicago, IL (Dwyer, 1988) and a Tokyo satellite
city (Thorsson et al., 2007). Cold weather and precipitation increase time spent on home-based indoor activities such as media
consumption (Spinney and Millward, 2011 – in Halifax, Canada). Finally, Liu et al. (2015) find in Sweden that weather may even
affect the way people spatiotemporally structure trips into more or less complex chains.
While the above-documented studies have vastly improved our understanding of weather effects on daily mobility especially over

the last decade, two main issues remain under-investigated. First, there is a need for a better understanding of the potentially differential
effects of weather on mobility decisions between cities, regions, countries and societies. In a literature review Böcker et al. (2013) bring
together the findings from various geographical contexts. The review informally establishes a rough geographical pattern of possibly
stronger day-to-day weather effects on mobility in temperate (maritime) climates, as opposed to possibly stronger seasonal mobility
variances in continental climates that often feature cold (snowy) winters and hot summers. However, the authors stress that in order to
confirm these and possible other geographical heterogeneities, international comparison studies are urgently required that utilise a
uniform research design and model framework to analyse the effects of weather on mobility across different societal and climate
contexts. While such comparison studies demonstrate their usefulness in related fields like urban climatology and biometeorology (e.g.
Thorsson et al., 2007), to the authors’ knowledge examples are still currently lacking in the field of weather and mobility.
A second knowledge need is for an integrated analysis of the simultaneous effects of weather on different mobility decisions. Most

studies analyse the effects of weather on just one aspect of travel behaviour, or they address multiple but in separate models. This is
striking as mobility choices such as transport mode choices, trip purposes, and distances are intrinsically interrelated. Liu et al. (2015)
provide one example of a more integrated analysis. Based on Swedish national travel survey data examined in Structural Equation
Models, they conclude that the effects of daily weather on a wide range of daily aggregated activity travel behaviours become more
accentuated when analysed simultaneously. To the authors’ knowledge, such integrated analysis on the trip level linked to hourly
weather conditions is currently still lacking.
To address these knowledge needs, this paper examines the simultaneous effects of weather on interrelated mobility decisions

regarding trip purpose, trip distance, trip chaining, and transport mode choice in Dutch, Norwegian and Swedish city regions. To
establish the endogeneities between different travel behaviours and to analyse the simultaneous weather effects on these, a gen-
eralised Structural Equation Modelling (GSEM) technique in the statistical software package Stata has been used. For the analyses we
draw on regional subsamples of national travel survey data for the greater city regions of Utrecht (Netherlands), Oslo, Stavanger
(Norway), Stockholm (Sweden), joined with hourly meteorological records from nearby weather stations. The remainder of this paper
is structured as follows. The second section will introduce and discuss our case study areas, data and modelling techniques. The third
section presents our findings and discusses these in relation to the literature above. The final section provides a conclusion and more
general discussion on the significance of this study, its limitations, and future research recommendations.

2. Research design

2.1. Study areas

This study is situated in four cities and their surrounding municipalities: Oslo and Stavanger in Norway, Stockholm in Sweden,
and Utrecht in the Netherlands (see Fig. 1). Oslo is the capital and most populous urban region of Norway, as well as the nation’s
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economic and political centre. Situated in the southeast of Norway at the inland end of a stretchy sheltered bay on hilliness terrains
with elevation differences up to 500m, Oslo has a humid continental climate with warm humid summers (highs around 22 °C; lows
around 12 °C), cold winters (highs around −2 °C; lows around −7 °C), and 763mm precipitation annually (MET, 2015). Stavanger
together with neighbouring Sandnes forms Norway’s third-most populous urban region and its centre for the oil sector. Situated at the
weather-exposed west coast of Norway on hilliness terrains with elevation differences up to 400m, Stavanger has a maritime climate
with relatively mild summers (highs around 19 °C; lows around 12 °C) and winters (highs around 3 °C; lows around −1 °C), and
1,180mm precipitation annually (MET, 2015). Stockholm is Sweden’s capital, economic and political centre and most populous
urban region. Situated at Sweden’s Baltic east coast on sheltered water-rich terrains with elevation differences up to 100m, Stock-
holm has a humid continental climate with warm humid summers (highs around 22 °C; lows around 13 °C), cold winters (highs
around −1 °C; lows around −5 °C), and 539mm of precipitation annually (SMHI, 2012). Utrecht is the fourth-most populous city in
the Netherlands and is part of the economically significant and populous Dutch metropolitan Randstad Conurbation. Located in flat
lowlands, inland, but in relatively close proximity (50 km) to the Dutch western North-Sea coast, Utrecht has a maritime climate with
warm summers (highs around 23 °C; lows around 13 °C), mild winters (highs 6 °C; lows 0 °C), and 833mm of precipitation annually
(KNMI, 2015). Weather conditions in all city regions experienced by the respondents during the respective survey periods are roughly
in accordance to the above-described seasonal numbers, although all regions have also been subjected to some notable temperature
extremes, such as temperatures down to −18.3 °C even in Utrecht and up to 32.5 °C even in Oslo (Table 1).
The rationale for selecting these four city regions is fourfold. First, the four regions make for an interesting comparison of different

climate conditions. The areas span across different inland and coastal variations of two world climate zones, some with strong
seasonal variations (Oslo, Stockholm), while others being more heavily subjected to daily fluctuations of rain, sunshine clouds and
wind (Utrecht and especially Stavanger). Second the international comparison of these four city regions, allows us to explore if and
how cultural differences between Norway, Sweden and the Netherlands, such as cycling and outdoors cultures, play a role in dif-
ferences in the effects of weather on mobility. Third, the four study areas feature different types of land use patterns and transport
systems (see descriptive statistics on density and modal split in Table 1). Stavanger is a lower-density urban region that is highly
dominated by car use. Public transport is minimal and subjected to a negative image. Oslo, Utrecht and Stockholm are more com-
pactly designed, although different in size and with different transport systems. All three have just under half of all trips made by car.
Utrecht boasts a large share of cycling. Because cycling is the most weather-exposed transport mode, this may have considerable
implications for the effects of weather on mobility. Stockholm and Oslo have the majority of non-car trips made by public transport.
Public transport demand may also be weather sensitive due to the weather-exposed access and egress part from a door-to-door
perspective (e.g. Singhal et al., 2014; Arana et al., 2014). A final reason for selecting these case study areas is that all demonstrate
active policy agendas on sustainable transportation and climate change adaptation.

2.2. Data

This study draws on trip-based national travel survey data from Norway (2013–2014), Sweden (2011) and the Netherlands
(2010–2012), collected for one day per respondent via self-reported internet surveys (in the Netherlands2) or via telephone inter-
views (in Norway and Sweden). Based on the residential postal code, regional subsamples of these datasets are selected for the regions
(see Fig. 1) around Utrecht (N= 4413 respondents/8972 trips), Stockholm (N=2087 respondents/4650 trips), Oslo (N=6454
respondents/14,601 trips) and Stavanger (N= 1981 respondents/5454 trips). Respondents under the age of 18 are filtered out. We
focus on trips made by foot, bicycle, public transport and car. Rarer uses of other transport modes (< 2% in all datasets), such as
moped, motorcycle, taxi or airplane are filtered out. Additionally, because of our focus on daily mobility, trips abroad are filtered out,
as well as trips longer than 250 km. Return trips back home – except for loop-trips originating from and returning home – are also
filtered out to avoid double-counting, and because mobility decisions, such as the transport mode and distance, have usually been
made in prior trips.

Fig. 1. Geographical situation and demarcation of selected city regions (©Google).

2 If respondents could not respond via Internet, data were collected through telephone interviews or home visit interviews (if in addition to no
Internet also no telephone number is available).

