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A B S T R A C T

With a view to construct a new framework to assess the benefits of freight transport improvements, an Economic
Order Quantity model with uncertain lead time demand is equipped with detailed transport costs. The problem is
to minimise total logistics cost by choosing shipment size, vehicle size and reorder point subject to constraints on
vehicle size and annual transport capacity. An analytical solution in all variables except the reorder point is
derived, reducing the cost minimisation problem to a well-behaved problem in one dimension only.

Different parts of transport costs influence the solution differently: Some act like ordering costs, some like
holding costs and some have no influence on the solution. The solution exhibits economies of scale at all levels of
optimal shipment size.

Examples with real data show that model calibration for an entire population of firms is feasible at the firm
level, and that the model produces reasonable results.

1. Introduction

Improving the speed and reliability of freight transport is considered
a major transport policy objective in most countries, but the economic
appraisal of reliability improvements in particular is not very well ad-
vanced. There are problems not just with assessing the value to firms
and society of a certain reliability improvement, but also with assessing
the size of the improvement itself.

This paper formulates an Economic Order Quantity (EOQ) model of
the simplest possible supply chain where goods of a certain kind are
shipped and transported from a point of production, say, to a sales
outlet. Demand is of course the number of units requested by consumers
at the outlet per unit of time. We assume it to be produced by a sta-
tionary stochastic process. But even though each demand realisation is
a random variable, by the law of large numbers we treat annual demand
as constant. Lead time is the time from when a new shipment is ordered
until commodities are available on shelf. It too is a stochastic variable,
for instance because of unreliable transport, which makes demand
during lead time even more uncertain.

The value to society of measures to reduce transport time and im-
prove reliability can be computed as the total cost reduction (including
externalities) of the optimal solution of the model. To go with our
model, a model to assess the size of the reliability improvement itself
must be devised. This part of the problem is not addressed here.

A main idea is that in contrast to passenger transport, firms will
already have made provisions to insure against the consequences of

delays and unexpected incidents, namely in the form of a safety stock
designed to maintain an optimal level of service. What this level is
should however not be decided in advance but be the outcome of
minimisation of all relevant costs. A policy measure that reduces ex-
pected transport time or uncertainty in transport will make it possible
for firms to reduce their safety stocks at the same level of service or to
improve the level of service at the same level of safety stock. In addi-
tion, there will be transport cost savings as vehicles can carry out more
jobs per day, and as reliability improvements may reduce the planned
slack between jobs.

Starting with the seminal paper by Baumol and Vinod (1970), there
is a fairly large literature where transport costs are added to an in-
ventory theory model, either to model mode choice or to get a better
grasp on the different elements of total logistics cost. The mode choice
situation is considered by, among others, Das (1974), Constable and
Whybark (1978), Langley (1981), Larson (1988), Combes (2009) and
Lloret-Batlle and Combes (2012). Das (1975) and Tyworth and Zeng
(1998) consider the impact of uncertain transport time on total costs,
and Allen and Liu (1993) and Larson (1989) treat loss and damage
costs, including the costs of quality control. Vernimmen and Witlox
(2003) review the literature.

The official Swedish and Norwegian freight models are examples of
modelling frameworks that incorporate explicit transport costs, choice
of transport chain and shipment size as well as EOQ storage costs.
However, parameters are based on aggregate data, and safety stocks
and stock-out costs are not included (Hovi et al., 2018).
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The statistical distribution of uncertain demand during lead time is
taken up in Hadley and Whitin (1963), Das (1976, 1983), Tyworth
(1991, 1992), Namit and Chen (1999), Tyworth and Ganeshan (2000),
Cobb (2013), Cobb et al. (2013), Cobb et al. (2015) and Wanke and
Leiva (2015), among others. Vernimmen et al. (2008) review this strand
of literature. Various indicators and decision criteria for fixing the
shipment size and reorder point have been suggested in the literature.
Tyworth (2018) shows how some of these give rise to paradoxes, and
how the paradoxes may be avoided.

This paper contributes to the literature by a more detailed model-
ling of the transport and loading and unloading costs, and by re-
cognising that, with costs increasing in vehicle size and upper and lower
bounds on the vehicle size, the optimal shipment size may very well be
smaller than the smallest vehicle, but it will never be optimal to use a
vehicle with more capacity than strictly necessary. Overall, transport
costs, often ignored in EOQ models, will be shown to be highly relevant
when determining the optimal order quantity in our model.
Furthermore, by using the optimised total cost function to assess po-
licies and exogeneous changes instead of pre-set criteria or operational
rules, the problems treated by Tyworth (2018) do not appear.

Most of the literature that explicitly considers transport costs in the
context of logistics costs minimisation treats costs as they appear to the
decision maker (usually a private firm). Thus, transport costs are the
prices paid to the transport providers. Obviously, the true economic
costs may diverge from these market prices if there is imperfect com-
petition, external costs or economies of scale or scope – as there usually
is in transport markets (Jansson, 1984). Key concerns driving the ex-
plicit and detailed modelling of transport costs that we are aiming for
are therefore (1) to make it possible to substitute true economic costs
for market prices for use in cost benefit analyses of freight transport
improvements, (2) to study taxes and subsidies that may improve
economic efficiency in the freight transport markets, and (3) to ensure
that the model we derive below can be used as a sub model in a future
freight transport model.

Section 2 provides an overview of the approach. In Section 3, we
identify the elements of logistics cost. Section 4 formulates the logistics
cost minimisation problem and finds the logistics cost function. Section
5 provides a test example using data from supply chains between the
Netherlands and Norway. Section 6 concludes and points to future
work.

2. Outline of the model

We consider a simple EOQ model where goods are supplied reg-
ularly from a source A to an outlet B (see Grubbström, 1995 for an
historical overview of these models). Both demand and lead time are
stochastic variables. Items are demanded one at a time, and orders do
not cross. The inventory position is continuously reviewed, and a new
order is placed as soon as it reaches a certain reorder point. Orders that
cannot be met immediately are backordered. Transport may be door-to-
door by truck or consist of two distribution stages by truck and a line
haul by any mode.

The textbook cost minimisation problem in this case uses two policy
variables, the shipment size and the reorder point, to minimise the sum
of inventory costs, ordering costs, and stock-out costs. Transport costs
are considered to be proportional to demand and thus irrelevant for the
problem as long as expected demand per year is constant. However, a
closer look at transport costs reveals that not all of them accrue per
unit. The per unit transport costs are loading and unloading at terminals
plus the cost of the line haul (assuming the line haul carrier offers a
freight tariff by the unit). These costs may be left out of the cost
minimisation problem. The picture is different for the stages where
shipment size may affect the choice of vehicle size (vehicle capacity),
i.e. distribution and door-to-door. If there are upper and lower bounds
on vehicle size, the cost of using the smallest available vehicle will be a
cost per shipment, or a part of the ordering cost, and highly relevant for

the cost minimisation problem. The cost of choosing a larger vehicle
size will also be relevant, with the implication that vehicle size must be
included as a choice variable in the cost minimisation problem. This is
shown in Section 3.1.

