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Keywords: Besides technological improvements, restrictive car policies are likely to be the most effective
Passenger demand measures for reducing greenhouse gas emissions from local passenger transport. Restrictive po-
Suppressed demand licies may lead some individuals to choose to not travel to otherwise useful or enjoyable activ-
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ities. This paper therefore explores what factors drive the probability of ‘not travel’ as a beha-
vioural response to restrictive policies.

Using stated choice data among car owners in the 10 largest cities in Norway, we investigate
observed and unobserved taste variation for ‘not travel’ given different (hypothetical) policies.
The empirical evidence suggests that the likelihood of ‘not travel’ (a) is lower for work-related
trips; (b) is higher where respondents state they have no decent alternatives; (c) increases with
trip distance; and (d) increases with the intensity of the policy. We perform Monte-Carlo simu-
lations illustrating different predicted choice behaviour for car users and public transport users
under different types of stylized policies (travel time changes versus travel cost changes).
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1. Introduction

CO, emissions from the transportation of passengers have been the subject of considerable attention and study (Scholl et al., 1996;
van Essen et al., 2019; Wang et al., 2011; Korzhenevych et al., 2014; Fearnley et al., 2016). Along the lines of these studies, for a
given population, CO, emissions are the product of:

(1) the amount of travel per person
(2) the energy needed for that amount of travel
(3) the carbon intensity of that needed energy

Climate policies target—directly or indirectly—one or more of these. Subsidizing/incentivizing technological development and
diffusion targets mainly point 3 (and, to a lesser extent, point 1), e.g. through telecommuting. Policies that incentivize dense de-
velopment and the agglomeration of housing, working places and/or services target point 1 by reducing the need to travel long
distances. Most policies that aim to change individuals’ travel mode choice behaviour target point 2 by giving incentives to move
from high energy-intensive travel modes (e.g. internal combustion engine cars) to low energy-intensive travel modes (e.g. metro and
trains).

Among the latter, restrictive car policies are likely to be the most effective measures for reducing CO, emissions (see, e.g., Girling
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and Schuitema, 2007; Tagliapietra and Zachmann, 2018) as well as other externalities associated with the private car, such as
congestion and local emissions (see, e.g., Wu et al., 2016; Buehler, 2010; de Grange and Troncoso, 2011). Restrictive policies (i.e.
‘sticks’) such as road tolls are expected to have a larger effect on transferred demand from car to public transport (PT) than positive
measures (i.e. ‘carrots’) for PT (as reductions in fares) (Fearnley et al., 2017; Wardman et al., 2018).

Besides mode choice changes, restrictive car policies can also alter the amount of travel per person (i.e. point 1, above). This can
be by means of reduced travel distances as a result of changes in destination choice (e.g. road tolls provide incentives to run errands
within the toll ring) and/or a reduction of travel frequency.

From an economic perspective, most changes in behaviour that result from restrictive policies are associated with a reduction in
user benefits—while total social welfare may improve due to a possible reduction of external cost. This reduction in user benefit is
likely to be severe for those travellers who opt to not travel at all after a restrictive policy is implemented (i.e. who stay at home or do
not undertake an additional trip within a trip chain). This is because the restrictive policy may discourage otherwise useful/enjoyable
activities. This may also lead to undesirable/costly changes in a person’s time allocation (e.g. working less); in addition, it might be
perceived as socially unfair, especially in scenarios of price increases that affect the welfare of low-income households and other
disadvantaged groups most severely (see, e.g., Delbosc and Currie, 2011).

The above points suggest that ‘not travel’ (i.e. a reduction in trip frequency) is a contentious and unpopular effect of restrictive
policies, and especially so if their primary aim is to affect mode choice. It is not surprising that official policy communication often
excludes ‘not travel'—and compromises in mobility in general—as a possible outcome of policies, exemplified in the statement
‘Curbing mobility is not an option’ in the EU’s (2011) white paper on transport.

Douglas et al. (2003) point to a lack of understanding about what factors drive the probability of ‘not travel’ as a behavioural
response to restrictive policies. Despite some recent empirical studies on trip-cancelling responses to policies and events (see section 2),
there remains a lack of research that systematically investigates factors that drive the probability of ‘not travel’ as a behavioural
response to restrictive policies. Such information may help with selecting more socially accepted climate policies in the transport sector.

In travel mode choice models, ‘not travel’ is often omitted as a choice alternative.” This is also the case for the Norwegian Greater
Oslo model MPM23 (Fliigel et al., 2016). When deriving cross-elasticities and cross-modal diversion factors with that model, as done
in Fliigel et al. (2018), one is likely to overestimate the cross-modal demand effects of policies because changes in total demand (i.e.
supressed or induced travel) are not handled. Indeed, this limitation was one of the authors’ motivations for the data collection and
analysis for this paper.

In this paper, we are interested in estimating observed and unobserved taste variation for ‘not travel’. For observed taste het-
erogeneity, we hypothesize the following regarding the likelihood of ‘not travel”:

(H1) Lower for work-related trips, since those trips are likely to be unavoidable

(H2) Increases with trip distance, as short distance trips can more easily be replaced with walking and cycling

(H3) Increases with the intensity/scope of the policy (e.g. doubling fares is likely to yield a higher probability of ‘not travel’
compared to a 10% fare increase)

(H4) Higher for situations where there is no (perceived) alternative to the current mode

(H5) Higher in situations where the currently used mode is unavailable (e.g. car is at the service station), rather than slower or
more expensive

The likelihood or probability of ‘not travel’ can be measured absolutely (i.e. relative to all behavioural responses including to
‘remain using the current travel mode’, which still has some positive probability unless the restrictive policy makes the current travel
mode completely unavailable) or relative to the probability of making a change in travel mode choice. In the latter case, the relative
choice probability is referred to as the diversion factor towards ‘not travel’.? We will perform hypothesis testing (Section 4) based on

! Many transport models do not account for ‘not travel” explicitly. In four-steps models, ‘not travel’ is typically omitted from the choice set in the
travel mode choice model component while effects of suppressed (and generated) transport are associated with changes predicted by a trip gen-
eration model. The prediction of behavioural changes towards ‘not travel’ given a policy/supply change is, in such models, based on the log-sum
changes from the travel mode choice model. The marginal effect of changes in log-sum on trip frequency is typically measured with a generic
coefficient (within each model segment) and is thereby independent of the size, direction and type of policy causing the change in log-sum.
Heterogeneity regarding preferences or the likelihood towards ‘not travel’ is therefore not accounted for. In comparison, activity-based demand
models (e.g. Castiglione ef al., 2015) are in general better suited to accounting for heterogeneity with respect to ‘not travel’. By modelling the utility
of ‘staying at home all day’ and different variants of primary and secondary activities (as in Bowman and Ben-Akiva, 2001) one can also investigate
how the propensity towards ‘not travel’ may vary with the daily activity pattern of an individual. Activity-based demand models are typically
estimated based on (cross-sectional) travel survey data, a data source that (as discussed below) gives limited insights regarding how restrictive
policies directly impact the probability of ‘not travel’.