L. Böcker, et al. Transportation Research Part D 77 (2019) 491–505

493



Ta
bl
e
1

Va
ri
ab
le
de
sc
ri
pt
iv
es
.

U
tr
ec
ht

(N
LD

)N
=
44
13

re
sp
.N
=
89
72
tr
ip
s

O
sl
o
(N
O
R
)N
=
64
54
re
sp
.N
=
14
60
1
tr
ip
s

St
av
an
ge
r
(N
O
R
)N
=
19
81

re
sp
.N
=
54
54
tr
ip
s

St
oc
kh

ol
m

(S
W
E)
N
=
20
87
re
sp
.N
=
46
50
tr
ip
s

m
ea
n
/

%
sd

m
in

m
ax

m
ea
n
/

%
sd

m
in

m
ax

m
ea
n
/

%
sd

m
in

m
ax

m
ea
n
/
%

sd
m
in

m
ax

In
de
pe
nd

en
t
va
ri
ab
le
s–

at
re
sp
on
de
nt

le
ve
l

A
ge

(y
ea
rs
)

47
.4

16
.3

18
94

48
.1

16
.9

18
92

49
.3

15
.7

18
92

49
.2

16
.7

18
.0

84
.0

G
en
de
r

m
al
e

46
.9
%

48
.8
%

51
.8
%

45
.5
%

W
or
k
a

Fu
llt
im
e

45
.4
%

64
.1
%

64
.1
%

65
.2
%

H
h-
ty
pe

Si
ng
le

18
.1
%

22
.0
%

18
.5
%

25
.1
%

Co
up
le

34
.5
%

34
.7
%

34
.6
%

41
.0
%

Fa
m
ily
/o
th
er

47
.4
%

43
.2
%

46
.9
%

34
.0
%

H
h-
in
co
m
e
b

Lo
w
er

12
.3
%

13
.2
%

9.
2%

9.
9%

M
id
dl
e

37
.1
%

28
.2
%

26
.9
%

22
.3
%

H
ig
he
r

50
.5
%

47
.8
%

54
.4
%

41
.6
%

U
nk
no
w
n

0.
1%

10
.8
%

9.
5%

26
.2
%

Ed
uc
at
io
n
c

Lo
w
er

21
.8
%

5.
5%

6.
3%

n/
a

M
id
dl
e

32
.4
%

28
.1
%

34
.3
%

n/
a

H
ig
he
r

45
.4
%

66
.3
%

59
.4
%

n/
a

Ca
rs
in
hh

(#
of
ca
rs
)

1.
3

0.
8

0
10

1.
1

0.
8

0
≥
3

1.
4

0.
7

0
≥
3

1.
2

0.
8

0.
0

7.
0

Bi
cy
cl
e

ye
s

93
.6
%

75
.2
%

79
.7
%

n/
a

Po
p.
de
ns
ity

(1
00
0
in
h.
/

km
2 )

3.
6

3.
3

0.
0

13
.2

4.
1

4.
8

0.
0

18
.1

1.
9

1.
5

0.
0

6.
2

4.
8

7.
3

0.
0

38
.8

–
at

tr
ip
le
ve
l

W
ee
ke
nd

Ye
s

21
.3
%

19
.1
%

19
.6
%

22
.8
%

Pe
ak

M
or
ni
ng

19
.6
%

20
.4
%

19
.0
%

14
.3
%

Ev
en
in
g

13
.8
%

19
.4
%

18
.0
%

13
.0
%

N
ig
ht
tim
e

12
A
M
-6
A
M

0.
9%

1.
3%

1.
6%

2.
8%

D
ar
kn
es
s

ye
s

17
.2
%

24
.0
%

22
.8
%

24
.0
%

A
ir
te
m
p.

(h
ou
rl
y
av
g.
)

10
.9

7.
3

−
18
.3

32
.0

8.
8

8.
4

−
18
.3

32
.5

10
.3

5.
9

−
5.
4

29
.9

6.
5

7.
9

−
28
.6

27
.9

W
in
ds
pe
ed

(h
ou
rl
y
av
g.
)

3.
7

1.
8

0.
0

12
.0

2.
7

1.
6

0.
0

22
.0

5.
3

3.
2

0.
0

26
.1

3.
7

1.
9

0.
0

15
.2

Ra
in
fa
ll

ye
s

20
.4
%

10
.1
%

17
.6
%

9.
4%

Sn
ow
fa
ll

ye
s

1.
3%

2.
1%

0.
3%

5.
3%

D
ep
en
de
nt

va
ri
ab
le
s–

at
tr
ip

le
ve
l

Pu
rp
os
e

W
or
k/
st
ud
y

27
.3
%

28
.8
%

28
.0
%

24
.9
%

er
ra
nd
s

25
.0
%

29
.7
%

31
.1
%

28
.1
%

So
ci
al

10
.4
%

8.
0%

8.
5%

7.
9%

Le
is
ur
e

ou
td
oo
r

9.
2%

11
.5
%

10
.1
%

16
.9
%

Le
is
ur
e
ot
he
r

28
.2
%

21
.9
%

22
.3
%

22
.2
%

(c
on
tin
ue
d
on

ne
xt

pa
ge
)

L. Böcker, et al. Transportation Research Part D 77 (2019) 491–505

494



Ta
bl
e
1
(c
on
tin
ue
d)

U
tr
ec
ht

(N
LD

)N
=
44
13

re
sp
.N
=
89
72
tr
ip
s

O
sl
o
(N
O
R
)N
=
64
54
re
sp
.N
=
14
60
1
tr
ip
s

St
av
an
ge
r
(N
O
R
)N
=
19
81

re
sp
.N
=
54
54
tr
ip
s

St
oc
kh

ol
m

(S
W
E)
N
=
20
87
re
sp
.N
=
46
50
tr
ip
s

m
ea
n
/

%
sd

m
in

m
ax

m
ea
n
/

%
sd

m
in

m
ax

m
ea
n
/

%
sd

m
in

m
ax

m
ea
n
/
%

sd
m
in

m
ax

Ch
ai
n
tr
ip

Ye
s

50
.3
%

51
.1
%

52
.8
%

49
.0
%

M
od
e

W
al
k

19
.5
%

28
.9
%

21
.1
%

30
.2
%

Bi
cy
cl
e

26
.3
%

4.
5%

6.
3%

2.
7%

Pu
bl
ic

tr
an
sp
or
t

4.
9%

16
.4
%

4.
5%

19
.0
%

Ca
r

49
.3
%

50
.3
%

68
.1
%

48
.0
%

D
is
ta
nc
e

(i
n
km
)

12
.3

22
.3

0
21
0

10
.0

20
.7

0
24
8

8.
0

15
.2

0
22
6

9.
4

13
.5

0
23
4

(a
)
Fu
llt
im
e
oc
cu
pa
tio
n
in
cl
ud
es
fu
ll
tim
e
st
ud
en
ts
in
N
or
w
ay
an
d
Sw
ed
en
bu
tn
ot
in
th
e
N
et
he
rl
an
ds
.

(b
)
M
id
dl
e
ho
us
eh
ol
d
in
co
m
e
is
€2
0
k-
40
k
in
N
L,
N
O
K6
00
k-
10
00
k
in
N
or
w
ay
an
d
SE
K2
50
k-
50
0
k
in
Sw
ed
en
.L
ow
er
is
be
lo
w
,h
ig
he
r
is
ab
ov
e.

