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A B S T R A C T   

The relationship between driver mileage and accident involvement has been a controversial topic for at least 20 
years. The key issue is whether driver accident involvement rate increases in proportion to miles driven or has a 
non-linear relationship to miles driven. This paper presents a synthesis of evidence from studies of how the 
number of accidents per driver per unit of time relates to distance driven in the same period. Most studies of this 
relationship are methodologically weak and their results highly inconsistent and potentially misleading. Unre
liable data and poor control for confounding factors characterise most studies. Only a few studies based on 
multivariate statistical models control for at least some of the confounding factors that may influence the 
relationship between distance driven and accident involvement. These studies consistently show that the number 
of accidents per driver per year increases less than in proportion to distance driven. A good approximation is that 
the number of accidents per driver per unit of time is proportional to the square root of distance driven. Potential 
methodological and substantive explanations of this finding are discussed.   

1. Introduction 

The use of accident rates to control for the effect on the number of 
accidents of distance driven has a long history in road safety research. 
An accident rate (accidents divided by distance driven) implies a linear 
relationship between distance driven and the number of accidents: if you 
drive twice as long, you can expect twice as many accidents. However, 
since about 1995 (Hauer, 1995), there has been increasing doubt about 
the validity of accident rates. With respect to driver accident rates, 
studies showing a non-linear relationship between mileage and the 
number of accidents started to appear around 1990 (Janke, 1991). A 
paper in 2002 by Hakamies-Blomqvist et al. (2002) set off a discussion 
about so called “low mileage bias”. Low mileage bias refers to the biased 
impression that older drivers have higher accident rates than other 
drivers, when in fact their accident rates are no higher than other drivers 
with a low annual mileage. The discussion about low-mileage bias has 
continued and no consensus has emerged (Staplin et al., 2008; Langford 
et al., 2008; af Wåhlberg, 2009). 

The objective of this paper is to systematically review and summarise 
the findings of studies of the relationship between drivers’ annual 
driving distance and accident involvement rate (accidents per driver per 
unit of time). Three main questions are asked: (1) Is the relationship 
linear or non-linear? (2) If non-linear, what is the shape of the rela
tionship? (3) What could be the explanations of a non-linear 
relationship? 

2. Literature survey 

Sciencedirect and Google Scholar were searched using “mileage” 
AND “accidents” OR “crashes” as search terms. There were no language 
restrictions and no limits on study age. 16 studies containing relevant 
data were identified. Table 1 lists these studies in chronological order. 

For each study, Table 1 lists the year it was published; the country 
where it was conducted; the groups of drivers included; the source of 
accident data; the source of exposure data; how mileage was opera
tionally defined (as a variable stating driving distance in intervals or as a 
continuous variable); the number of distance categories used if distance 
was stated by means of intervals; how data were analysed and the 
number of confounding variables controlled for in analysis. 

The studies were published between 1991 and 2021. Eight countries 
are represented, all of them high-income and highly motorised. All 
studies included non-professional drivers of both genders. Some studies 
included drivers of all ages, other studies included only young or old 
drivers. In most studies, both accidents and mileage were self-reported 
by drivers. Two main approaches to analysis of data are found in the 
studies. The first is to tabulate data on driving distance and accident rate 
and fit curves to the data. The second is to develop multivariate statis
tical models to explain variation in driver accident involvement. 

Table 2 gives an example of tabulated data. The table is taken from 
Forsyth et al. (1995). It shows data for females during their three first 
years of driving. Mileage is stated as an interval. There are seven 
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intervals. The driving distance at the midpoint of each interval is stated 
at the bottom of the Table. There are two estimators of driver accident 
involvement: (1) Accidents per driver per year, (2) Accidents per million 
miles driven. 

The two estimators of accident involvement move in opposite di
rections. As driving distance increases, the number of accidents per 
driver per year also increases. The number of accidents per million miles 
driven, however, goes down. For reasons explained in the next section of 
the paper, the best estimator of driver accident involvement is the 
number of accidents per driver per unit of time. 

To summarise tabulated data like those shown in Table 2, one may fit 
curves to the data points. Fig. 1 shows an example of this. A curve was 
fitted to the data on accidents per driver per year for females in their 
second year of driving, shown in Table 2. 

A power function best fitted the data. It closely tracks the data points. 
The goodness-of-fit statistics (R-squared) is therefore close to its 
maximum value of 1. 