2In general, (cross-modal) diversion factors are the proportion of the change in demand for one mode that comes from, or goes to, another mode,
or ‘not travel’ (Dunkerley et al., 2018). Diversion factors only relate to mode shift including ‘not travel’ but do not include such behavioural
responses as changes in destination, trip timing, trip distance or route choice, cf. e.g., Noland and Lem (2002) and Bonsall (1996). When analysing
competition and substitution between travel modes, the diversion factor is found to be more stable over time and between contexts, and hence more
transferable, than cross-elasticities (Wallis, 2004; BAH, 2003; Fearnley et al., 2017; Fliigel et al., 2018). However, diversion factors vary with the
number of travel alternatives: Ceteris paribus, the diversion factor will be smaller the greater number of alternatives that exist and larger the fewer
travel alternatives that exist (Fliigel et al., 2018).
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the former type, i.e. our model includes the option ‘remain using current travel mode’. However, when predicting choice probabilities
(Section 5) we will focus mainly on diversion factors, as we expect that the risk of hypothetical bias of stated preference (SP) data is
less profound with respect to diversion factors. This is because the probability of choosing the current option, which respondents may
have the greatest incentives to over- or understate, is not considered by diversion factors.

We are not aware of other studies that have conducted similar hypothesis testing. Indeed, quantitative analyses of ‘not travel’
given restrictive policies seem rare, at least on an individual level. Reasons for this may include the fact that most case studies
investigate positive (‘carrot’) measures (like most infrastructure projects) and thereby focus on induced demand (rather than sup-
pressed demand). Of those studies that investigate restrictive measures, a majority seem to study the impact on modal shift and
congestion relief rather than trip cancellation. In addition, the literature on diversion factors (see Section 2) typically assumes
equivalence across the sign of attribute change, e.g. changing an attribute (say, ticket prices) by +10% or —10% implies the same
diversion factors. Thus, one assumes the same demand effects (in absolute terms) of ‘carrot’ policies and ‘stick’ policies.

In general, it is difficult to obtain good revealed preference data on ‘not travel’ after restrictive policies are implemented. National
travel surveys (NTS) usually routinely report individuals that did not travel on a given day (i.e. stayed at home).® However, these data
provide little information regarding the question of suppressed demand and trip cancellation due to restrictive policies.* To obtain
this information, one must survey people before and after a policy is introduced. These before-after studies are often costly to
conduct. An alternative to revealed preference data, however, is the use of stated choice data—the approach taken in this study.
Stated choice data is inherently connected to potential hypothetical biases, i.e. the danger that respondents over- or understate their
utility/probability to with ‘not travel’ to (hypothetical) restrictive policies. This paper therefore focuses on factors influencing the
probability of ‘not travel’ (using the proposed hypotheses above) and mainly discusses differences in probabilities between user
groups (car user versus public transport users) and policies (travel time versus travel cost changes), rather than absolute values for
choice probabilities or diversion factors.

The paper is structured as follows: Section 2 is a literature review, Section 3 presents the data, Section 4 documents the discrete
choice modelling and estimation results, Section 4 presents the simulations of choice probabilities for some stylized policies, and
Section 5 concludes the paper.

2. Literature review

This literature review is limited to quantitative studies on ‘not travel’ as a behaviour response to policies and events. The focus is
on results rather than methods.

Regarding impact on motorists’ trip cancellation, Marsden et al. (2016) described the 2015 four-week closure of the Forth Road
Bridge in Scotland for regular car traffic, which caused a 12% reduction in work trips. This was mainly related to home working and
more intense shift working. Social trips were also significantly reduced. With regards to public transport unavailability, a number of
studies have analysed public transport strikes. Clark (2017), for example, reports the results of a large survey of nearly 234,000 US
transit passengers. If their transit service were unavailable, 22% of these passengers would not travel, while one-third would switch to
a car mode and another 20% would divert to other transit modes.

Van Exel and Rietveld (2001) reviewed 13 similar studies in Europe and the US and compared this review with their own findings
from a short railway strike in the Netherlands. The 13 studies show large variation in the prevalence of trip suppression. However, the
authors concluded that about 10-20% of commuting and school trips are cancelled following a public transport strike. A much larger
share is to be found among elderly travellers and for trips. The same authors studied the effect of another one-day full railway strike
in the Netherlands a few years later (van Exel and Rietveld, 2009). Their findings were considered to be comparable with previous
studies of strikes, which showed that between one-third to half of the travellers cancelled their trip.

Nguyen-Phuoc et al. (2018a) interviewed 30 individuals and analysed their responses to a hypothetical short-term public
transport removal. They report that ‘a lot of them stated that they would cancel their education-based trips’ (p. 6); that road traffic
congestion would induce trip cancellations; and that they would cancel trips whose purposes were ‘not too important’ (p. 8). In a
hypothetical long-term (10-year) removal of public transport services, however, none of their interviewees considered cancelling
their trips. Nguyen-Phuoc et al. then (2018b) conducted a web-based survey (N = 640) that included a hypothetical question about a
major public transport removal. Over 13% of respondents stated that they would cancel their trip. Higher shares of trip cancellations
are associated with: female respondents; age over 50 years; lower income; no driving license; no car ownership; trips related to
education; trips to CBD; and longer trips.

3 Metz (2012) identified a remarkable stability in the average number of trips per person per year in Britain over a period spanning almost four
decades, based on NTS. A similarly stable average number of trips per person per day of just over three is found in all Norwegian NTS from 1992 to
2013/4 (Vagane et al., 2011; Hjorthol et al., 2014; Denstadli and Hjorthol, 2002; Hjorthol, 1999). Regarding non-travel, 10-15% of Norwegian NTS
respondents reported that they did not travel on the reference day. However, such NTS evidence does not provide insights into the question of
induced and suppressed demand, or indeed of non-travel responses to policies or events, as acknowledged by Andersen et al. (2009, footnote 15).
For example, although both the UK and the Danish NTS map reasons for not having made any trips, those reasons only refer to health and practical
matters (Christiansen and Skougaard, 2013; Andersen et al., 2009) and not to such things as unavailability of transport modes or prohibitively high
costs or travel times. The Norwegian NTS also places emphasis on health and practical reasons for non-travel but includes ‘bad weather’ and ‘no
access to car or other modes’ as possible reasons for non-travel on the reference day (Hjorthol et al., 2014).