(c
)L
ow
er
ed
uc
at
io
n
is
lo
w
er
vo
ca
tio
na
lo
rl
ow
er
in
N
L
an
d
lo
w
er
se
co
nd
ar
y
or
lo
w
er
in
N
or
w
ay
.M
id
dl
e
ed
uc
at
io
n
is
m
id
dl
e
vo
ca
tio
na
li
n
N
L
an
d
hi
gh
er
se
co
nd
ar
y
in
N
or
w
ay
.H
ig
he
re
du
ca
tio
n
is
hi
gh
er

vo
ca
tio
na
l/
un
iv
er
si
ty
in
bo
th
N
L
an
d
N
or
w
ay
.E
du
ca
tio
n
is
un
kn
ow
n
fo
r
Sw
ed
en
.

L. Böcker, et al. Transportation Research Part D 77 (2019) 491–505

495



These trip-based mobility data are enriched in two subsequent steps. First, the mobility data are matched via the residential postal
code with local population densities3. Second, via the residential postal code and departure time, these joint datasets are linked to
hourly weather data at the departure time from the nearest4 meteorological station of the Royal Dutch Meteorological Institute
(KNMI, 2015), Swedish Meteorological and Hydrological Institute (SMHI, 2012), or Norwegian Meteorological Institute (MET, 2015).
Following Böcker et al. (2013) the three most commonly used weather variables are extracted: average hourly air temperature,
average hourly wind speed, and hourly precipitation sum. Precipitation is intersected with temperature above or below zero to create
dummies for rain and snowfall. Other weather variables like fog and thunder have also been tested, but have ultimately been
excluded because of infrequent occurrences and related non-significant effects. Hourly weather data are preferred over daily, because
of higher temporal accuracies in the constantly changing weather exposures (following e.g. Sabir, 2011 and Creemers et al., 2014).
Sensitivity analyses were carried out to check if mobility decisions during present trips are affected by weather events during prior or
subsequent trips. Such lead or lagged effects of weather were not identified and have therefore been omitted from the final models.
From these combined datasets, we analyse transport mode choices, distances, trip purposes, and trip chaining as dependent

variables with trips as the unit of analysis. Trip purposes are classified into five categories: work/study trips, errands (including
grocery shopping and chauffeuring), social visits, leisure trips outdoors (including jogging, walking, touring and visiting parks and
nature), and other leisure trips (including dining, entertainment, cultural visits, shopping trips over an hour, and sports activities that
are not identified as outdoors). Trip chaining is a dummy that distinguishes trips that are part of complex home-based chains of more
than one destination, from more simple home-destination-home trips. To account for possible sample biases and to measure the true
effects of weather, we control for socio-demographic, transport resource (e.g. car ownership) and residential attributes of respondents
(or their households), as well as timing attributes of trips (e.g. weekday or weekend, light or dark, daytime or night-time and peak or
off-peak). Table 1 provides a descriptive overview of all dependent and independent variables included in the analyses and indicates
whether statistics are calculated over the total samples of respondents or the total samples of trips.
As this study is cross-comparing data from different national travel survey data, we would like to discuss potential sources of

selection bias that could affect our results. First, Table 1 indicates potential sample biases related to education level between the
Dutch and Norwegian data, while Swedish data on education is not available. While the low share of lowly educated in the Dutch data
are related to a different classification that unlike the Norwegian data includes also lower vocational education, the high share of
highly educated in Norway most likely indicates a relative overrepresentation of higher educated. To verify whether this has an effect
on our findings, sensitivity analyses were run of models without education as a control variable, as well as models on higher educated
subsamples separately, both revealing no differences in the overall picture of weather effects on mobility. Second, for the Norwegian
national travel data, survey days in winter appear to be slightly underrepresented, which is reflected by slightly higher than expected
mean air temperature values in Oslo and Stavanger. However, this selection bias is minor and moreover should have if any only a
minor effect on the results in this paper, as these are based on multivariate analyses of the relative effects of weather parameters on
mobility rather than cross-comparisons of descriptive mobility data.

2.3. Statistical modelling techniques

In our multivariate analyses, Structural Equation Modelling (SEM) has been used via the software package Stata. Unlike ordinary, logit
or multinomial logit regression techniques, SEM allows analysing the effects of a set of independent variables on not one but multiple
dependent variables, as well as the endogenous relationships between these dependent variables. This statistical approach is well suited to
analyse the simultaneous effects of weather, along with other independent background variables, on an interlinked choice set of trip
purposes, trip chaining, trip distances and transport modes. Analysing the simultaneous effects in one integrated model is crucial to unravel
how weather affects integrated mobility decisions. For example, pleasant weather conditions may enhance the selection of nearby des-
tinations that can easily be reached by foot or bicycle, reduce trip distances, and increase the share of active transport modes, all at the
same time. We have tested and confirmed the robustness of our SEM models, by comparing it to the separate effects of weather on trip
chaining, distances, purposes and transport mode choices in respectively binary logit, Tobit and multinomial logit models.
Before using SEM, we need to define the endogenous relationships among dependent variables. Hereto we use common transport

research insights and logic on the sequential order of decision-making. Our ultimate dependent variable is the transport mode choice.
Transport mode choices differ for different distances. Active modes, especially walking, are more common on shorter distances, while
motorised modes are more often used to cover longer distances. On their turn, trip distances may differ for different trip purposes. Errands
trips for instance are usually shorter than work trips. The question that remains is where trip chaining comes into the decision-making
process. Trip chaining is less often studied, but one may assume trip chaining as a function of purpose. Some trips such as errands trips may
be more easily chained to commute trips from or towards work, while other trips like leisure and social visits may be more often made
independently. This study looks at home-based trip chaining by comparing chained trips (any trip that is involved in a more complex chain
than a simple home-destination-home trip) to non-chained trips (home-destination-home). Trip chaining behaviour is being recognized as
a phenomenon that people schedule/optimize their daily activities. Studies have shown clear relationships between trip chaining beha-
viour, trip purpose and mode choice (e.g. Ye et al., 2007; Noland and Thomas, 2007), as trip chaining behaviour is found positively

3 The sources for population density are 4-digit postal code population density in the Netherlands (CBS-Statline, 2015), traffic zone level po-
pulation density in Sweden (see Algers et al., 2009) and Norwegian Statistical Bureau (ssb.no)2015 in Norway.
4 All meteorological stations used in this study are located inside the study areas, at a maximum distance of 20km to any of the respondent’s

residential location.
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correlated with car usage and errand trip purposes. Hence, we arrive at our final model configuration where our independent variables
(including weather) affect trip purpose; our independent variables and trip purpose affect trip chaining; our independent variables, trip
purpose and trip chaining affect distance; and all affect transport mode choice (Fig. 2). Model configurations based on alternative
causalities have been tested but were ultimately excluded due to inferior model fit and counterintuitive effects.
The final model configuration depicted in Fig. 2 poses three statistical challenges. First challenge is to address non-independence of

observations. To control for intragroup correlation between trips made by the same respondent on the same day, we estimate robust
standard errors that adjust for within-cluster correlations (Wooldridge, 2002) via Stata’s vce-cluster command. Second challenge is to
estimate the right statistical relationships with regard to each dependent variable’s measurement level. While it is fairly straightforward
in SEM to regress continuous dependent variables on a set of independent or dependent variables, this is more complicated for cate-
gorical variables. Especially when such categorical dependent variable serves at the same time as predictor in another equation (i.e. X1-n
->Y1(categorical) ->Y2). Using Stata’s gsem-function we allocate each dependent variable the right family link: a standard (continuous)
regression link for “distance”, a binary logistic link (logit) for the dummy “trip chain”, and a multinomial logistic link (mlogit) for the
categorical dependent variables “trip purpose” and “mode choice”. Unfortunately, this new gsem function does not yet come with
detailed absolute model fit statistics. Third challenge is therefore to evaluate model fit. Hereto, we run several simplified (normal-sem)
versions of our model in which we recode the categorical mediator “trip purpose” into separate dummies for utilitarian (work/study)
versus non-utilitarian trips (social/leisure) and active (walking/cycling) versus motorised transport modes (car/public transport), as
well as alternative configurations (e.g. cycling separately, walking separately, work separately, outdoor leisure separately). All alter-
native normal-semmodels showed comparable model fits in terms of RMSEA and CFI. Moreover, they provide a logical overall picture of
parameter estimates similar to our full gsem models and comparable findings regarding the effects of weather on mobility. This paper
presents the full gsem model (Fig. 2) results, while reporting model5 fit statistics for the underlying normal-sem models.