Now attention must be paid to uncertainty. Since lead time (in-
cluding transport time as a part) and demand per hour (day, week) are
both stochastic variables, demand during lead time (or lead time de-
mand, LTD) is also a stochastic variable, as shown in Section 3.3. This
being the case, there will usually be a non-zero probability of stock-
outs, i.e. not being able to deliver from shelf. To allow the firm to adapt
optimally against stock-outs, we assume that it may freely choose its
reorder point. The reorder point is the inventory position that triggers
the placement of a new order. A small reorder point makes for a high
probability of stock-out during lead time, while a large reorder point
makes for high average inventory costs. The difference between the
reorder point and the expected LTD is the safety stock. Uncertainty
about LTD means that both the inventory costs of the safety stock and
the stock-out costs must be added to the logistics cost to be minimised.
In this as in everything else except the transport costs, we follow
standard inventory theory.

Obviously, the optimal safety stock and stock-out costs increase
with uncertainty. Since transport time is a part of lead time, a policy
measure that reduces transport time expectation and variance will re-
duce these elements of cost and thereby increase economic efficiency.
Unreliable transport, on the other hand, gives rise to excessive safety
stocks and/or high stock-out costs.

Apart from this, by the law of large numbers, the transport cost per
shipment can still be based on expected transport time. Furthermore,
assuming as we do that demand is generated by a stationary stochastic
process, the number of shipments per year will admittedly vary from
year to year, but over a number of years there will be an average ex-
pected annual cost of the operation. We assume that the objective of the
decision maker in the model (which we define to be the shipper) is to
minimise it. Its elements are the transport cost, non-transport ordering
cost, the inventory holding cost – including the cost of holding a safety
stock to guard against uncertain demand during lead time – and the
stock-out costs.

For the model to reflect the true behaviour of the shipper, all costs
must necessarily be as perceived by him, including taxes and charges.
This does not prevent the model from being used for cost benefit ana-
lysis purposes or as elements of a national freight model. The trans-
formation to social costs can be carried out by introducing a set of
sectors, each with their own account, treating taxes, subsidies and
charges as transfers between these sectors. External costs such as local
and global transport emissions associated with the choices of the
shipper must be added to an appropriate sector. Summing over sectors,
the true social cost appears. Carriers (i.e. providers of transport ser-
vices) and other subcontractors and suppliers to the supply chain must
be assumed to earn zero profit, so that their true costs are perceived by
the shipper.

3. The elements of logistics cost

We denote the firm in charge of the operation as the shipper,
therefore the terms “firm” and “shipper” are used interchangeably and
will always refer to the decision maker. The shipper's problem is to
minimise all relevant logistics costs, including the relevant transport
costs, with respect to shipment size, vehicle size and reorder point,
subject to the constraints that shipment size cannot exceed the maximal
vehicle size, vehicle size must be within a feasible range, and annual
transport capacity must at least cover annual demand.

3.1. Transport costs

Transport is either door-to-door or combined transport. In the case
of combined transport, we assume that the line haul freight tariff is a
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price P per unit of the commodity. We also assume that the frequency of
the scheduled line haul transport service is sufficiently high not to
constrain the choice of shipment size. With respect to the door-to-door
transport or the distribution stages of the combined transport, we as-
sume a perfect market. Besides zero profit to the carrier, we take this to
mean that the firm in charge of the operation (the shipper) can always
choose the most appropriate vehicle size C from a continuous interval
C C[ , ]min max and that outside the time when the vehicles are engaged in
our supply chain, they will be fully employed in other engagements also
yielding zero profit. (If there is a cost of moving the vehicles to the
starting point of the operation, this can be included in the non-transport
ordering costs.) It also means that the carrier can be counted upon to
keep turn-around time and other unproductive time to a minimum. The
vehicles employed in the door-to-door transport or the distribution
stages of the combined transport are not supposed to pick up or carry
other goods on the same tour. Thus empty backhaul is assumed. We
define the following parameters:

x annual expected demand in units of the commodity
t̄ expected one-way transport time in hours
u turn-around time and other unproductive time per round trip in
hours
a one-way transport distance in kilometres
tl combined expected loading and unloading time per unit in hours
k distance dependent costs per kilometre
i vehicle capital costs per hour
w the driver's wage cost per hour, assumed to apply both to t̄ and tl
wl hourly cost of hiring loading and unloading capacity
number of business hours per year

P the cost per unit of the line-haul

These parameters are all strictly positive and pertain to the dis-
tribution stages or door-to-door case. Where appropriate, subscripts on
the parameters will be used to denote link or stage of the transport. It is
assumed that wages and vehicle capital costs continue to accrue during
turn-around time u. The model captures this. However, u might also act
as a way for the carrier to keep an agreed schedule even in the face of
incidents and delays, and this effect is not in the model.

The choice variables, also pertaining to the distribution stages or
door-to-door-case, will be selected among the following:

Q shipment size in units of the commodity
C vehicle size (carrying capacity) in units of the commodity
Y maximum annual transport capacity in units of the commodity

Two linear relations will be assumed. Apart from the other as-
sumptions and the values of exogenous variables and parameters, they
constitute the empirical content of the model. First, we assume a linear
relationship between vehicle size C and kilometre cost k:

= +k k k C0 1 (1)

where k0, k1 are positive constants. Thus, we ignore the impact of speed
on kilometre costs. Second, the relation between vehicle size and hourly
vehicle capital cost is

= +i i i C0 1 (2)

where i0, i1 are positive constants. For a given type of vehicles, both
relations are thought to fit data well. For non-negative parameters,
these two relations mean that provided the vehicle capacity can be
utilised to the full, transport cost per tonne will be lower the larger the
vehicle capacity. The kilometre cost k includes fuel, oil, tires and a part
of maintenance and repair costs, while the vehicle capital cost i includes
all vehicle costs that accrue per hour, day or year. All forms of taxes
should normally be included.

Assuming no unnecessary trips are made, the number of trips per
year will be x/Q. We use this to define the maximum annual transport

capacity Y by:

Y C x
Q (3)

Y is the annual quantity that would be shipped if the trucks were
always filled to capacity. Given (1) and (2), it will never be optimal to
operate larger vehicles than necessary. Thus Y=x (and consequently
C=Q) if Q C C[ , ]min max , and =Y C x Q/min if Q Cmin . Furthermore,
Cmax is treated as an upper bound on shipment size. This simplifies cost
minimisation, since shipments never will have to be split between
multiple vehicles.1

Let w be the cost per hour of crew, appropriately adjusted by the
ratio of paid hours to hours “on the road”. The hourly cost of engaging a
vehicle will then be + +w i i C0 1 . The hourly cost of hiring loading and
unloading capacity has been defined to be wl. Since expected round trip
time is + +t u t Q2¯ l , the expected annual cost of transport KT in the
door-to-door case amounts to:

= + + + + + + + =

+ + + + + + +

+ + +

K k k C a w i i C t u t Q w t x

k a w i t u i t QY w i w t

x k a i t u Y

( )2 ( )(2¯ )

[2 ( )(2¯ )] ( )

[2 (2¯ )]

T
x
Q l

x
Q l l

x
Q l l l

0 1 0 1

0 0 1 0

1 1 (4a)

In the first line of (4a), the first term is distance dependent costs per
kilometre multiplied by distance and the number of trips; the second
term is cost per hour multiplied by hours per trip and the number of
trips; and the third term is the additional cost of loading and unloading
operations. Equation (3) was used to eliminate C as a choice variable in
the second line.