*# Also, even an individual who makes multiple trips on a reference day may have cancelled one or more trips for some reason. Therefore, the
number of trips recorded, be it zero or many, offer limited insight into trip cancellations due to unavailability or high money/time costs.
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The volcanic ash cloud incident in 2010 shut down much of Europe’s aviation between 17 and 22 April. Mazzocchi et al. (2010)
cite various estimates of its impact, which includes 100,000 cancelled flights and 10 million cancelled passenger trips. While the
alternative of ‘not travel’ was available to those who had not yet embarked on their journey, those who were stranded at their
destinations and had their return flights cancelled either had to delay their trip home or find alternative modes of transport. During
this time, Mazzocchi et al. observed increased demand for Eurostar and ferry services between Britain, France, the Netherlands and
Spain.

Brechan (2010) analysed impacts of the ash cloud incident in Norway. Approximately 0.8 m trips were lost and the net reduction
was about 0.65m trips. Around one-quarter of Brechan’s respondents made the journey by means of alternative transport modes,
which included different flight (45%), train (26%), bus (24%), boat (15%) and private or rented car. Consequently, about three-
quarters postponed their journey or cancelled it altogether.

The most recent and comprehensive study regarding diversion factors to ‘not travel’ was conducted by Dunkerley et al. (2018),
who recommend diversion factors to ‘no travel’ of 10-25% based on a review of 1009 reported diversion factors from 45 studies.
However, Dunkerley et al. (2018) did not analyse the evidence beyond cross-tabulations of average values with standard errors.
Hence, there is no evidence of differences in diversion factors by type of intervention (pricing, infrastructure, service, etc.) or between
improvement vs deterjoration.”

In Norway, a recent research programme has evaluated major transport infrastructure and service shocks in and around the city of
Oslo, and has provided some empirical evidence relevant to the ‘not travel’ response (see Fearnley et al., forthcoming a,b; Tenngy
etal., 2015a, 2015b, 2016). The picture that emerges from their surveys of former passengers on discontinued bus and metro services
and of car commuters through closed tunnels is that non-travel is a relatively limited behavioural response to unavailability and a
considerable worsening of the transport service.®

3. Data

Our data stem from an online self-administered questionnaire (SAQ) conducted in May/June 2017. Respondents were recruited
from the membership base of the Norwegian Automobile Association (NAF), whose members comprise almost 10% of Norway’s adult
population. Of those members with a home address in one of Norway’s 10 largest cities, 60,000 were randomly selected and invited to
participate. Of these, 6853 completed the questionnaire, which corresponds to a response rate of 11.4%. Table 1 compares our sample
with that of the population. The public transport modal share is rather low in our sample compared to more representative survey
data. Correspondently, the car share is higher, which is probably due to the high representation of car owners and driver’s license
holders in our sample. Due to self-selection bias towards NAF, our sample almost entirely consists of individuals that have a drivers’
licence (99.7%) and at least one car at their disposal in the household (99.9%). These high shares made it impossible to weight
observations to make them representative for the total travel population in the 10 cities. Our sample is therefore a sample of car
owners/users and not a sample of travellers, or the population, in general. This is, however, very useful given the current policy push
towards zero-growth in car use in Norwegian urban areas (Norwegian Government, 2017).

Comparison with a more representative sample of car users from the NTS shows, furthermore, that our sample of NAF members
consists of many elderly people and is predominantly male, especially in the older age groups. We therefore weight observations in
each of the following analyses by age and gender, such that the weighted distributions fit with those observed in the NTS.

At the core of the survey, there are six stated choice tasks where respondents are asked to recall a trip they had taken the day
before the interview (the ‘reference trip’), and asked how they would have chosen in cases of hypothetical policies/situations, as
outlined in Table 2. Choice alternatives included car, public transport, walk, cycle, and ‘not travel’. For the response alternative of
continuing to use their current mode of transport, the text describing the choice alternative was formulated ‘remain using [mode]’.
Fig. 1 is a screenshot of a test interview and shows how the choice tasks were presented to respondents.

For the choice task with index ‘1b (car)’ in Table 2, those whose reference trip was a car trip would be asked about their
behavioural response to a hypothetical 50% increase in car costs (for petrol and road tolls). Of the 1723 respondents who were asked

° It appears uncertain whether evidence of induced demand (given improvements/carrot measures) like new infrastructure or reduced prices can
be transferred to predict suppressed demand (given deteriorations/restrictive policies). Indeed, arguments made by behavioural economists that
humans tend to regard losses as more severe than corresponding gains suggest that the effects and/or underlying factors are different. Income and
time budget restrictions are another reason why deterioration may be considered differently from improvements. Regarding ‘not travel’ it should
intuitively—at least on an individual level—matter in which direction the policy goes, as taking an extra trip is fundamentally different from not
taking a trip at all.

®Bus route 57 closed down on 4 April 2016. Six weeks later, its former passengers responded to a survey (N = 120). About 11% stated that they
travelled less often (and 1% travel more often). A similar survey was sent to passengers who used to travel the ‘@stensjebanen’ metro line, which
closed down for nearly a year for major refurbishment (N = 132). 11% stated that they travelled less often (and 5% travel more often). The same
research programme analysed a number of temporary (between a few months and up to two years) tunnel closures on main arteries and ring roads in
and around Oslo, Norway. Among commuters who were affected by the 2015 ‘Smestadtunnelen’ ring road tunnel (AADT ~ 50,000) closure, 54%
reported no behavioural response; 29% changed trip timing (i.e. they started their trips earlier or later); 8% reported mode shift; and 6% said they
had chosen another route. Only four per cent worked from home more often, which can be considered a ‘no travel’ response. A tunnel closure with
much farther-reaching consequences, but which only closed 50% of its lanes at a time, is the Bryn tunnel (AADT ~ 66,000). During its 2016 closure,
41% of commuters who had previously used the Bryn tunnel stated that they had made no behavioural changes; 33% had changed timing; 22% had
changed routes; and 13% had changed mode. Again, only a fairly small share, seven per cent, stated that they worked from home more often.
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Table 1
Geographical distribution of sample.
Index Urban area (based on reported postal code) Population Our sample (unweighted)
Inhabitants (1000 s)* Inhabitants per sqm* Share PT" N Percent Share PT