3. Results

This section briefly shows the descriptive relations between weather and transport mode choices for the four study areas, and
subsequently discusses more deeply our multivariate generalised structural equation modelling (gsem) results. Fig. 3 shows that
higher air temperature, calm wind conditions and no precipitation increases bicycle shares while decreasing the share of motorised
transportation – in Utrecht mainly that of car use; in Oslo also that of public transport. In contrast to earlier studies, the air tem-
perature effect appears rather linear for Utrecht6. For the other study areas, the positive air temperature effects seem to flatten out
and possibly inverse at or above air temperatures in the range of 20–25 °C. Generally, weather effects on modal split are most
pronounced for Utrecht and least pronounced for Stavanger.
As for our multivariate results, first we will briefly discuss model fit and the endogenous relations between the four dependent

variables depicted in Fig. 2. Second, we will summarise, discuss and cross-compare in detail the effects of weather on mobility across
our four study regions. All normal-sem models that the gsem models presented in this paper are based on, show good model fit with

Fig. 2. Gsem model structure.

5 Using the simplified normal-sem model identical to our full gsem model, except for having ”trip purpose” recoded into a utilitarian/non-utili-
tarian and transport mode into active/motorised modes.
6 The linear air temperature effect in Utrecht also extends when adding a>30 °C category. As it did not stand out, we omitted this category

because of an insufficient number of observations for the three other study areas.
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RMSEA values below the critical threshold of 0.05 (Utrecht: 0.01, Oslo: 0.01, Stavanger: 0.02, Stockholm: 0.00) and CFI values above
the critical threshold of 0.95 (Utrecht 0.99, Oslo: 1.00, Stavanger: 0.99, Stockholm: 1.00). For the complete underlying model
outcomes, the reader is referred to Appendix A, Tables A.1–A.4.
Table 2 summarises the endogenous relations between our four dependent variables trip purpose, trip chaining, trip distance and

transport mode. The values in the table represent the non-standardised regression coefficients, while star signs flag their respective
statistical significances. Outdoor leisure trips are least likely to be part of complex chains, except for Stockholm where other leisure trips
are most often part of complex trip chains. In Utrecht, errands trips are often chained. In all regions except Utrecht, chained trips are of
shorter distance than simple trips from home to a destination and back home. Of all trip purposes errands trips have the shortest distance in
Oslo and Stavanger, while leisure outdoor trips have the shortest distance in Utrecht and Stockholm. Errands trips are generally of shorter
distance while work trips are generally longer. In Stavanger it is social and outdoor leisure trips that have the longest distance, and in Oslo
social visits. Compared to work/study trips, other trips are less often done by foot, bicycle and public transport, and thus more often by car.
An exception to this are outdoor leisure trips which are least likely done by car and show the highest use of active transport modes. As
expected in a European context where modal splits are not overly dominated by car use, shorter distance trips are typically more often
performed by foot and bicycle while longer trips are more likely covered by car and especially public transport.
Table 3 summarises the direct effects of atmospheric conditions on mobility. We do this to unravel the relative impact of atmo-

spheric parameters on different travel behavioural decisions. It should be noted that total effects (e.g. how rain affects transport mode
choice not only directly, but also via trip chaining and or trip distance) may still be substantial, even when direct effects are not
significant. Not presented here to limit paper length, the effects of other predictors (e.g. socio-demographics) on mobility are largely
as expected and in line with earlier studies (see Tables A.1–A.4, Appendix A).

Fig. 3. Effects of air temperature (left), wind speed (middle) and precipitation (right) on modal split for the four study areas. aSnow effect is omitted
for Stavanger due to a too small number of observations.
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Of all atmospheric conditions, sky darkness has the most prominent effect on mobility with strong significant effects on almost all
travel behaviour variables in all four study areas. Hereby, sky darkness is operationalised as the period between sunset and sunrise
compared to that between sunrise and sunset. It should be noted that all underlying full models (appendix A) control for the 12AM-
6AM night-time period to make sure we measure the effect of sky darkness and not that of distinctive mobility patterns or limited
availability of transport alternatives at night. When it is dark, people perform fewer chained trips compared to non-chained trips, and
more social and leisure trips compared to work trips. We want to express strongly that this is a relative measure of trip purpose
compared to work trips. As such, darkness may for instance have a negative effect on work trips and thereby increase the relative
likeliness of other trip purposes. Congruent to existing studies (e.g. Böcker and Thorsson, 2014), darkness also leads to fewer trips by
active transport modes (fewer walking and cycling trips in Utrecht, fewer cycling trips in Oslo, fewer walking trips in Stockholm). In
Stavanger darkness has no effect on transport mode choice. Darkness does not have a clear effect on trip distances, except for Oslo
where we observe reduced distances during darkness.
A second important atmospheric condition to affect travel behaviour is air temperature (Ta). Existing studies generally indicate

positive effects of Ta on outdoor activities and the use of active transport modes, especially cycling (e.g. Creemers et al., 2014;
Thomas et al., 2013; Böcker and Thorsson, 2014; Liu et al., 2015). Some add that this effect may be bell-shaped rather than linear –
i.e. a positive effect up until a certain optimum Ta value, above which outdoor activities and active modes flatten out or reduce (e.g.
Aultman-Hall et al., 2009; Miranda-Moreno and Nosal, 2011; Lewin, 2011; Ahmed et al., 2012; Böcker and Thorsson, 2014). To
account for and possibly detect such non-linear temperature effects, our final models include an untransformed Ta variable along with
a squared Ta. Congruent to existing studies, our findings indicate a positive Ta effect on cycling shares in all study areas except
Stavanger (where no significant effect is found). In Oslo and Stockholm this positive Ta effect on cycling comes at the cost of car use,
and in Utrecht at the cost of both car use and walking. In Oslo and Stockholm we find that the positive effect of Ta is accompanied by
a significant negative effect of Ta squared (note that the low parameter estimates 0.004 and 0.005 have to do with the unit of the
analysis here being only a one squared degree difference). This indicates a nonlinear relationship with a stronger positive relative Ta
effect by colder conditions than by warmer conditions and possibly a negative effect of heat. In contrast an earlier Dutch study (e.g.
Böcker and Thorsson, 2014), we find no evidence for a bell-shaped Ta effect on cycling in the Utrecht region, but the referred study is
from another city (Rotterdam) and is based on oversampling of hot days.
Besides affecting transport modes, Ta also negatively affects trip chaining. This could possibly indicate at a strategy of linking

multiple destinations in more efficient trip chains in order to avoid additional exposure to cold weather, although no such effect is
visible in the other regions. In Oslo but not in the other cities, Ta has a nonlinear positive but weakening (positive Ta; negative Ta
squared) effect on outdoor leisure trips as compared to work trips. A possible explanation why outdoor leisure in Oslo is more
temperature dependent (and as showed below also rain dependent) than in the other regions, could be that of all cities regions
compared in this study it has perhaps the easiest access to a variety of recreational and nature areas inside and in the immediate

Table 2
Gsem model results – relations between dependent travel behaviour variables.