For the case of combined transport, let stage 1 be the first dis-
tribution stage, stage 2 be the line haul and stage 3 be the second
distribution stage. The total cost of the second stage (including all
transport cost elements, such as time costs, distance costs, and the cost
of an extra loading and unloading) will be Px, which is to be added to
the third term in the above expression. In the current article, Px is as-
sumed to be given. However, if the present model were just an element
of a larger freight transport model system, P should be determined as an
equilibrium price in a larger transport market with economies of scale
due to network externalities.

The shipment size and expected average annual number of ship-
ments will be the same for both distribution stages, thus C and Y will be
the same for both stages. The costs of each stage might however differ,
as they depend on stage-specific a,t̄ and u. Index the relevant variables
of each stage by their stage number, let stage 1 be the only stage in the
door-to-door case, and let δ be 1 in the combined transport case, 0
otherwise. The expected average annual transport costs are:

= + + + + + +

+ + + + +
+ + + + + +

K k a a w i t t u u

i t QY w i w t P x
k a a i t t u u Y

{2 ( ) ( )[2(¯ ¯ ) ( )]}

{ } {( ) }
{2 ( ) [2(¯ ¯ ) ( )]}

T
x
Q

l l l

0 1 3 0 1 3 1 3

1 0

1 1 3 1 1 3 1 3 (4b)

The first line of Equation (4b) shows that only the costs of the
smallest possible vehicle (k0 and i0) accrue per shipment x/Q. The
second and third line shows that the additional costs depend on annual
demand and the vehicle size. Thus according to our model, to assume a
fixed transport cost per shipment is only right if the vehicle size cannot
be chosen, and to assume a fixed cost per tonne is only right if the costs
of the line haul outweigh by far the cost of the distribution stages. Note
that if δ= 0, with some rearranging, Equation (4b) becomes equal to
Equation (4a), so the latter is not needed anymore.

1 This is also a realistic assumption in practice: While the transport costs per
unit decrease in vehicle size (see equations (1) and (2)), section 3.2 and 3.4 will
show that the inventory holding costs per unit increase in shipment size.
Therefore, firms will never have any incentive to choose >Q Cmax unless the
reduction in ordering costs by far outweighs the increase in inventory costs.
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3.2. Ordering costs and inventory holding costs, no uncertainty

We need the following prices, unit costs, and parameters:

b non-transport ordering costs (per shipment)
p free-on-board unit price of the commodity
H inventory holding cost per year and dollar of stationary inventory
J inventory holding cost per year and dollar of mobile inventory
ε inventory at the source as a share of inventory at the outlet

The non-transport ordering costs b includes any fixed cost associated
with producing the commodities to be shipped (set-up costs) or with
providing the transport service, as well as any cost of paperwork as-
sociated with the shipment. From the point of view of society, these
costs at the source are relevant, and surely, they will also matter to the
private decision maker. Since they occur per shipment, the expected
annual ordering costs can be calculated as:

=K b x
Qo (5)

With no uncertainty, the inventory will decline at a constant rate
from Q to zero (due to constant demand) and be restocked immediately
after it is depleted (due to constant transport time). Thus, the average
inventory at the outlet will be Q1

2 . The annual cost of the stationary
inventory with no uncertainty will be

= +K pH Q1
2

(1 )SI (6)

This accounts for the inventory at the source as well as at the outlet.
If production is instantaneous (import) and well-coordinated with
shipments from the source, there need be no inventory at the source,
but if the production rate equals the demand rate, average inventories
at both points are equally large. Thus ε takes values between 0 and 1. H
includes the cost of capital, variable warehousing costs and time-de-
pendent depreciation (the case of stationary inventory costs under un-
certainty is treated in section 3.4).

The mobile inventory will be proportional to annual demand and to
average time in transport. The inventory holding cost per dollar tied up
in transport, J, is not the same as H, since on one hand, there are no
warehousing costs, and on the other, there might be a higher cost of
depreciation and damage. Annual mobile inventory costs are equal to:

= +K pJ t t Q x(¯ )MI l
1 (7)

This relationship will still hold when uncertainty is taken into ac-
count, but in that case it reflects the expected annual mobile inventory
cost.

3.3. The probability distribution of lead time demand

Next, we turn to uncertainty. When demand and lead time are
stochastic, demand during lead time is also stochastic. We define the
following parameters:

(μD,σD) Mean and standard deviation of demand per business hour
( =µ xD

1)
(μT,σT) Mean and standard deviation of lead time in hours
(μL,σL) Mean and standard deviation of lead time demand (LTD) in
units

Lead time, with transport time as a part, is the time from an order is
placed until it is available at the outlet. It may be shown (Hadley and
Whitin, 1963, exercise 3.12) that if demand per hour for all business
hours are independently and identically distributed stochastic vari-
ables, LTD has the following expectation and variance:

=µ µ µL D T (8)

= +µ µL T D D T
2 2 2 2 (9)

Other things equal, the longer the transport time, the longer the
expected lead time. Thus Equation (9) shows that the longer the
transport time, the more does the variance of demand contribute to LTD
variance. Also, the mean level of demand will determine the impact of
transport time variance. Clearly, LTD is important for the firm when it
comes to the timing of a new order, since it determines the demand the
firm can expect in the interval from a shipment is ordered until the
commodities are available in shelf. Section 3.4 gives a formal treatment
of this.

Note that regardless of LTD distribution, (8) and (9) are sufficient to
determine its first two moments. However, the shape of the distribution
will affect the logistics costs and therefore the firm's optimal policy.
LTD has traditionally been assumed to be normally distributed for
practical reasons (Tyworth, 1991). A commonly used argument for this
assumption is that demand during each of the separate elements of lead
time are independent stochastic variables, so that the central limit
theorem applies. Vernimmen et al. (2008) claims that for this reason
the normal distribution might be a good approximation for longer lead
times “even in cases where the underlying distributions are highly
asymmetric”. Tyworth and O'Neil (1997) claim that assuming normally
distributed LTD is robust for fast moving finished goods when the
coefficient of variation <µ/ 0.5L L .

On the other hand, a recent body of research indicates that the
normal distribution will often be unsuitable for real life scenarios. The
most prominent alternative is the gamma distribution, according to two
comprehensive literature surveys (Vernimmen et al., 2008; Cobb et al.,
2013). There are three main reasons why this distribution is considered
suitable (Burgin, 1975). First, it is only defined for non-negative values.
Second, it can take a number of different shapes, ranging from an ex-
ponential distribution (the shape parameter equal to one), over a right
skewed unimodal distribution, to an almost symmetric distribution si-
milar to a normal (for high values of the shape parameter). Third, it is
generally mathematically tractable under weak conditions in EOQ ap-
plications.