la Oslo city 653 4982 26 215 3.1% 33.9%
1b Oslo suburban 605 2 040 12 549 8.0% 17.8%
2a Bergen city 270 2 804 16 453 6.6% 11.3%
2b Bergen suburban 93 1383 7 237 3.5% 5.9%
3a Trondheim city 181 3047 12 424 6.2% 8.3%
3b Trondheim suburban 55 1648 7 197 2.9% 5.2%
4 Stavanger 131 3143 10 711 10.4% 10.4%
5 Nedre Glomma 123 1812 8 657 9.6% 6.7%
6 Drammen 66 2767 8 521 7.6% 11.5%
7 Tonsberg 40 1967 8 435 6.3% 5.9%
8 Grenland 83 1746 8 445 6.5% 2.5%
9 Kristiansand 85 2 316 8 629 9.2% 3.7%
10 Tromsp 65 2 876 8 755 11.0% 8.8%
0 Others (rural) Na Na Na 87 1.3% 8.2%
0 Unknown Na Na Na 539 7.9% 9.8%
Total 6 853 100% 9.4%

* Source: Statistics Norway.
** “Share PT’ refers to public transport mode share. Source: National Travel Survey (Hjorthol et al., 2014).

Table 2
Choice responses (weighted) on stated preference (SP) tasks.

Index SP task Weighted Count*  Car PT Cycle Walk  Not travel  Sum ‘change mode’

Current car users:

la (car) 10% increased car costs (petrol and road tolls) 1665 89.7% 4.6% 2.6% 1.5% 1.6% 8.7%
1b (car) 50% increased car costs (petrol and road tolls) 1723 83.2% 6.0% 5.2% 2.0% 3.6% 13.3%
1c (car) 100% increased car costs (petrol and road tolls) 1771 75.0% 9.9% 6.9% 3.0% 5.2% 19.8%
2a (car) 10% increased travel time 1723 90.3% 7.6% 1.0% 0.7% 0.4% 9.3%
2b (car) 50% increased travel time 1771 84.9% 9.0% 2.5% 0.4% 3.2% 11.9%
2c¢ (car) 100% increased travel time 1665 76.1% 13.4% 3.9% 0.5% 6.2% 17.7%
3 (car) Car not available at all 4788 NA 48.1% 18.4% 6.6%  27.0% 73.1%
For current PT users:

la (PT) 10% increased ticket prices 214 18.8% 73.4% 2.9% 4.7% 0.3% 26.3%
1b (PT) 50% increased ticket prices 192 29.8% 49.5% 15.7% 32% 1.7% 48.7%
1c (PT) 100% increased ticket prices 187 34.8% 48.0% 9.7% 3.4% 4.1% 47.9%
2a (PT) 10% increased travel time 192 7.4% 92.0% 0.6% 0.0% 0.0% 8.0%
2b (PT) 50% increased travel time 187 29.9% 58.8%  8.4% 0.8%  2.0% 39.1%
2¢ (PT) 100% increased travel time 214 43.2% 39.4% 135% 13% 2.6% 58.0%
3 (PT) PT not available at all 579 69.1% NA 18.1% 54% 7.4% 92.6%

* Weights are not rescaled within segments. That is why the sum does not equal the (unweighted) number of observations in Table 4.

this question, 83.2% stated that they would continue using a car in this scenario. Six per cent would switch to public transport, 5.2%
would cycle, 2% would walk and 3.6% would not make that trip (‘not travel’).

The option ‘not travel’ was only included in restrictive policy scenarios, on which we focus in this paper. A description of
responses to carrot measures, like free public transport, is provided in Fearnley et al. (2018).

Since the survey was designed for short-distance transport (and thus ‘air’ was not given as a possible alternative), we excluded all
trips longer than 100 km (about five per cent of the sample).

The SP tasks included in this paper are presented in Table 2 alongside the corresponding response shares.

Looking at the response shares in Table 2, we see a consistent pattern regarding the intensity of the policy. The bigger the change,
the lower the share that remains using the current transport mode and the higher the share of stating ‘not travel’ and ‘change mode’
(the latter is given in the last column in Table 2 as the sum of shares to other (non-reference) transport modes). If the intensity is
‘absolute’, i.e. when the current mode is assumed unavailable (choice task with index 3), shares of ‘not travel’ and ‘change mode’ are
high.

Car users are more likely to choose ‘not travel’ compared to PT users (who, in our sample, own a car), especially in choice task 3.
Even greater differences between car and PT are found in the choice to remain using the current mode and to change the transport
mode. Car users are less likely to change their transport mode. This partly relates to the fact that PT users in our sample are also car
owners and have a decent alternative (the car) available. Those of our respondents who used PT for their reference trip state a mode
switching response that is very large compared with the general evidence of the demand effects of price and travel time changes (cf.
Balcombe et al., 2004).
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Fig. 1. Screenshot of choice task: ‘Imagine that your car trip took 9 min longer. Your total travel time becomes 28 min. What would you have
chosen?” Alternative responses are: continued with car; public transport; bicycle; walk; I would not travel.

While it is perfectly within expectation that our car-owning sample would react stronger to an increase in fares or travel time than
the average PT passenger, it is clear that SP studies (alone) typically lack external validity to infer own- and cross-elasticities of
demand. As mentioned earlier, we therefore do not focus on absolute market shares and absolute derived elasticities. Instead, since
this study has strong internal validity—i.e. the ability to explain variation across the sample in a meaningful way, as indicated by the
expected pattern of response in Table 2—our focus is on cross-sectional variation.

Tables Al and A2 in the Appendix A show the response pattern for work-related and non-work trips. As expected, the share of
respondents replying ‘not travel’ is considerably larger in the non-work sample (for the related hypothesis testing, we refer to the next
section).

4. Discrete choice modelling and estimation results

Discrete choice models—logit models, in particular—are the standard method to investigate choice probabilities among finite,
exhaustive and mutually exclusive alternatives. For our data, we define the choice alternatives to be

(1) Remain using current transport mode (R)
(2) Change transport mode (C)
(3) Not travel (NT)

This compact and generic specification of the choice set allows us to run identical models for the car and the PT segments.