Utrecht (N=8972 trips) Oslo (N=14601)

Trip chain Distance Transport mode (ref. car) Trip chain Distance Transport mode (ref. car)

(yes/no) (km) Walk Cycle Public (yes/no) (in km) Walk Cycle Public

Trip purpose Errands 0.248** −12.796** −0.118 −0.584** −1.514** 0.025 −6.637** −0.595** −1.155** −1.745**
(ref. work/ Social visit 0.124 0.324 −0.180 −0.597** −1.249** −0.235** 3.055** −0.452** −1.290** −1.106**
study) Leis. outd. 0.408** −13.069** 6.845** 2.675** −1.019 −0.743** −0.886 4.504** 1.526** −1.395**

Leis. other 0.061 −7.323** 0.119 −0.421** −0.190 0.008 −3.437** −0.177 −0.995** −0.838**
Trip chain (yes/

no)
0.546 −0.537** −0.467** −0.051 −1.694** −0.404** −0.508** −0.205**

Trip_length (in
km)

−0.660** −0.198** 0.014** −0.556** −0.088** −0.002

Stavanger (N=5454) Stockholm (N=4650 trips)

Trip chain Distance length Transport mode (ref. car) Trip chain Distance Transport mode (ref. car)

(yes/no) (in km) Walk Cycle Public (yes/no) (in km) Walk Cycle Public

Trip purpose Errands 0.060 −2.991** −0.670** −1.353** −1.718** 0.190 −6.715** −0.694** −1.340** −1.114**
(ref. work/ Social visit −0.257 3.402** −0.588** −1.132** −0.988** −0.432* −2.449* −0.179 −1.084* −0.208
study) Leis. outd. −0.554** 4.203** 4.509** 1.137** −0.914 −1.259** −8.423** 3.032** 0.303 −0.518*

Leis. other −0.090 0.340 −0.309 −1.337** −0.927** 0.532** −4.941** 0.588** −0.227 0.207
Trip chain (yes/

no)
−1.261** −0.752** −0.834** −0.479** −0.956** −0.699** −0.595* −0.189

Trip_length (in
km)

−0.423** −0.076** 0.007* −0.571** −0.146** 0.011*

* Significant at α < 0.05.
** Significant at α < 0.01.
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vicinity of the city, allowing for spontaneous scheduling of outdoor activities. Additionally, in contrast to for instance Stavanger
(which also has such natural amenities) Oslo also has some of the largest seasonal air temperature differences.
Other atmospheric conditions of importance to travel behaviour are wind speed (Ws) and precipitation. We analyse the effects

of Ws in meter per second (m/s), and the effects of precipitation by means of binary variables indicating whether rainfall and
snowfall occurred at the hour of travel or not. Alternative operationalisations of precipitation such as hourly precipitation sum
and snow cover on the ground were tested but ultimately rejected due to inferior model fit and measurement uncertainty
respectively. As expected and in line with the existing Dutch studies (e.g. Creemers et al., 2014; Thomas et al., 2013; Böcker and
Thorsson, 2014), we find negative effects of Ws and rainfall on cycling in Utrecht, while favouring car use. Somewhat sur-
prisingly, we cannot statistically confirm any wind or precipitation effects on transport mode choice in the three Scandinavian
cities (except for a negative snowfall effect on public transport use in Stavanger7). The stronger rain effect in Utrecht could be
related to a larger exposure to wet conditions in this study area (20.4% of recorded trips during wet conditions), especially when
compared to Oslo (10.1%) and Stockholm (9.4%) (Table 1). Another more general explanation of why the effects of dis-
advantageous weather conditions like rain and wind are stronger in Utrecht than in the other studies may have to do with the
transport regime. With a bicycle modal split share of 26.3%, Utrecht relies much more on this weather exposed transport mode
than the other cities in our study with bicycle shares between 2.7% and 6.3% (Table 1). In comparison: especially in a city region
like Stavanger adverse weather effects on mode choice are likely much lower, simply because people drive much of their trips
regardless of weather.
Wind speed and precipitation also affect some travel behaviour decisions other than the transport mode. In line with the

positive Ta effect on outdoor leisure and in congruence to existing studies (Dwyer, 1988; Thorsson et al., 2007; Lin, 2009; Spinney
and Millward, 2011), we observe that rain reduces the likeliness of outdoor leisure trips in Stavanger and Oslo. In Stavanger
increased Ws leads also to fewer outdoor leisure trips. This is possibly a result of Stavanger being the windiest of our study areas, as
indicated in Table 1 by a Ws mean of 5.3 m/s compared to 2.7–3.7 m/s values for the other regions (plus a higher standard
deviation indicating more wind variability). In the two study areas where snowfall is rarest – Stavanger and Utrecht – snowfall has
a negative effect on overall trip distances. It could be that people choose destinations that are nearer as a strategy to reduce their

Table 3
SEM model results – summary of weather effects on travel behaviour.

Trip purpose (ref. work/study) Trip chain Trip length Transport mode (ref. car)

Errands Social Leis.out. Leis.oth. (yes/no) (in km) Walk Cycle Public

Utrecht (N=8972)
Sky darkness (yes/no) −0.285** 0.766** 0.954** 0.570** −0.438** −0.022 −0.440** −0.360** −0.151
Air temperature Ta (°C) 0.000 0.022 0.019 0.034* −0.021* −0.058 −0.068** 0.025* −0.001
Ta squared 0.000 0.000 0.000 0.000 0.001 0.004 0.003** 0.000 0.000
Wind speed Ws (m/s) −0.018 −0.035 −0.020 −0.028 0.020 0.307* −0.005 −0.061** −0.060
Rainfall (yes/no) 0.014 −0.022 −0.063 0.033 −0.011 0.016 −0.035 −0.259** 0.082
Snowfall (yes/no) 0.149 −0.409 0.433 −0.179 −0.256 −3.788* −0.014 0.273 −1.168

Oslo (N=14601)
Sky darkness (yes/no) 0.176* 0.876** 0.640** 0.461** −0.208** −1.655** −0.137 −0.365* 0.028
Air temperature (°C) 0.021** 0.029* 0.053** 0.026** −0.005 −0.023 0.003 0.167** −0.001
Air temperature Squared −0.001* −0.001 −0.001* 0.000 0.000 0.004 −0.001 −0.004** 0.000
wind speed (in m/s) −0.010 0.014 −0.041 −0.005 0.029* −0.031 0.009 −0.024 0.020
Rainfall (yes/no) −0.147 −0.113 −0.393** 0.008 −0.009 1.103 −0.083 0.005 0.077
Snowfall (yes/no) −0.014 −0.022 0.140 −0.042 0.078 −0.328 −0.083 0.109 −0.200

Stavanger (N=5454)
Sky darkness (yes/no) 0.011 0.544** 0.334* 0.282* −0.461** −0.991 −0.056 −0.292 −0.030
Air temperature (°C) 0.046 0.048 0.043 0.009 −0.003 −0.159 −0.013 0.077 0.011
Air temperature squared −0.001 −0.002 −0.001 0.001 0.000 0.011 0.001 −0.002 0.000
Wind speed (m/s) 0.022 0.011 −0.041* 0.021 0.028* −0.004 −0.003 −0.011 −0.029
Rainfall (yes/no) −0.015 −0.135 −0.523** −0.293* −0.119 0.631 0.075 −0.099 0.152
Snowfall (yes/no) −0.310 −0.064 −0.866 0.184 0.146 −3.606* 0.263 1.529 −11.304**

Stockholm (N=4650)
Sky darkness (yes/no) 0.456** 0.890** 0.730** 0.387** −0.376** −0.404 −0.327* 0.103 −0.197
Air temperature (°C) 0.014 0.023 −0.005 −0.007 −0.006 −0.010 −0.006 0.165** −0.020
Air temperature squared 0.000 0.000 0.001 0.000 0.001 0.002 −0.001 −0.005* 0.000
Wind speed (m/s) 0.023 −0.059 0.066* 0.038 −0.018 0.011 0.002 0.072 0.048
Rainfall (yes/no) −0.108 0.266 −0.253 −0.038 0.117 −0.385 −0.147 −0.339 0.174
Snowfall (yes/no) −0.161 −0.482 −0.461 −0.264 0.064 −0.386 0.037 −0.970 −0.077

* Significant at α < 0.05.
** Significant at α < 0.01.