A third alternative is to determine the appropriate distributions for
lead time and demand per time unit separately and construct a com-
pound LTD distribution from these (see e.g. Bagchi et al., 1986;
Tyworth, 1992). For aggregate economic analyses for which sensitive
firm-specific data is difficult to obtain, creating compound distributions
might be more convenient. This is because separate data sources will
usually have to be used to determine the lead time and demand per time
unit. However, since distribution functions is not the focus of this ar-
ticle, we stick to presenting two versions of the model; one in which
LTD is normally distributed and one in which it follows a gamma dis-
tribution. For a detailed description of how these distributional as-
sumptions affect the firm's minimisation problem, the reader is referred
to Appendix A.

3.4. Safety stock and stock-out costs

This section will discuss how uncertainty affects the cost of the firm,
and how the problem can be reformulated in order to let firms safe-
guard against the costs associated with this uncertainty. The following
symbols will be relevant in this setting:

I Average physical (on hand) inventory excluding the mobile in-
ventory
R Reorder point
E Expected number of backorders per year
B Expected number of backorders at any point in time
π The fixed unit cost per backorder
ˆ The cost per year of a backorder

The firm trades off stock-out costs and inventory holding costs by
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fixing a reorder point R such that whenever the inventory position (on
hand inventory plus shipments under way minus backorders) reaches R,
a new shipment is ordered. We assume that the inventory is continually
monitored and that items are demanded one at the time. This implies
that a new shipment is ordered at the exact time the inventory position
reaches the reorder point.

Stock-outs (not being able to deliver from shelf) are allowed to
occur, but at a cost. We assume that stock-outs are backordered (de-
livered later) and allow backorders to have a cost per instance π. In
addition, costs may depend on the time ˆ until delivery can take place.
Time-dependent stock-out costs are directly proportional to the time
until backorders can be delivered multiplied by the number of stock-out
instances. An example of this would be deliveries of intermediate pro-
ducts to a production line, where stock-outs imply setting the produc-
tion on pause. From society's point of view, stock-out costs include the
cost to the customer of having to wait, but for the firm they also mean
lost goodwill.

Adding R as a policy instrument, we say that our firm is following a
(Q,Y,R) policy. R might take on any value, including negative, which
means that the firm collects backorders until they are so many as to
make a new shipment worthwhile.

To be able to treat the case of stochastic lead time properly, we must
assume that orders arrive in the same sequence in which they were
placed. Let h X( ) be the probability density function of lead time de-
mand X, such that = =E X µ Xh X dX( ) ( )L . Note that the number of
backorders during a replenishment cycle will be 0 if <X R 0 and
X R if X R 0. Thus, the expected number of backorders per year
is

= =E Q R xQ X R h X dX xQ Xh X dX RH R( , ) ( ) ( ) ( ) ( )
r r

1 1

(10)

i.e. the number of cycles multiplied by the expected backorders per
cycle, where H X( ) is the complementary cumulative to h X( ) and xQ 1

is the number of replenishment cycles (throughout, lower-case x refers
to annual demand, and must not be mistaken for the random variable
LTD).

If we can determine the steady state probability density g Q R( , , )
of the size of the inventory during a replenishment cycle, the ex-
pected number of backorders pending fulfilment at any point in time
can be calculated as (Hadley and Whitin, 1963, pg. 194):

=
=

B Q R g Q R d( , ) ( , , )
0

(11)

The functional forms of E Q R( , ) and B Q R( , ) will depend on the
distributional assumption on LTD. Normal and gamma distributed LDT
are treated in detail in Appendix A. The average size of the inventory at
the outlet can be written:

= = + +I I Q R Q R µ B Q R( , ) 1
2

( , )L (12)

where the first term corresponds to the average inventory position
without uncertainty and the second and third terms correspond to the
additional safety stock implied by the reorder point. The fourth term
corrects for the fact that while on hand inventory net of backorders can
be negative, the inventory at the outlet – i.e. the number of units for
which the stationary inventory cost applies – can never be smaller than
zero. In other words, the stationary inventory cost can never be nega-
tive. Thus, when uncertainty is taken into account, the firm will have to
pay stationary inventory costs for +R µ B Q R( , )L additional units at
the outlet. This means that the stationary inventory costs under un-
certainty can be written as:

= + + +K pH Q R µ B Q R1
2

(1 ) ( , )SI L (13)

When firms choose their optimal reorder point, the cost of holding
this additional safety stock must be balanced against the expected
stock-out costs, which will be:

= +K E Q R B Q R( , ) ˆ ( , )SO (14)

Note that B(Q,R) fills two roles in the firm's cost minimization
problem. On one hand, backorders pending fulfilment are relevant to
calculate the size of the inventory. On the other hand, B(Q,R) can be
used directly to calculate the backorder costs that are proportional to
the time until delivery takes place.

4. Annual logistics costs

We are now in the position to calculate the firm's expected total
annual logistics cost K as the sum of transport costs (Equation (4b)),
ordering costs (Equation (5)), inventory holding costs (equations (7)
and (13)) and stock-out costs (Equation (14)):

= + + + +K K K K K KT O MI SI SO

After inserting each of these equations, rewriting and using
Equation (A.1) to insert for E(Q,R) and B(Q,R) in Equation (14) if LTD
is normally distributed (and A.4 if it is gamma distributed), the ex-
pected annual logistics costs can be written as:

= + + + + + + +

= + + + + + + +
= +
=
= +
= + + + + + +
= + + + + +

= + +

K R Qx QY Q x Y pH R µ

k a a w i t t u u b
pJ t
i t

pH
w i w t P pJ t t t
k a a i t t u u

R R pH x R
G R R G R

[ ( )] ( )
where

2 ( ) ( )[2(¯ ¯ ) ( )]
(1 )

(1 )
( ) (¯ (¯ ¯ ))
2 ( ) [2(¯ ¯ ) ( )]

( ) ( ) ( ˆ ) ( ) if LTD is Normal
( (1 ( )) (1 ( ))) if LTD is Gamma

x
Q L

l

l

l l

1 2 3 4 5 6

1 0 1 3 0 1 3 1 3

2
1

3 1

4
1
2

5 0
1

1 2 3

6 1 1 3 1 1 3 1 3

1

1 0

(15)

Definitions of R( ) and R( ) can be found in Appendix A. Except for
transport costs and inventory holding costs during transport, K is a
standard expression of average annual logistics cost in the tradition of
Hadley and Whitin.

4.1. Cost minimisation

The decision maker's problem is to minimise total logistics cost
subject to C C Cmin max and Y x . Since =C QY x/ (from Equation
(3)), this may be written as

Max K
QY C x

QY C x
Y x

s.t.
Q Y R, ,

min

max
(16)

The constraints in (16) imply that Q and Y will be strictly positive,
but no restriction is placed on R. Problem (16) is a non-linear mathe-
matical programming problem (Sydsæter and Hammond, 2012). It can
be solved numerically, but since it is a three-dimensional optimisation
problem with non-linearities, it is computationally burdensome if the
number of firms is large. In Appendix B we show how the Kuhn-Tucker
conditions can be derived and used to simplify the problem. The solu-
tion itself – the optimal (Q*,Y*,R*) and the logistics cost function K* – is
presented in Table 1 in the form of four cases, one and only one of
which applies for each particular set of parameters.