The bold numbers in Table 2 show the aggregated choice responses. Note that ‘remain current transport mode’ is not an alter-
native in SP task 3 where current mode is not available.

The purpose of the estimation models is to investigate the hypotheses stated in the introduction section. The utility function for
NT is therefore parameterized with different explanatory variables (see below). By investigating the size and significance of the
related beta coefficients we can investigate which variables are important drivers behind the propensity to choose ‘not travel’ as a
consequence of restrictive policies and the event that the current mode is unavailable.

Our models are mixed logit models for panel data (see, e.g., Train, 2009) that include normally distributed error components with

68



S. Fliigel, et al. Transportation Research Part D 77 (2019) 63-76

mean zero and to-be-estimated variance. They are designed to capture unobserved taste variation towards certain alternatives across
respondents, i.e. taste variation that is not already explained by the explanatory variable. As shown in many applications in the field
of transport and other disciplines, mixed logit models (MXL) typically outperform multinomial logit models (MNL). This relates to the
fact that the stochastic part of the MNL is only captured by identical and independent Gumbel-distributed error terms, whereas
additional error components in the MXL models capture how individuals have different tastes beyond what is captured by observable
explanatory variables.

The choice probability (P) for ‘not travel’ of respondent n in choice task t is formally given as:

eYNTnt

Byt = eVWrnt 4 eV 4 eVCun (1)
The probability function for ‘remain’ (R) and ‘change’ (C) correspond. Since all three probabilities need to sum up to 100%,
explanatory variables that affect the utility of ‘non-travel’ will also affect the probability of R and C.
The systemic utility function of the three alternatives are further specified as:

Ven = .BR,D + Pron with qDR,n”N(Oi UR,H) (2)
Ven =Beo+ $en With @ ,~N(0, oc.z) 3)

V‘VT‘TLJ = ,Q\r;("n + Z ﬁk *® Xk‘n,t + gom"n with gDC.nNN (09 C"1\4”1',)1)
P 4
where the constant terms capture the average effect of the stochastic part of the utility. The phi-terms in Egs. (2)-(4) are the above-
mentioned error components with a mean value of zero and to-be-estimated standard error ofg,. Note that these terms are constant
over choice task t for respondent n.
Xp.nt are the explanatory variables (some of which vary with t) and §, are the corresponding beta parameters measuring the
marginal effect of the variables on the utility of ‘not travel’.

Because utility has no natural scale, we need to normalize one constant term so as to identify all parameters; we apply g, , = 0.

VNT,n,
For the SP tasks with index 3 (current mode unavailable), and Eq. (1) reduces to Pyr,: = %

The explanatory variables of the X-vector are described in Table 3, while Table A1 in the Appendix A reports descriptive statistics
of the explanatory variables.

The square root transformation of the intensity variables was introduced because a pre-test showed that linear (non-transformed)
specifications tend to overpredict behavioural changes at large intensities (100% increases in the attributes).

We tested some other variables like age and a dummy for respondents living in larger cities, but those were omitted from the final
model because these variables had low t-statistics in both the car and the PT model already in the MNL version of the models. In
general, we are limited to the available variables from the survey; the geographical information about the trip in the survey was not
detailed enough to import reliable information from network models. Note that the inclusion of additional error components partly
captures the effects of omitted variables (unobserved attributes).

The models are estimated in Biogeme (Bierlaire 2003) by maximizing the weighted simulated log-likelihood using 1000 Halton
draws. Table 4 shows the estimation results.

The models have a decent goodness-of-fit (adjusted rho-square of 0.482 for the car model and 0.396 for the PT model). However,
much is associated with the alternative specific constants (8, and Sy o), as seen by the relative low value of the adjusted rho-square
statistic (Adj. rho square (c)). The contributions of the explanatory variables alone therefore appear modest (see Tables A4 and A5 in
Appendix A for the reduced models). This is likely related to the fact that the explanatory variables describe a choice alternative (‘not
travel’) that has a relative low market share to begin with. It may therefore not be surprising that the explanatory variables, despite
being largely statistically significant, do not contribute that much to the overall likelihood of the observed choices.

It is worth mentioning that the model specification was not chosen to achieve the highest possible fit, but rather to investigate the
hypothesis relating to ‘not travel’ in the most direct way. For the PT model, the contributions of the unobserved heterogeneity are
larger than those from observed heterogeneity: going from Final-LL of —319.864 in the ‘constant only’ model (compare with Table
A5 in the appendix) to —313.311 in the multinomial logit model (MNL) where ¢, ., ¢., and g, , are assumed fixed to zero, to

Table 3
Explanatory variables in utility function of “not travel”.
Short name  Variable name Type of variable Varies with  Explanation
Dist. Distance Continuous in km n Self-reported distance of reference trip
Male Male Dummy n 1 if gender of respondent is male
Work Work-related Dummy n 1 if trip purpose commuting or business
Bad Bad_alternatives Dummy n 1 if respondents ticked ‘other alternative are unacceptable’ for their motivation of the
reference mode
Una Unavailable Dummy t 1 if choice task index 3
C_time Constant_time Dummy t 1 if choice task index 2
I time Intensity time sqr  Continuous in % t % increase in the time attribute (choice index 2); square root transformed
I cost Intensity_cost sqr ~ Continuous in % t % increase in the cost attribute (choice index 1); square root transformed
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Table 4
Estimation results of mixed logit models that explain the probability of ‘not travel’
Car PT

Observations/respondents 15308/5236 1620/544
Final-LL —2619.114 —304.406
Adj. rho square (0) 0.482 0.396
Adj. rho square (c)* 0.091 0.014
Parameter Short explanation Value Robust T-stat Value Robust T-stat
Be.o Mean value of change transport mode —2.98 —-23.29 —0.587 —-4.32
ac.n Sigma value of change transp. mode 1.84 16.48 —-1.17 -5.15
Bro Mean value of remain transport mode 0 fixed 0 fixed
R,n Sigma value of remain transp. mode 1.05 3.87 0.0381 0.19
Byt Mean value of not travel —6.17 —13.27 —8.24 —4.02
INT,n Sigma value of not travel 1.33 6.47 2.00 4.58
Dist. Distance of reference trip 0.0265 8.53 0.0301 2.85
Male Male respondent 0.135 0.148 0.0142 0.03
Bad Other alternatives perceived as bad 0.883 5.69 0.296 0.38
Una Current mode not available 1.21 2.88 3.48 217
1 time Scope of the time change 0.199 3.98 0.404 2.34
I cost Scope of the cost change 0.408 7.07 0.35 2.2
C time Policy is travel time related —1.78 —2.74 0.0715 0.04
Work Commuting/business trips -1.71 —10.25 —-1.29 —2.43

* Computed against the Final-LL of the “MNL_ASC” model in the appendix, i.e. a model that just includes the constant terms.