7 We will not further interpret this strong negative snowfall effect on public transport in Stavanger as it is highly sensitive to possible outliers by a
low number of cases, as Stavanger public transport use is limited (4.5%) and snowfall occurred minimally (0.3%) (Table 1).
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exposure to snow. In Oslo and Stockholm this negative snow effect on distance is not present, possibly because people are more
familiar and individually adapted to snow conditions, and because the cities are more resilient to snowfall, for instance through
efficient snow clearing.

4. Conclusion and discussion

This paper set out to address two major shortcomings in current weather and mobility research: the lack of international
comparison studies, and the lack of knowledge on the simultaneous effects of weather on a diverse range of travel behaviours. It
is our objective to develop a better understanding of the effects of weather on destination choices, trip distances, trip chaining,
and transport mode choices in the greater urban regions of Utrecht (Netherlands), Oslo, Stavanger (Norway), and Stockholm
(Sweden), and how these might differ in relation to climate, transport regime, land use and culture. Regional subsamples of
national travel survey data were linked to meteorological records and analysed by means of a generalised structural equation
modelling technique, which enables us to analyse the effects of weather on multiple dependent travel behaviour variables
simultaneously.
Our findings indicate that weather conditions in urban regions situated in different climate regimes have substantial effects on a

diverse range of travel behaviour variables. Sky darkness (even when controlled for night-time hours) has negative effects on trip
chaining and the use of active transport modes. Of the three classic weather parameters, especially low air temperatures and to some
extend also rainfall and wind speed demonstrate the ability to reduce cycling – especially compared to car use – and the selection of
outdoor leisure destinations in some of the study regions. Wind stimulates the combining of trips into more efficient trip chains,
possibly to reduce weather exposure in our Norwegian study regions. In line with existing studies (e.g. Lewin, 2011; Ahmed et al.,
2012), we find evidence for non-linear (bell-shaped) air temperature effects on bicycle usage (in Stockholm and Oslo) and outdoor
leisure activities (in Oslo) where positive effects flatten out or slightly reverse above 20–25 °C, indicating possible negative effects of
heat. With climate change projections for all four case study areas showing increasing air temperatures, and longer and more frequent
periods of heat (KNMI, 2014; Andersen et al., 2018), policy makers and planners are advised to consider climate-sensitive urban
design strategies (Lenzholzer and Van der Wulp, 2010), specifically along highly frequented walking and cycling infrastructures. This
may include the use of lighter surfaces, compact designs and deciduous trees for shading specifically in summer, and increased use of
vegetation over concrete (Konarska et al., 2014; Theeuwes et al., 2014).
However, the effects of weather on mobility are far from universal across the study regions. Differences in the statistical

significance, magnitude and occasionally even the direction of effects, highlight the importance of geographical context with
regard to transport and land use, climate conditions, cultures, habits and adaptations. Policy makers and planners should be
aware of this and be cautious when translating research findings and policy solutions on weather and mobility from other
geographical contexts to their own policy agendas. Our results reveal that the effects of weather on transport mode choices are
much stronger in Utrecht than in Stavanger, even though both cities share a somewhat comparable maritime climate. A likely
explanation is related to the transport regime. The Utrecht region has a much higher share of cycling – the most weather-sensitive
transport mode identified in the literature (e.g. Koetse and Rietveld, 2009; Böcker et al., 2013) – than the other study regions,
while also offering good cycling alternatives in walking on short distances and public transport on medium to long distances. In
contrast, Stavanger with its lower densities, longer distances and fewer public transport options, is to a much larger extent
dependent on private car use, the most weather sheltered transport mode, and therefore much less influenced by weather. A
second example highlights the potential role of habit and adaptation. In Stavanger and Utrecht people reduce their exposure to
snowfall by travelling shorter distances, while in Oslo and Stockholm – where snowfall is more common – such snow effect is
absent, possibly because these cities and their citizens are more familiar with and resilient to snowfall. This finding bears
significance for policy. Adverse weather conditions, such as snowfall may be significant mobility barriers but they are not
unsurmountable: adaptive policy measures like proactive snow clearing can ameliorate its adverse effect. A third example
highlights the possible importance of climate, land use and cultural context. We find that dry and warm but not too hot weather in
Oslo and calm and dry weather in Stavanger increase the visiting of outdoor leisure destinations relative to work trips, but none
of these effects in the non-Norwegian regions. An explanation could be that both Norwegian cities share a typical active outdoor
culture and offer the easiest access to recreational and nature areas allowing for spontaneous weather-sensitive scheduling of
outdoor activities. Of the two, Oslo has the highest air temperature differences (explaining its stronger temperature effect) while
Stavanger is the windiest (explaining its stronger wind effect).
This study has some limitations. Because of comparing national travel survey datasets from different countries, the reader needs

to be aware of the differing potential selection biases between these datasets, even though multivariate models controlling for
background characteristics and sensitivity analyses were run to confirm the overall robustness of our findings. Moreover, nearest
station matching of weather and mobility data over distances up to 20 km may result in inaccuracies between the measured
meteorological data and the actual weather observed by respondents during their trips, especially when taken into account mi-
croclimatological complexities across residential environments in urban regions (Oke, 1982, Steeneveld et al., 2011). We would
recommend future studies to advance the insights on how geographical, cultural, climate, transport and land use context influence
the effects of weather on daily mobility developed in this paper along the following lines of inquiry. First, cross-comparison studies
like in this paper, may be up-scaled to include a wider range of geographical contexts, including case study areas at lower latitudes
that observe heat more frequently at present, as well as a case studies with more distinct transport and cultural contexts, for
instance from the global south. Second, studies could focus more on the contextual differences within regions, by zooming into the
potentially differential effects of weather on mobility of different socio-demographic, -economic and -cultural groups, especially
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those with different climate backgrounds (e.g. non-western immigrants), or those more vulnerable to weather (e.g. young children
and the elderly). Third, studies are recommended to address microclimatological differences between residential environments, as
well as to take into account other measureable attributes of residential environments besides population density, such as local land
use patterns, building use diversities, and the presence and quality of walking, cycling, parking and public transport infra-
structures. Finally, contextual differences in weather effects on mobility may be studied through focus groups or other qualitative
approaches. This could provide a more detailed picture of the subjective experiences of weather and weather-relate comfort as well
as people’s habits, adaptation and coping strategies related to weather.
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Appendix A

See Tables A1–A4.

Table A1
Full gsem model results Utrecht (N=8972).