In all four cases R will be the solution to the following equation,
where definitions of the functions R( ), g R( )1 , g R( )0 and G R( )0 are
provided in Appendix A (Equations A.2 - A.4 and the corresponding
text):
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=
+ +

+
( )( )pHQ

x F pH R

x g R Rg R G R

1 ( ˆ ) ( ) if LTD is normal

( ( ) 1 ( ) ( )) if LTD is gamma

R µ

1 0 0

L
L

(17)

Equation (17) is the first-order condition for minimising K with
respect to the reorder point R, as shown in Appendix A.

By inserting Q* from Table 1, Equation (17) becomes one equation
in one variable. Thus, the non-linear three-dimensional minimisation
problem (16) have been reduced to solving Equation (17) in R for each
of the four cases, inserting the solution back in the table to obtain va-
lues of Q*, Y* and K*. The true solution will be the case with the lowest
K*, given that the constraints still hold.

Appendix B shows that the logistics cost function K* is in fact
continuous in annual freight volume x not only inside each case, but
also at the borders between cases. So as x increases, K* shifts smoothly
from Case 1 to 2, 3 and 4. There are economies of scale everywhere, but
not equally strong over the whole range of cases. In Fig. 2 in the next
section, an example of the transition from Case 1 to Case 3 as x in-
creases is shown for a set of numerical values. The top right panel
displays the change in Q as x increases; <Q Cmin corresponds to Case 1;

=Q Cmin corresponds to Case 2; and >Q Cmin corresponds to Case 3
=C( 0.901)min . The top left panel displays the corresponding changes in

each of the cost elements. As can be seen from the figure, the policy
variables as well as the cost components are smooth functions of x, also
at the boundaries between cases.

Appendix B also provides a characterization of each case in the form
of relationships between the parameters (including R) that must apply if
this case contains the solution.

4.2. Properties of the solution

We remark that in Case 1 and 3, shipment size is increasing in
transport distance and transport time, γ1. In Case 1, it is increasing in
marginal vehicle operating costs γ6 as well. Thus the unrealistic feature
of the ordinary EOQ model pointed out in Section 5.5 of Combes
(2009), namely that transport distance does not influence optimal
shipment size, does not exist here. Taxes and fees that influence the
kilometre costs k and the vehicle capital costs i will affect the optimal
solution in much the same way as transport distance and transport time
itself. The same applies to labour taxes.

The variables that do not influence the shipment size in any case are
those belonging to γ5, including the long-haul freight rate (by as-
sumption), capital costs of the inventory-on-wheels during transport,
and most of the time dependent costs during loading and unloading.
The remaining costs, the stationary inventory costs γ4, the inventory
costs during loading and unloading γ2, and the probably less important
marginal time-dependent vehicle loading cost γ3, influence the optimal
shipment size in Case 1 and 3. The larger these costs are, the smaller the
optimal shipment size.

The expressions for K* in the four cases indicate that there are
economies of scale in all cases, although more marked in cases 1 and 3

than in cases 2 and 4, since in the latter the shipment sizes are constant,
and more market in Case 1 than in Case 3, since increasing the shipment
size in Case 1 implies a higher vehicle utilisation rate. This result
contradicts hypothesis 6.8 in Combes (2009), which says that there are
no economics of scale in road freight transport.

5. A test case

The purpose of this test case is two-fold. First, to illustrate the re-
sponsiveness of the firm's optimal (Q,Y,R) policy in a realistic setting.
Second, to show that these models can be calibrated with available
data. The main dataset we use is the Norwegian Foreign Trade
Statistics, which is unique in that it contains both the weight and the
value of singular shipments, as well as the mode of transport.
Furthermore, the commodity type, the ID of the domestic firm and the
zip code of both the origin and the destination is recorded. Using this
data, we construct a sample of consumer goods shipped from the
Netherlands to Norway, and construct a test case in this market with
median values for transport distances, transport times, unit prices and
annual demand. For this test case we consider a transport chain con-
sisting of the three legs road-sea-road, in which own transport is used in
the distribution stages.

5.1. Data

The median firm-to-firm relationship in the transport of consumer
goods between Norway and the Netherlands has an annual flow of 7.5
tonnes, with a FOB unit price of 45,000 NOK per tonne.2 The median
transport distance by road for this chain ( +a a1 3) is 90 km, and the
corresponding transport time by road is 1.5 h. Transport time by sea,
including time in terminals, is found to be 96 h. For a full overview of
the cost and uncertainty parameter values used and a description of
how they are obtained, see Appendix C. There are no available data to
inform us on the nature of the stock-out costs. Therefore, we display the
results of the model for different stock-out cost levels. As will be shown,
these parameters only have a minor impact on the results.

We present results of the case study both for normal and gamma
distributed LTD. Using (8) and (9), we calculate these distributions,
displayed in the lefthand panel of Fig. 1 where the vertical line in-
dicates µL. For comparison, the distribution for the median door-to-
door transport by road between Norway and Netherlands ( =t̄ 27hours)
is displayed in the right-hand panel.

The next section will show that the distributional assumption for
LTD has minor impact on both policy variables and the minimised
annual logistics costs (remember that we consider the left hand panel
and not the right in this test case). The main reason for this is the low
standard deviation of lead time compared to the expectation, leading to
a higher shape parameter of the gamma distribution than what is
conventionally used in constructed examples (e.g. Namit and Chen,

Table 1
The four potential solutions: all variables as a function of R only.

Case 1
= + +

+
Q x R C

x
( 1 ( ) 6 min)

2 4
= +

+ +
Y C x x

x R Cmin 2 4
( 1 ( ) 6 min)

R* is the solution to (17)

= + + + + + +K x R C x C x pH R µ2 ( ( ) )( ) ( ) ( )L1 6 min 2 4 5 3 min

Case 2 =Q Cmin =Y x R* is the solution to (17)
= + + + + + + +K R xC x C x pH R µ( ( )) (( ) ) ( ) ( )L1 min

1
2 3 4 min 5 6

Case 3 = +
+ +

Q R x
x

( 1 ( ))
( 2 3) 4

=Y x R* is the solution to (17)

= + + + + + +K R x x x pH R µ2 ( ( )) (( ) ) ( ) ( )L1 2 3 4 5 6
Case 4 =Q Cmax =Y x R* is the solution to (17)

= + + + + + + +K R xC x C x pH R µ( ( )) (( ) ) ( ) ( )L1 max
1

2 3 4 max 5 6

2 On March 4th 2019, 1 NOK=0,103 Euro.
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1999). Note that with our parameter values shorter lead times (e.g.
domestic transport) will have more skewed gamma distributions, since
in those cases the standard deviation of demand per time unit will
dominate, leading to a higher coefficient of variation.

5.2. Solution

With the algebraic expressions from Section 4 (Table 1 and Equation
(17)), minimising logistics cost is reduced to a smooth one-dimensional
minimisation problem in R. The problem is easily solved with any
software that employs non-linear optimisation methods, e.g. Excel or
MatLab. The resulting policy variables and logistics costs are presented
in Table 2. Y* is not displayed, since for all cases Q C C[ , ]min max ,
meaning that no trucks have spare capacity and Y* = x.