—304.406 in the mixed logit model. In the car model, we observe a similar pattern for the contributions.”

Looking at the explanatory variables, we see that distance has a positive effect on the probability of ‘not travel’. As this result is
statistically significant (with t-stats beyond the critical limit of 1.96 for a 95% level of confidence), we have empirical support for
hypothesis H2 stated above.

When respondents stated that ‘other alternatives were unacceptable’ for their reference trip (dummy ‘Bad_alternative’ = 1), we
see that the likelihood of ‘not travel’ increases. The effect is lower for PT compared to car (0.296 vs 0.883), and in the case of PT it is
not statistically significantly different from zero; this may be partly due to the low number of respondents who reported this mo-
tivation for their choice of reference mode (6.4% as shown in Table A3 in the Appendix A). From the car model, we do get support for
hypothesis H4, suggesting that ‘not travel’ may be more likely in situations without any good options besides the current transport
mode.

Choice task 3, where the current mode is assumed to be not available, has—as expected from the observed choice responses
presented in Table 2—a strong positive effect on ‘not travel’, giving clear support for hypothesis H5.

Both variables ‘Intensity_cost_sqr’ and ‘Intensity_time_sqr’ are statistically significant (in both models), supporting hypothesis H3
that the intensity or severity of the policy affects the likelihood of ‘not travel’. The numerical values of the two variables need to be
seen together with the ‘Constant_time’ variable. We refer to the next sections for analysis as to the degree to which the intensity
influences the probability of ‘not travel’ for time and cost changes.

The dummy for male is not statistically significant and is not further discussed here. Finally, the coefficient for the dummy for
work-related trips is significantly negative, supporting our intuition that ‘not travel’ is less likely for work-related trips (hypothesis
H1).

In summary, our assessment of the hypothesis stated in the introduction section is as follows:

H1 Lower for work-related trips as those trips are likely to be unavoidable: Supported. The coefficient for work-related trips is sig-
nificantly negative, meaning that ‘not travel’ is less of an alternative for work trips.

H2 Increases with trip distance: Supported. We found that distance has a significantly positive effect on the likelihood of ‘not travel’.
H3 Increases with the intensity/scope of the policy: Supported. There is a significant effect of higher intensity of the change. Higher
costs and longer travel times give higher probabilities for ‘not travel’.

H4 Higher for situations where there is no (perceived) alternative to the current mode: Partly supported. When respondents state that
‘other alternatives were unacceptable’ for their reference trip, we see that the likelihood of ‘not travel’ increases. This effect is
found to be significant for the car user subsample but not for the PT user sample (possibly because of the low number of PT users
stating ‘other alternatives were unacceptable’).

H5 Higher in (hypothetical) scenarios where the current mode is unavailable: Supported. When the current mode is assumed to be
unavailable, we find a significant, strong positive effect on ‘not travel’.

7 Going from Final-LL of —2895.779 in the ‘constant only’ model to —2750.275 for the multinomial logit model to —2.619.114 in the mixed logit
model for car.
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5. Monte-Carlo simulations

In this section, we simulate choice probabilities and diversion factors regarding ‘not travel’. The purpose of this application is to
illustrate the effect of some stylized policies for different subgroups of the population. The intention is also to get a better under-
standing of possible different outcomes of cost versus time increases. Because of the square-root-transformation in the choice model,
possible differences were not straightforwardly detectable from the estimation results alone.

We repeat that the focus in this paper is on cross-sectional variation (not absolute choice probabilities) and we therefore do not
calibrate the choice model with external data. The Monte-Carlo (MC) simulations are based on the estimated parameters from the
previous section alone. This includes the standard deviation of the additional error terms, capturing the effects of unobserved at-
tributes and unobserved taste heterogeneity.

The MC simulations are performed by taking sets of draws d from the distributions N (0, o ), N (0, o¢ ) and N (0, any,,) in Eq. (1)
given the point estimates for the variances, as presented in Table 4. We apply 30 sets of draws per respondent n in each of the two
subsamples. The average simulated choice probability over N individuals (weighted by w,) and D draws are given as:

_ 1 eVNT.nd
Pop = v
MTN«D Zn: zd: (v" eYNT.nd 4 eVRnd 4 ch:n,d) 5)

We also calculate average diversion factors towards ‘not travel’ as:

eYNT.n.d

= 1
DFNT - N«xD ; ; (Wn gVNT‘n,d +(.3V(?‘n,d)

These diversion factors can be interpreted as the choice probability for ‘not travel’ given that one is no longer using the existing
transport mode. An underlying (and somewhat restrictive) assumption of the applied models is that choice probabilities are in-
dependent of each other, such that the relative choice probabilities do not change when one alternative is removed from the choice
set.

Table 5 gives the average simulated choice probabilities (by formula 5) and diversion factors for ‘not travel’ (by formula 6) given
different stylized policies. Naturally, the diversion factors to ‘not travel” are larger than the choice probabilities because diversion
factors are only relative to the choice probability of ‘changing transport mode’.

The bold numbers in Table 5 can be directly compared to the response shares from Table 2. The simulated average probabilities fit
the observed shares well over the range of policies, which suggests that the applied square-root-transformations are appropriate.

Current car users have—on average—a higher probability of stating ‘not travel’ as a behavioural response to a policy. The effect of
the intensity variable is larger for car time increases compared to car cost increases. However, the effects for time increases start at a
lower level and first when applying very high changes (75%) we see a greater absolute effect for the time attribute. For PT users, the
differences in the time- and cost attribute are not statistically significant (the confidence intervals of ‘intensity time’ and ‘in-
tensity_cost’ in Table 4 are overlapping).

The effects of policy intensity on probability is roughly linear, indicating that the square-root-transformation and the S-shape of
the logit probability functions are levelling each other out to some degree.

Looking at average diversion factors, the difference between car users and PT users becomes even more apparent. This relates to
the fact that ‘changing transport’ mode is much more likely for PT users in our sample (cf. Table 2).