Dependent variables

Trip purpose (ref. work/study) Trip chain chain Distance Transport mode (ref. car)

Errands Social Leis. outd. Leis. other (yes/no) (km) Walk Cycle Public

Mediators
Purpose Errands 0.248** −12.796** −0.118 −0.584** −1.514**
(ref. work / Social 0.124 0.324 −0.180 −0.597** −1.249**
study) Leis. outd. 0.408** −13.069** 6.845** 2.675** −1.019

Leis. other 0.061 −7.323** 0.119 −0.421** −0.190
Trip chain (yes/no) 0.546 −0.537** −0.467** −0.051
Trip distance (km) −0.660** −0.198** 0.014**

Control variables
Age (years) 0.031** 0.017** 0.034** 0.026** −0.005* 0.040* −0.010** −0.006* −0.030**
Male (ref. female) −0.390** −0.560** −0.279* −0.351** −0.196** 3.409** −0.082 −0.141 −0.055
Fulltime work (yes/no) −0.938** −1.037** −0.822** −0.961** 0.226** 2.297** −0.168 −0.395** −0.742**
Househ. type Single −0.347** 0.596** −0.246 −0.036 0.323** 0.881 0.171 −0.277 −0.302
(ref. family) Couple −0.219* 0.394** 0.344* 0.173 0.027 1.399* 0.120 0.062 −0.044
hh income Middle −0.011 −0.222 0.269 0.050 −0.396** −1.686 0.142 −0.096 0.339
(ref. lower) Higher 0.113 0.154 −0.141 0.035 −0.084 −0.906 −0.025 −0.235* −0.151

Unknown
Education Middle −0.155 −0.253 0.100 −0.059 0.158 1.019 −0.037 0.014 −0.305
(ref. lower) Higher −0.035 −0.395** −0.171 0.043 0.267** 3.345** 0.127 0.345** 0.023
# cars in household 0.078 1.542** −0.755** −1.068** −1.293**
Owns bicycle (yes/no) 0.184 3.201** −0.071
Pop.dens. (1000 inh./km2) 0.000 −0.022 −0.023 0.015 0.014 −0.086 0.080** 0.046** 0.065**
Weekend (ref. weekday) 1.229** 2.460** 2.001** 1.898** −0.441** 4.046** −0.194 −0.242* −0.301
Holidays 0.101 0.453** 0.520** 0.421** −0.105 1.292 −0.051 −0.230* −0.135
Peak Morning −1.742** −3.661** −2.628** −2.818** −0.217** 2.670** −0.116 0.351** 0.609**
(ref. off−peak) Evening 1.167** 1.174** 0.939** 1.053** 0.069 2.773** 0.041 0.069 0.146
Night time (yes/no) −2.322** −1.912** −3.099** −2.950** −0.025 14.738** 0.181 0.510 0.517

Atmospheric conditions
Sky darkness (yes/no) −0.285** 0.766** 0.954** 0.570** −0.438** −0.022 −0.440** −0.360** −0.151
Air temperature Ta (°C) 0.000 0.022 0.019 0.034* −0.021* −0.058 −0.068** 0.025* −0.001
Ta squared 0.000 0.000 0.000 0.000 0.001 0.004 0.003** 0.000 0.000
Wind speed Ws (m/s) −0.018 −0.035 −0.020 −0.028 0.020 0.307* −0.005 −0.061** −0.060
Rainfall (yes/no) 0.014 −0.022 −0.063 0.033 −0.011 0.016 −0.035 −0.259** 0.082
Snowfall (yes/no) 0.149 −0.409 0.433 −0.179 −0.256 −3.788* −0.014 0.273 −1.168
Constant −0.143 −1.140** −2.367** −0.968** −0.062 7.022** 2.373** −0.301 1.150*

* Significant at α < 0.05.
** Significant at α < 0.01.
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Table A2
Full gsem model results Oslo (N=14601).

Dependent variables

Trip purpose (ref. work/study) Trip chain chain Distance Transport mode (ref. car)

Errands Social Leis. outd. Leis. other (yes/no) (km) Walk Cycle Public

Mediators
Purpose Errands 0.025 −6.637** −0.595** −1.155** −1.745**
(ref. work / Social −0.235** 3.055** −0.452** −1.290** −1.106**
study) Leis. outd. −0.743** −0.886 4.504** 1.526** −1.395**

Leis. other 0.008 −3.437** −0.177 −0.995** −0.838**
Trip chain (yes/no) −1.694** −0.404** −0.508** −0.205**
trip distance (km) −0.556** −0.088** −0.002

Control variables
Age (years) 0.026** 0.017** 0.030** 0.021** −0.012** 0.054** −0.015** −0.010* −0.014**
Male (ref. female) −0.274** −0.456** −0.315** −0.416** −0.151** 1.961** −0.155* 0.115 −0.182**
Fulltime work (yes/no) −1.269** −1.490** −1.207** −1.302** 0.227** 0.732 0.000 0.017 −0.221*
Househ. type Single −0.608** 0.030 −0.364** −0.192 0.230** −0.167 0.368** 0.085 −0.030
(ref. family) Couple −0.563** 0.039 −0.126 −0.091 0.056 0.679 0.278** −0.142 −0.152
hh income Middle 0.058 0.215 0.144 0.000 0.166 −0.402 −0.447** −0.044 −0.287*
(ref. lower) Higher −0.047 −0.054 −0.031 −0.067 0.203 −0.065 −0.194 0.073 −0.158

Unknown −0.268 −0.112 −0.209 −0.324* −0.066 −0.309 −0.094 −0.087 0.057
Education Middle 0.000 −0.132 −0.023 −0.028 0.439** 0.752 −0.273 0.044 −0.423*
(ref. lower) Higher 0.293* 0.202 0.185 0.208 0.682** 0.458 −0.120 0.650 −0.259
# cars in household −0.060 1.447** −0.901** −1.097** −1.332**
Owns bicycle (yes/no) 0.006 1.905** 0.046
Pop.dens. (1000 inh./km2) −0.011 −0.006 −0.020* 0.007 0.001 −0.295** 0.052** 0.070** 0.049**
Weekend (ref. weekday) 1.426** 2.184** 2.079** 1.721** −0.310** 1.486** −0.038 0.043 −0.160
Holidays 0.412** 0.699** 0.575** 0.406** −0.162* 0.785 −0.227** −0.342* −0.319**
Peak Morning −1.861** −3.727** −2.561** −3.306** −0.306** 2.449** 0.274** 0.771** 0.688**
(ref. off−peak) Evening 0.710** 0.648** 0.383** 0.466** 0.280** 2.815** 0.235** 0.437** 0.593**
Night time (yes/no) −1.973** −1.769** −1.266** −1.655** −0.331 1.655** 0.382 1.501** 0.483*

Atmospheric conditions
Sky darkness (yes/no) 0.176* 0.876** 0.640** 0.461** −0.208** −1.655** −0.137 −0.365* 0.028
Air temperature Ta (°C) 0.021** 0.029* 0.053** 0.026** −0.005 −0.023 0.003 0.167** −0.001
Ta squared −0.001* −0.001 −0.001* 0.000 0.000 0.004 −0.001 −0.004** 0.000
wind speed Ws (m/s) −0.010 0.014 −0.041 −0.005 0.029* −0.031 0.009 −0.024 0.020
Rainfall (yes/no) −0.147 −0.113 −0.393** 0.008 −0.009 1.103 −0.083 0.005 0.077
Snowfall (yes/no) −0.014 −0.022 0.140 −0.042 0.078 −0.328 −0.083 0.109 −0.200
Constant 0.255 −1.228** −1.414** −0.109 −0.008 6.926** 3.265** −2.969** 2.169**

* Significant at α < 0.05.
** Significant at α < 0.01.

Table A3
Full gsem model results Stavanger (N=5454).