The differences between the six solutions in Table 2 are minor. This
illustrates that generally, the effect of LTD is small for these parameter
values – the sum of stock-out costs and inventory costs at the reorder
point R* constitutes a small share of annual logistics costs. Differences
are as expected; costs increase in and when changing the LTD dis-
tribution from normal to gamma, which has a longer right tail. As the
cost per stock-out increases, the firm adapts by adjusting R* appro-
priately such that stock-out costs are always close to zero while the
stationary inventory cost is increasing. This suggests that the cost of
additional inventory to counteract stock-outs is relatively low com-
pared to the stock-out cost itself, given the parameter values used.

5.3. Sensitivity

One of the main issues with operationalising this framework is un-
certainty regarding the true parameter values (or distribution of va-
lues). As demonstrated above, most values can be inferred or estimated
from readily available firm and vehicle level micro data. The only
parameter for which there is no information in available registers is the
stock-out cost. Therefore, it is reassuring to see that model results, in
particular K* and Q*, are robust for a wide range of stock-out cost
parameter values. K* is important in economic analyses since it covers
all costs to the firm, while Q* and C* are needed to determine annual
vehicle kilometres and vehicle size, which in turn determines transport
externalities such as GHG emissions and congestion. The rest of this
section will therefore present sensitivity analyses of the remaining main
parameter values based on the model from the second column of
Table 2, i.e. normally distributed LTD and stock-out cost equal to the
commodity value.

Fig. 2 displays the results. Each row corresponds to changing one
specific parameter of the model, displayed in the x-axis. The first
column of graphs shows how key cost components at the optimum point
change with parameter values, while the second column displays the
corresponding optimal policy of the firm. Costs are measured in NOK/
tonne, while the policy variables are measured in tonnes. The first row

is the effect of varying annual demand and is therefore an illustration of
returns to scale in firm size. As the demand per time unit increases, the
firm responds by ordering larger shipments, thereby utilising returns to
scale in transport costs to a larger extent. When < =Q C ( 0.901)min the
firm is forced to pay for unutilised transport capacity, leading to an
exponential increase in costs.

The second row displays the effect of changing the distance by road
(the expected lead time has been changed correspondingly based on the
average speed limit, i.e. by 1 h for every 60 km). The returns to scale in
road transport costs becomes more prominent as the time and distance
increases, leading to a larger shipment size. Had the shipment size not
changed, the transport costs would have increased linearly in distance
and the stationary inventory costs had been almost constant. The firm's
optimal policy of increasing the shipment size illustrates the trade-off
between higher transport costs and higher stationary inventory costs,
which both increase at a diminishing rate.

The third row displays the effect of changing the standard deviation
of the lead time demand, measured relative to the expected lead time
(the baseline value is 0.35, corresponding to = 154L kg, and a value of
2 corresponds to = 877L kg). The right panel illustrates that variation
of LTD mainly affects the reorder point, as expected, and the left panel
illustrates how the firm's optimal policy translates into a trade-off be-
tween stationary inventory costs and stock-out costs.

Finally, the last row displays the effect of changing the costs per
year and dollar of stationary inventory, H. This also translates into a
trade-off between stationary inventory costs and transport costs and can
be seen as a counterpart to the second row. The firm's optimal policy is
to adjust its inventory by reducingQ as H increases, meaning that some
returns to scale in transport costs is sacrificed.

This section illustrates two important points regarding the model.
First, it seems to be capable of showing the room of manoeuvre that a
firm facing uncertain lead time demand may have in adapting to new
situations. Second, it reflects the sensitivity of transport costs per tonne
to shipment size. The first of these aspects of the model is generally not
present in freight models, while the second is generally not present in
EOQ models.

6. Concluding remarks

The logistics cost model formulated here brings together two strands
of literature. Depending on the viewpoint, it does so by bringing
transport costs into an inventory model or by bringing inventory costs
into a transport model. Also, it recognises the importance of the dis-
tribution phase of all forms of freight transport except door-to-door by
truck. It does not identify shipment size with vehicle size, but assumes a
minimal and a maximal vehicle size, so that optimal shipments can be
smaller than, equal to or larger than the smallest vehicle, and smaller
than the largest. It takes full account of uncertain demand and lead time
and its implications for stockouts and safety stocks. The derived cost

Fig. 1. Distribution of lead time demand. Left: road-sea-road. Right: road. Unit: kg.
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Fig. 2. Sensitivity analysis. Cost components and policy variables as functions of parameter values.
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minimisation problem is analytically solvable in all variables except the
reorder point, reducing the problem to a well-behaved optimisation
problem in one dimension only. Tests in Excel with real life data solves
the model for a single firm model in less than ¼ seconds on a standard
desktop computer, producing reasonable results.

To our knowledge, no existing freight transport model incorporates
inventory costs under uncertain transport time and/or demand. It is
hoped that the model presented here can provide a suitable framework
for future work to fill this gap. To make the framework operational,
data on the variables entering the formulas must be had. It is thought
that this can be done by collecting and processing micro-data at the
level of the goods flow of firms, as illustrated in Section 5 and the
Appendix C. Questions should concern the annual costs of the firm, not
just single shipments. The most important points for future data col-
lection would be to get better information about (1) stock-out costs, (2)
demand distributions for (segments of) firms, and (3) (mode specific)
transport time distributions. Data on (2) and (3) is needed to create
compound lead time demand distributions.

The explicit representation of transport costs makes the model well
suited for studies of the economic efficiency of transport prices and
subsidies, economies of scale and scope etc. in specific cases. Since the

framework can be calibrated and solved at the firm level, it may also be
used to study how policies will affect different firms differently.

The chosen approach may also be used in cost benefit analyses for
the appraisal of benefits to freight transport. It produces benefits to
shippers of any changes in transport distances, times, prices and sub-
sidies in the form of the difference between total logistics cost K in the
do nothing case and the case of a new policy measure. (The carriers are
always supposed to earn zero profit.) Benefits and costs to government
and the environment will have to be computed by using separate ac-
counts for the shipper, the government and the environment, and treat
taxes and transfers as transfers between these accounts. While the pri-
vate costs of the shippers are obtained directly from K, the real social
costs are obtained by summing over all accounts.

Finally, incorporating mode choice is straightforward by comparing
the annual logistics costs associated to each chain. Mode choice can be
deterministic, such that firms choose the transport chain with the
lowest annual cost given a transport chain-specific optimal policy.
Alternatively, let annual chain-specific costs enter the right-hand side of
a discrete choice model to be estimated. The potential for consolidation
on all legs can be handled either exogenously (by applying parameters
that reflect the cost after consolidation) or endogenously (by letting line
haul cost parameters depend explicitly on aggregate transport demand).
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Appendix A. Implications of distributional assumptions for LTD

To solve the cost minimisation problem of the firm, expressions for =E E Q R( , ) and =B B Q R( , ) are required. However, these will depend on the
functional form of the statistical distribution of LTD. In this appendix, expressions for E and B are described for normal distributed LTD and gamma
distributed LTD, respectively. These expressions are used in chapter 4 when formulating the logistics cost minimisation problem for normal and
gamma distributed LTD.