Results in Table 5 are averages over all trips within the two subsamples. Table 6 segments the results for given policies (here, 50%
increases for time and cost) by 6 subgroups defined by trip purpose and travel distance. We see a great variation, as the segment with
the largest effect (non-work trips over 20 km) have a more than 3-times higher average probability towards ‘not travel’ compared to

(6)

Table 5
Outcome of the Monte-Carlo simulation by policy.
Simulated policy Average probability of “not travel” Average DFs towards 'not travel'
Car users PT users Car users PT users

Cost increases by

5% 1.55% 0.29% 19.19% 1.19%
10% 1.81% 0.40% 20.87% 1.60%
25% 2.45% 0.77% 24.45% 2.78%
50% 3.41% 1.55% 28.86% 4.96%
75% 4.35% 2.57% 32.48% 7.45%
100% 5.31% 3.86% 35.66% 10.22%
Time increases by

5% 0.48% 0.28% 9.76% 1.14%
10% 0.68% 0.37% 12.03% 1.48%
25% 1.32% 0.65% 17.61% 2.40%
50% 2.69% 1.20% 25.61% 4.02%
75% 4.46% 1.89% 32.85% 5.82%
100% 6.65% 2.72% 39.52% 7.78%
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Table 6
Average diversion factors towards ‘not travel’. Outcome of the Monte-Carlo simulation for subgroups for given policies.
Trip purpose Trip distance 50% cost increases 50% time increases
Car users PT users Car users PT users
Work-related < 5km 13.15% 2.49% 11.09% 1.97%
5-20km 15.87% 2.78% 13.53% 2.19%
> 20km 25.64% 6.86% 22.50% 5.61%
Non-work < 5km 30.98% 5.39% 27.43% 4.29%
5-20km 34.98% 6.01% 31.21% 4.91%
> 20km 46.52% 13.90% 42.46% 11.71%

the group with the lowest effect (work-related trips below 5 km). This underlines a rather high observed heterogeneity in preference
in the sample.

It must be remembered that these are average values and that there is a high variation of individual probabilities within these
groups. This is illustrated in Fig. 2, which shows the cumulative distribution functions of the individual diversion factors given a 50%
increase in car costs.

As a reading example for Fig. 2, we derive that about 80% of respondents within the subgroup ‘work trips below 5 km’ (the black-
dotted uppermost line in the graph) have diversion factors of below 20%, while the corresponding share of respondents with a
diversion factor lower than 20% for longer distance non-work trips (the grey solid downmost line at the bottom of the graph) is 30%.

In all subgroups, some respondents have relative probabilities (i.e. diversion factors) of ‘not travel’ close to 0% and others have
probabilities close to 100%. As we hold the policy constant and control for observed subgroups, this variation within subgroups is
largely associated with unobserved heterogeneity in preferences (besides distance variation within the subgroups and possible dif-
ferent shares of people stating that they did not have decent alternatives).

6. Conclusions and implications

As pointed out in the introduction, implementing policies towards a ‘green mode shift’ may have the undesirable effect of su-
pressing certain trips. This is strongly supported by our data. Our data showed further that the probability for ‘not travel’ as a

Cumulative distribution functions of simulated individual diversion factors, 50% increase in car costs
100%

90%
80%
70%
60%
50%
40%
30%
20%

10%

Individual
0% diversion factors

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

- = = Work, <5km Work, 5-20km = = Work, >20km

Leisure, < 5km Leisure, 5-20km Leisure, >20km

Fig. 2. Cumulative distribution function of simulated individual diversion factors towards ‘not travel” in a hypothetical case of a 50% increase in car
costs.
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consequence of restrictive policies varies with several observable variables. In particular, it (a) is lower for work-related trips; (b) is
higher where respondents state they have no decent alternatives; (c) increases with trip distance; and (d) increases with the intensity
of the policy. In addition, our analysis identifies a large unobserved variation across individuals. Our paper therefore adds to the
literature, where ‘not travel’ has—to our knowledge—not been subject to anything but aggregate analysis and average numbers.

Our data, and the simulated choice probabilities from the presented models, indicate also that car users are more prone to react
with ‘not travel’ to restrictive policies compared to PT users. An important caveat for our study is that (almost) all respondents in our
sample live in a car-owning household (recall that they were recruited from the Norwegian Automobile Association’s membership
base), thus it can be expected that a rather high share of the respondents that currently use PT has at least one good travel alternative
(the car) available as an alternative. This has likely lead to a somewhat downwards bias in the response to ‘not travel’ for PT users.

The patterns in the empirical results and the results of the hypothesis testing presented in this paper are largely as expected a-
priori. They may therefore be consistent with the intuitions of politicians and transport planners guiding the formulation of policies.
Still, we believe a short discussion of practical implications of our results is in order. For the sake of argument, assume that decision-
makers are interested in reducing CO, emissions (or other negative externalities) from local transport and consider restrictive car
policies an effective strategy. However, they want to minimize the extent of suppressed trips (i.e. trips not undertaken) resulting from
the restrictive policies. In this setting it seems vital to offer travel alternatives that are perceived as acceptable (cf. H4). This suggests
that many restrictive car policies should go hand-in-hand with improvements (‘carrots’) for public transport, walking or cycling—not
so much for the isolated effect of the carrot measure on mode choice, but to sustain the level of mobility for citizens.

Regarding the intensity of policy (cf. H3) there seems to be a clear trade-off. More severe restrictive car policy (e.g. higher road
tolls) will have a larger effect on environmentally-friendly mode shift but are also likely to limit mobility to a larger degree. Reducing
PT fares may be an equitable way to offset that mobility loss due to restrictive car policies that typically impact individuals from low-
income households.

Of course, for some types of travel, PT is not a realistic alternative. In this situation, an implication (cf. H2) is to aim at policies
that target short car trips (compared to long ones), as short car trips can in many situations be replaced by walk and cycle trips.
Increasing fees for parking may be such a policy since parking fees have a relatively higher impact on total travel cost for short
distance trips.

Another implication (cf. H1) could be to aim specifically for work trips, e.g. by restricting workplace parking availability or
having higher road tolls in commuting hours, as our analysis shows that work trips are significantly less likely to be suppressed.
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Appendix A

See Tables A1-A5.