Dependent variables

Trip purpose (ref. work/study) Trip chain chain Distance Transport mode (ref. car)

Errands Social Leis. outd. Leis. other (yes/no) (km) Walk Cycle Public

Mediators
Purpose Errands 0.060 −2.991** −0.670** −1.353** −1.718**
(ref. work / Social −0.257 3.402** −0.588** −1.132** −0.988**
study) Leis. outd. −0.554** 4.203** 4.509** 1.137** −0.914

Leis. other −0.090 0.340 −0.309 −1.337** −0.927**
Trip chain (yes/no) −1.261** −0.752** −0.834** −0.479**
Trip distance (km) −0.423** −0.076** 0.007*

Control variables
Age (years) 0.025** 0.005 0.032** 0.024** −0.007 0.014 −0.008* 0.000 −0.019**
Male (ref. female) −0.174 −0.073 −0.298* −0.219* −0.098 1.196** −0.423** −0.317* −0.248
Fulltime work (yes/no) −1.445** −1.509** −1.153** −1.564** 0.074 1.106 0.008 0.033 −0.468*
Househ. type Single −0.528** 0.223 −0.465* −0.246 0.322* 1.116 0.154 −0.413 −0.189
(ref. family) Couple −0.631** 0.142 −0.127 −0.320* 0.022 0.904 0.028 −0.013 −0.078
hh income Middle 0.149 −0.104 −0.176 −0.086 0.292 0.442 −0.382 −0.137 −0.219
(ref. lower) Higher 0.125 −0.313 −0.087 −0.083 0.467* 0.633 −0.220 0.225 −0.361

Unknown 0.431 0.086 0.319 0.196 0.161 −0.078 0.089 −0.192 0.269
Education Middle 0.197 −0.044 0.142 0.034 −0.054 −1.275 −0.160 0.020 −0.665*
(ref. lower) Higher 0.590* 0.181 0.389 0.475 0.137 −0.348 0.066 0.243 −0.518

(continued on next page)
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Table A3 (continued)

Dependent variables

Trip purpose (ref. work/study) Trip chain chain Distance Transport mode (ref. car)

Errands Social Leis. outd. Leis. other (yes/no) (km) Walk Cycle Public

# cars in household 0.024 0.918* −0.583** −0.879** −1.449**
owns bicycle (yes/no) −0.145 1.358** −0.325
Pop.dens. (1000 inh./km2) 0.012 0.035 −0.013 0.048 −0.019 −0.404** 0.121** 0.073 0.014
Weekend (ref. weekday) 1.491** 2.158** 2.223** 1.647** −0.516** 0.772 −0.114 0.166 −0.459
Holidays 0.074 0.496** 0.310 0.105 −0.258* 0.802 −0.145 −0.259 −0.313
Peak Morning −1.837** −4.335** −2.502** −3.316** −0.186* 1.604* −0.309* 0.348* 0.387*
(ref. off−peak) Evening 0.993** 0.783** 0.860** 0.799** 0.005 1.883** 0.073 0.274 0.263
Night time (yes/no) −2.173** −2.478** −2.340** −1.564** −0.188 7.084* 0.885* 1.279** 0.676

Atmospheric conditions
Sky darkness (yes/no)
Air temperature Ta (°C)
Ta squared 0.011 0.544** 0.334* 0.282* −0.461** −0.991 −0.056 −0.292 −0.030
Wind speed Ws (m/s) 0.046 0.048 0.043 0.009 −0.003 −0.159 −0.013 0.077 0.011
Rainfall (yes/no) −0.001 −0.002 −0.001 0.001 0.000 0.011 0.001 −0.002 0.000
Snowfall (yes/no) 0.022 0.011 −0.041* 0.021 0.028* −0.004 −0.003 −0.011 −0.029

−0.015 −0.135 −0.523** −0.293* −0.119 0.631 0.075 −0.099 0.152
Constant −0.310 −0.064 −0.866 0.184 0.146 −3.606* 0.263 1.529 −11.304**

−0.412 −0.673 −1.665** −0.342 0.196 5.041* 2.248** −1.525* 2.304**

* Significant at α < 0.05.
** Significant at α < 0.01.

Table A4
Full gsem model results Stockholm (N=4650).

Dependent variables

Trip purpose (ref. work/study) Trip chain chain Distance Transport mode (ref. car)

Errands Social Leis. outd. Leis. other (yes/no) (km) Walk Cycle Public

Mediators
Purpose Errands 0.190 −6.715** −0.694** −1.340** −1.114**
(ref. work / Social −0.432* −2.449* −0.179 −1.084* −0.208
study) Leis. outd. −1.259** −8.423** 3.032** 0.303 −0.518*

Leis. other 0.532** −4.941** 0.588** −0.227 0.207
Trip chain (yes/no) −0.956** −0.699** −0.595* −0.189
Trip distance (km) −0.571** −0.146** 0.011*

Control variables
Age (years) 0.025** 0.014* 0.017** 0.011* −0.001 −0.032* −0.020** 0.015 −0.023**
Male (ref. female) −0.146 −0.190 −0.218 −0.079 −0.375** 1.090** −0.320** −0.506* −0.421**
Fulltime work (yes/no) −1.436** −1.393** −1.617** −1.398** 0.496** 0.358 −0.050 −0.164 −0.326*
Househ. type Single −1.020** 0.125 −0.498* −0.222 −0.153 −0.043 0.023 −0.228 0.404
(ref. family) Couple −0.835** −0.244 −0.178 −0.175 −0.144 1.620** 0.211 −0.621* 0.508**
hh income Middle −0.609* −0.940** −0.515 −0.052 0.401 −0.994 −0.627* −0.400 −0.532*
(ref. lower) Higher −0.758** −0.766* −0.887** −0.209 0.491* −2.122* −0.806** 0.070 −0.308

Unknown −0.886** −0.581 −0.656* −0.092 0.148 −1.146 −0.329 −0.010 0.034
# cars in household 0.012 1.107** −0.823** −0.914** −1.313**
Pop.dens. (1000 inh./km2) 0.001 0.001 −0.020* −0.003 −0.002 −0.159** 0.020* 0.039** 0.029**
Weekend (ref. weekday) 1.961** 3.086** 2.651** 1.992** −0.795** 2.295** −0.074 −0.628 −0.525**
Holidays 0.242 0.670** 0.334* 0.363* −0.313** 0.440 0.322* 0.115 −0.081
Peak Morning −1.630** −3.461** −2.375** −2.825** −0.138 3.998** 0.317 1.071** 0.867**
(ref. off−peak) Evening 1.680** 1.883** 1.360** 1.497** 0.120 3.173** 0.183 0.065 0.487**
Night time (yes/no) −3.199** −3.074** −1.845** −1.945** −0.561* 6.733** 0.476 0.821 −0.192

Atmospheric conditions
Sky darkness (yes/no) 0.456** 0.890** 0.730** 0.387** −0.376** −0.404 −0.327* 0.103 −0.197
Air temperature Ta (°C) 0.014 0.023 −0.005 −0.007 −0.006 −0.010 −0.006 0.165** −0.020
Ta squared 0.000 0.000 0.001 0.000 0.001 0.002 −0.001 −0.005* 0.000
Wind speed Ws (m/s) 0.023 −0.059 0.066* 0.038 −0.018 0.011 0.002 0.072 0.048
Rainfall (yes/no) −0.108 0.266 −0.253 −0.038 0.117 −0.385 −0.147 −0.339 0.174
Snowfall (yes/no) −0.161 −0.482 −0.461 −0.264 0.064 −0.386 0.037 −0.970 −0.077
Constant 1.082* −0.431 0.492 0.632 0.011 13.602** 4.228** −1.456 2.062**

* Significant at α < 0.05.
** Significant at α < 0.01.
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