Normal distributed LTD

Hadley and Whitin (1963, pp. 193-194) show, with a minor and mostly inconsequential simplification, that if LTD is normally distributed, then

= =
= =

E E Q R x Q R
B B Q R Q R

( , ) ( )
( , ) ( )

1

1 (A.1)

where

=

= +

( )
( )

( ) ( )
( ) ( ) ( )

R f F

R F f

( ) 1

( ) 1 1

L
R µ R µ R µ

L
R µ R µ R µ R µ1

2
2 2

L
L

L
L

L
L

L
L

L
L

L
L

L
L (A.2)

Table 2
Policy variables and cost elements for the transport chain road-sea-road. (1
NOK=0,103 Euro).

(% of p) Normal lead time demand Gamma lead time demand

50% 100% 500% 50% 100% 500%

Solution: Case 3 Case 3 Case 3 Case 3 Case 3 Case 3

Policy variables (tonnes)
Q 2.23 2.23 2.22 2.25 2.25 2.24
R 0.68 0.73 0.83 0.71 0.78 0.93
Cost elements (NOK/year)
Transport 18,786 18,796 18,812 18,736 18,744 18,756
Ordering 2,083 2,086 2,091 2,069 2,071 2,075
Mobile

inventory
4,911 4,911 4,911 4,912 4,912 4,912

Stationary
inventory

10,473 10,669 11,056 10,635 10,922 11,534

Stock-out 277 250 208 409 388 356
Total 36,530 36,713 37,078 36,761 37,037 37,633
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In (A.2), f(.) is the density function of a normalised normally distributed variable, and F(.) is its cumulative density function. To solve Equation
(KT3) in Appendix B (to obtain Equation (17) in Section 4.1), derivatives of α(R) and β(R) are needed. And since =F x f x( ) ( ) and =f x xf x( ) ( ),

=

=
( )( )R F

R R

( ) ( 1) 1

( ) ( )

R µL
L

(A.3)

Both functions are monotonously decreasing, and as both approach 0 as R goes to infinity, they are everywhere positive.

Gamma distributed LTD

To treat the gamma distributed case in a straightforward manner, we must assume that B(Q,R)= 0, which is only realistic if the impact on the
logistics cost minimisation is small enough to be neglected. Note that B(Q,R) affects the logistics costs through two channels – the stock-out costs and
the stationary inventory costs. Thus, setting B(Q,R) to zero is a realistic assumption if stock-out costs occur per unit instead of accumulating over
time, so that ˆ 0, and the contribution of B(Q,R) to the stationary inventory cost is small. Note also that if the probability that more than +Q R
units are demanded in the duration of the lead time is close to zero, B(Q,R) will be close to zero as well (since backorders immediately will be
delivered when the first shipment arrives), meaning that the former requirements will hold (Hadley and Whitin, 1963, pg. 194). While we cannot test
whether ˆ 0 is a realistic assumption with our data, the other assumptions hold for all sensible parameter values.

The same assumptions are conventionally made in articles assuming gamma distributed lead time demand, see e.g. Namit and Chen (1999),
Tyworth et al. (1996) or Tyworth and Ganeshan (2000). Under the restriction that >R µL and the assumption that B can be neglected, Tyworth et al.
(1996) show that assuming gamma distributed LTD implies that

= =
=

E E Q R xQ G R R G R
B

( , ) ( (1 ( )) (1 ( )))
0

1
1 0

(A.4)

whereG1 is the cumulative distribution function of Gamma +( 1, ), andG0 is shorthand for Gamma( , ). Note that and here means the shape
and scale parameter of the gamma distribution of lead time demand respectively, while R( ) and R( ) refer to the expressions from Equation (A.2).
The restriction >R µL is only relevant for the optimal policy when it is binding, and that has not been the case in any of the numerical examples
implied by our cost parameters.

Finally, the parameters of the gamma distribution can be determined as follows (Tyworth and Ganeshan, 2000): = µ/L L
2 2 and = µ/L L

2 , where
µL and L can be obtained from (8) and (9). To solve Equation (KT3) in Appendix B (to obtain Equation (17) in Section 4.1), note that =G R g R( ) ( ),
i.e. the derivative of the cumulative distribution function is the probability density function.

Appendix B. Derivation of the logistics cost function

Problem (16) of the main text is a non-linear mathematical programming problem. To solve it, we form the Lagrangian L,

=L K C x QY QY C x x Y( ) ( ) ( )1 min 2 max 3

λ1, λ2 and λ3 are called Lagrangian multipliers. Assuming the optimal Q and Y to be strictly positive, while no restriction is placed on R, the
Kuhn-Tucker conditions for a maximum are

= = =

= >
= <
= <

QY C x
QY C x
x Y

0

0 ( 0 if )
0 ( 0 if )
0 ( 0 if )

L
Q

L
Y

L
R

1 min

2 max

3 (B.1)

From = = = 0L
Q

L
Y

L
R we derive the Kuhn-Tucker conditions for a maximum:

+ + + + =R xQ x Y Y( ( )) ( ) ( ) 01
2

2 3 4 1 2 (KT1)

+ + =Q Q( ) 03 6 1 2 3 (KT2)

=pHQ R
R

x( )
(KT3)

Using Equation (A.3) from Appendix A for the normal distribution case, and the fact that in the gamma case, =G X g x( ) ( ), i.e. the probability
density function, the lefthand side of (KT3) can be written explicitly as

=
+ +

+
( )( )pHQ

x F pH R

x g R Rg R G R

1 ( ˆ ) ( ) if LTD is normal

( ( ) 1 ( ) ( )) if LTD is gamma

R µ

1 0 0

L
L

(B.2)

Equation (B.2) is of course identical with Equation (17) of the main text.
Since the three constraints can be binding or non-binding, there are 8 cases to consider. However, if all three constraints or only the first and

second constraint is binding, there is an immediate contradiction unless =C Cmin max . Also, if none or only the second is binding, meaning that the
corresponding Lagrangian multipliers are zero, there is contradiction in Kuhn-Tucker condition (KT2). We are left with four cases:
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Case 1. Only the first constraint is binding. Here, = = 02 3 and =QY C xmin . Solving (KT2) for λ1 and using this and =Y C xQmin
1 to eliminate λ1 and

Y in (KT1), we get

=
+ +

+
Q

x R C
x

( ( ) )1 6 min

2 4 (B.3)

=
+

+ +
Y C x

x
x R C( ( ) )min

2 4

1 6 min (B.4)

Since R( ) is a function of R, this is not an explicit solution. The optimal (Q*,R*) is found either by choosing a starting value for Q, and iterating
between updating the R of (KT3) and Q until convergence, or by using any non-linear optimisation algorithm (e.g. Newton's method) to find the R
that minimises K, where (B.3) and (B.4) has been inserted for Q and Y. Because the third constraint is not binding, we have >Y x . By (B.4), then, it
follows that in this case,

+ +
+

<
x R C

x
C

( ( ) )1 6 min

2 4
min

(B.5)

which means that Q*<Cmin. The smallest possible truck is used, but it will not be filled to capacity.

Case 2. The first and third constraints are binding. = 02 . From the two binding constraints, we immediately get

=Q Cmin (B.6)

=Y x (B.7)

The optimal Q* is larger in this case than in the first case, as the smallest possible vehicle is used, but with a full truck-load. R* follows from (KT3).
Using these optimal values in (KT1) and (KT2), we get explicit expressions for λ1 from (KT1), and using this optimal λ1, we may find λ3 from (KT2).
The necessary condition (B.8) for Case 2 to apply consists of two inequalities. One of them follows from 01 , and the other follows from 03 (See
B.1).