Table A1

Choice responses (weighted) on stated preference (SP) tasks, work related trips only.
Index SP task Weighted Count Car PT Cycle Walk Not travel Sum ‘change mode’
Current car users:
1a (car) 10% increased car costs (petrol and road tolls) 735 90.7% 4.6% 3.4% 1.1% 0.2% 9.1%
1b (car) 50% increased car costs (petrol and road tolls) 757 82.7% 6.5% 6.7% 2.4% 1.7% 15.6%
1c (car) 100% increased car costs (petrol and road tolls) 740 70.7% 13.4% 9.4% 2.7% 3.7% 25.6%
2a (car) 10% increased travel time 757 88.9% 8.8% 1.2% 0.9% 0.1% 10.9%
2b (car) 50% increased travel time 740 85.3% 9.7% 3.4% 0.4% 1.2% 13.5%
2c (car) 100% increased travel time 735 75.4% 16.7% 4.0% 0.5% 3.4% 21.2%
3 (car) Car not available at all 2067 NA 559%  23.8% 4.6% 157% 84.3%
For current PT users:
la (PT) 10% increased ticket prices 171 21.3% 71.7% 3.4% 3.5% 0.0% 28.3%
1b (PT) 50% increased ticket prices 137 32.2% 50.7%  13.0% 3.2%  0.9% 48.3%
lc (PT) 100% increased ticket prices 136 348% 472% 10.0% 3.4% 47% 48.2%
2a (PT) 10% increased travel time 137 8.3% 90.9% 0.9% 0.0% 0.0% 9.1%
2b (PT) 50% increased travel time 136 33.8% 528% 11.3% 07% 1.3% 45.8%
2¢ (PT) 100% increased travel time 171 42.9% 37.1% 16.7%  0.8%  2.4% 60.4%
3 (PT) PT not available at all 437 70.7%  0.0% 211% 22%  6.0% 94.0%
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Table A2
Choice responses (weighted) on stated preference (SP) tasks. non-work trips only.

Index SP task Weighted Count  Car PT Cycle Walk Not travel ~ Sum ‘change mode’

Current car users:

1a (car) 10% increased car costs (petrol and road tolls) 930 88.9% 4.6% 2.0% 1.8% 2.7% 8.3%
1b (car) 50% increased car costs (petrol and road tolls) 966 83.6% 5.6% 4.1% 1.6% 5.0% 11.4%
lc (car) 100% increased car costs (petrol and road tolls) 1031 78.1% 7.3% 5.1% 3.2% 6.3% 15.6%
2a (car) 10% increased travel time 966 91.4% 6.6% 0.8% 0.6% 0.7% 8.0%
2Db (car) 50% increased travel time 1031 84.7% 8.6% 1.8% 0.4% 4.6% 10.8%
2c (car) 100% increased travel time 930 76.6% 10.8% 3.8% 0.4% 8.4% 15.0%
3 (car) Car not available at all 2721 NA 42.0% 14.2% 8.1% 35.7% 64.3%
For current PT users:
la (PT) 10% increased ticket prices 43 8.6% 80.0% 0.6% 9.2% 1.5% 18.5%
1b (PT) 50% increased ticket prices 55 24.0%  46.6%  22.6% 3.1% 3.7% 49.8%
lc (PT) 100% increased ticket prices 51 35.0% 50.3% 8.7% 3.5% 2.5% 47.2%
2a (PT) 10% increased travel time 55 5.2% 94.8%  0.0% 0.0% 0.0% 5.2%
2b (PT) 50% increased travel time 51 19.4%  749% 0.5% 1.3% 3.9% 21.2%
2¢ (PT) 100% increased travel time 43 44.6%  482%  0.6% 3.2% 3.3% 48.4%
3 (PT) PT not available at all 143 64.5% NA 8.8% 151% 11.6% 88.4%
Table A3
Explanatory variables in utility function of ‘not travel’.
Car users PT users
Mean Min Max Mean Min Max
Distance (km) 19.970 0 100 22.996 1 100
Male 0.728 0 1 0.653 0 1
Work-related 0.387 0 1 0.706 0 1
Bad_alternatives 0.283 0 1 0.064 0 1
Unavailable 0.316 0 1 0.328 0 1
Constant_time 0.342 0 1 0.336 0 1
intensity_time (%°0.5)* 2.302 0 10 2.227 0 10
Intensity_cost (%°0.5)* 2.303 0 10 2.310 0 10
* Included 0% for choice task 3.
Table A4
Reduced models for car users.
ASC_model MNL_models MNL. fixed
Observations 15,308 15,308 15,308
Final-LL —2895.779 —2750.275 —2768.427
Adj. rho square (0) 0.43 0.457 0.454
Adj. rho square (c) 0.046 0.043
Value Robust T-stat Value Robust T-stat Value Robust T-stat
B_(C.0) —1.89 —41.15 —1.82 —38.2 —2.97 -16.9
B.(R.O) 0 —fixed— 0 —fixed— 0 —fixed—
B_(NT.0) —2.98 —58.11 —4.88 —13.83 —5.65 —24.2
Distance 0.0182 8.88 0.027 —fixed-
Male 0.157 1.61 0.162 —fixed—
Bad_alternatives 0.709 713 0.916 —fixed—
Unavailable 1.84 5.33 0.632 —fixed-
Intensity cost sqr 0.179 4.15 0.014 —fixed-
Intensity time sqr 0.344 6.48 0.0279 —fixed—
Constant_time —1.43 —2.31 —1.06 —fixed—
Work-related -1.19 —11.21 —-1.74 —fixed-
Homogeneity parameter 0.657 —-9.22

74



S. Fliigel, et al. Transportation Research Part D 77 (2019) 63-76

Table A5
Reduced models for public transport users.
ASC_model MNL_models MNL_fixed
Observations 1620 1620 1620
Final-LL —319.864 —313.311 —313.502
Adj. rho squ (0) 0.387 0.384 0.397
Adj. rho square (c) —0.005 0.014
Value Robust T-stat Value Robust T-stat Value Robust T-stat

B_(C.0) —0.472 —4.35 —0.455 —-4.17 —0.663 —16.85
B_(R.0) 0 —fixed- 0 —fixed— 0 —fixed-
B_(NT.0) -3.21 —15.96 —6.11 —4.67 —7.84 —21.97
Distance 0.0201 2.59 0.0301 —fixed-
Male —0.0219 —0.06 0.0142 —fixed—
Bad_alternatives 0.0904 0.15 0.296 —fixed—
Unavailable 3.18 2.56 3.48 —fixed-
Intensity_cost_sqr 0.346 2.43 0.404 —fixed—
Intensity time sqr 0.334 2.32 0.35 —fixed—
Constant_time —0.158 —0.09 0.0715 —fixed—
Work-related —0.834 —-2.11 -1.29 —fixed-
Homogeneity parameter 0.696 —-1.98
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