+
+ +

+ +
+

R x
x

C
x R C

x
( ( ))

( )
( ( ) )1

2 3 4
min

1 6 min

2 4 (B.8)

Case 3. Only the third constraint is binding. From the binding constraint we immediately have

=Y x (B.9)

It also follows that = = 01 2 , and therefore by KT1,

=
+

+ +
Q

R x
x

( ( ))
( )

1

2 3 4 (B.10)

(B.10) is not an explicit solution, but (Q*, R*) may be found from (B.10), (B.9) and (KT3) by the same procedure as in Case 1. From the non-
binding constraints, however, we may deduce that

< <C Q Cmin max (B.11)

Case 4. The second and third constraints are binding. Here, = 01 and from the binding constraints,

=Q Cmax (B.12)

=Y x (B.13)

From the condition that 02 it follows by KT1 that

+
+ +

R x
x

C
( ( ))

( )
1

2 3 4
max

(B.14)

Between them, the four cases contain the optimal solution to problem (16) of the main text. The four necessary conditions for each case to apply –
(B.5), (B.8), (B.11) and (B.14) – may be used to indicate in advance which one of the four cases contains the solution, or to control the solution
afterwards. As will be seen by studying the inequality signs, the four cases make for a smooth transition from case to case of the policy variables Q*,
Y*, R* as parameters change.

The Bolzano-Weierstrass theorem says that a continuous function on a non-empty compact set achieves a maximum and a minimum there. The
function K to be minimised is continuous in the policy variables. The existence of a solution to the problem is therefore guaranteed by the Bolzano-
Weierstrass theorem provided we can assume that there is a strictly positive minimal order quantity, because in that case, the feasible region is
compact. So one of the four cases gives us the solution.

As annual volume x or for instance the costs per shipment + R( )1 increase, the solution moves from the first of our four cases to the second,
the third and the fourth. The logistic cost function K* as a function of annual volume x and the prices is continuous inside the cases and at the borders
between cases, i.e., everywhere.
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Appendix C. Data

All parameter values used in the numerical example in Section 4 are displayed in table C1. After the table follows a description of how the various
parameter values were obtained.

Table C1
Parameter values used in the case study. (1 NOK=0,103 Euro)

Model parameter Symbol Value Units

Transport/inventory cost parameters
Expected annual demand x 7.5 tonnes
Price/commodity value p 45,000 NOK/tonne
Transport distance, road +a a1 3 90 km
Expected transport time, road +t t¯ ¯1 3 1.5 hours
Unproductive time, road +u u1 3 0.74 hours
Expected time, sea transport and ports t̄2 96 hours
Loading/unloading time, road tl 0.34 hours/tonne
Distance dependent cost component k0 3.26 NOK/km
Distance dependent cost component k1 0.159 NOK/tonne-km
Time dependent cost component +w i0 417.8 NOK/hour
Time dependent cost component i1 1.57 NOK/tonne-hour
Loading/unloading costs, road wl 1083 NOK/hour
Fixed price of second leg P 976 NOK/tonne
Non-transport ordering cost b 620 NOK/shipment
Stationary inventory cost H 0.09 NOK/year-value
Mobile inventory cost J 0.43 NOK/year-value
Unit cost per backorder (varies by case) 45,000 NOK/tonne
Cost per year of a backorder ˆ 0 NOK/tonne
Minimum vehicle size Cmin 0.901 tonnes
Maximum vehicle size Cmax 13.52 tonnes
Business hours per year 1667 hours
Derived parameters of lead time demand
Expected lead time µT 97.5 hours
Standard deviation of lead time T 8.13 hours
Expected demand per business hour µD 4.50 kg/hour
Standard deviation of demand D 15.16 kg/hour
Expected lead time demand µL 438.66 kg
Standard deviation of lead time demand L 154.11 kg
Gamma dist. shape parameter 8.10 kg
Gamma dist. scale parameter 54.14 kg

From The Norwegian Foreign Trade Statistics we observe that the median firm-to-firm relationship in the transport of consumer goods between
Norway and the Netherlands has an annual demand of 7.5 tonnes, with a FOB unit price of 45,000 NOK per tonne. The annual demand is defined as
the sum of shipments per domestic firm-ID – foreign zip code – commodity type combination. This will be a correct representation of a foreign firm
unless the same domestic firm exports/imports the same commodity type (on a 6 digit level) to more than one foreign firm in the same zip code.

The median transport distance by road for this chain ( +a a1 3) is 90 km, and the corresponding transport time by road is 1.5 h. To obtain these
values we have employed a time-minimising route-finding algorithm (Dijkstra, 1959) on a road network from OpenStreetMap (Ramm et al., 2011)
between the coordinates of ports and the centroids of zip-codes observed in the data. The transport times are based on the registered speed limit,
including obligatory breaks.

As time and distance dependent cost parameters by road we use the fitted line from regressions of time- and distance-based costs on transport
capacity for the set of freight vehicles used in the National Freight Transport Model of Norway, NGM. For time and distance costs, see Grønland
(2015, table 3.3). The distance dependent costs are maintenance costs, fuel costs and tire replacement costs, while time cost components are wage,
capital costs, annual registration fee, insurance and administration costs. The vehicle capacity in weight will depend on the voluminousity of the
commodity. Here we focus on the broad commodity group “consumer goods”, for which the various truck capacities can be found in Madslien et al.
(2015, pg. 88). C C[ , ]min max are defined as the capacity of the smallest and largest vehicle, respectively.

Transport time by sea (the median from time tables) and handling and waiting time in terminals (obtained from the NGM model, conditional on
the transport frequency) is estimated to be 96 h in total. The unit cost of the sea leg is the average unit cost for consumer goods between the port of
Oslo and Amsterdam/Rotterdam port as predicted from NGM. As stationary and mobile inventory cost and loading and unloading time and cost
parameters we use standard values from NGM (Madslien et al., 2015).

The uncertainty parameters are obtained from Hovi et al. (2018), and more thoroughly documented there. The standard deviations of demand
and lead time are obtained from separate sources as percentages of expected demand per business hour and expected transport time, respectively. In
future work it would be useful to estimate these distributions as well, and not only their first and second moments.

The Norwegian Commodity Flow Survey (CFS) is used to quantify the standard deviation of demand per hour to 337% of its expected value. Here,
approximately 60 million shipments are reported with information on product type, origin, destination, quantity (weight) and time when the
shipment is ordered (measured in minutes).

The standard deviation of lead time for sea transport is calculated to be 8.2% of the expected transport time by sea. To obtain this, The National
Coastal Administration's AIS-data and data on port calls from port administration systems are used. Containing call date and time, arrival and
departure as well as an identification number for each ship, these data makes it possible to follow every ship observed. However, since lead time is
not observed, time of calls is used instead.

The standard deviation of transport time by truck to and from terminals is extracted from Google Maps over several weeks at given times. Nine
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typical links from terminals in Norway are considered and the standard deviation is found to be 17% of the transport time. When deriving the
standard deviation of total lead time, it is assumed that the standard deviations of truck and sea lead time are independent, and that the standard
deviation of terminal time is zero.
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