3. Methodological aspects of the studies 

There are two types of studies of the relationship between driving 
distance and driver accident involvement. One type of study tabulates 
accident rates for drivers belonging to different intervals for annual 
driving distance. Table 2 and Fig. 1 illustrated this type of study. The 
other type of study develops multivariate statistical models to explain 

variation in driver accident involvement. Most of the studies listed in 
Table 1 are of the first type. In particular, the tradition of “low-mileage- 
bias” studies started by Hakamies-Blomqvist et al. (2002), tabulated 
data on accidents per million vehicle kilometres of driving for drivers 
belonging to three intervals for driving distance: (1) <3000 km, (2) 
between 3000 and 14,000 km, and (3) more than 14,000 km (Langford 
et al., 2006; 2008; 2013; Alvarez and Fierro, 2008). 

All “low-mileage bias” studies found that accident rate declined 
sharply as annual driving distance increased. There are, however, 
several problems with these studies. These problems make their results 
highly uncertain and possibly misleading. The most important problems 
are:  

1. Driving distance, and in some studies, accidents are self-reported by 
drivers. Self-reported data have been found to be inaccurate.  

2. Each study has few data points, between 3 and 7. This limits the 
possibilities of testing different functional forms describing the 
relationship between driving distance and accident involvement.  

3. The studies do not control for any confounding variables, except for 
age. In most studies, fairly large age groups (e.g. 31–64) are used. 

4. The definition of exposure (driving distance) and accident involve
ment (accidents per million kilometres of driving) can generate a 
spurious negative relationship between the variables. 

Staplin et al. (2008) found that low-mileage drivers understated their 

Table 1 
List of studies.     

Study    Country   
Groups of 
drivers 
included   

Source of 
accident data 

Source of 
exposure data   

Estimate of 
driving 
distance 

Number of 
distance 
categories    

Approach to data 
analysis   

Confounders 
controlled for 

Janke, 1991 United 
States 

All ages State records Self-reported Midpoints of 
intervals 

7 Curves fitted to 
tabulated data 

0 

Maycock and 
Lockwood, 
1993 

Great 
Britain 

All ages Self-reported Self-reported Midpoints of 
intervals and 
exact values 

6 or continuous 
variable 

Curves fitted to 
tabulated data and 
multivariate statistical 
model 

8 in multivariate 
analysis 

Forsyth et al., 
1995 

Great 
Britain 

Newly 
licensed (most 
aged < 30) 

Self-reported Self-reported Midpoints of 
intervals and 
exact values 

7 or continuous 
variable 

Curves fitted to 
tabulated data and 
multivariate statistical 
model 

7 in multivariate 
analysis 

Assum, 1997 Norway All ages Self-reported Self-reported Midpoints of 
intervals 

7 Curves fitted to 
tabulated data 

1 

Massie et al., 
1997 

United 
States 

All ages Official 
statistics 

Self-reported Exact values Continuous 
variable 

Multivariate statistical 
model 

8 in multivariate 
analysis 

Lourens et al., 
1999 

Netherlands All ages Self-reported Self-reported Midpoints of 
intervals 

5 Curves fitted to 
tabulated data 

1 

Hakamies- 
Blomqvist 
et al., 2002 

Finland Ages 26–40 
and 65- 

Self-reported Self-reported Mean values for 
intervals 

3 Curves fitted to 
tabulated data 

1 

Fontaine, 2003 France All ages Official 
statistics 

Self-reported Midpoints of 
intervals 

3 Curves fitted to 
tabulated data 

1 

Langford et al., 
2006 

Netherlands All ages Not stated Self-reported Mean values for 
intervals 

3 Curves fitted to 
tabulated data 

1 

Alvarez and 
Fierro, 2008 

Spain All ages Self-reported Self-reported Mean values for 
intervals 

3 Curves fitted to 
tabulated data 

1 

Ferreira and 
Minikel, 2012 

United 
States 

All ages Insurance 
claims 

Odometer data Exact values Continuous 
variable 

Multivariate statistical 
model 

2 

Boucher et al., 
2013 

Spain Young drivers 
(<40) 

Insurance 
claims 

Odometer data Exact values Continuous 
variable 

Multivariate statistical 
models 

1 to 3 

Langford et al., 
2013 

Australia Older drivers 
(70-) 

Self-reported Self-reported Midpoints of 
intervals 

3 Curves fitted to 
tabulated data 

1 

Antin et al., 
2017 

United 
States 

Older drivers 
(65-) 

Naturalistic 
driving data 

Naturalistic 
driving data 

Mean values for 
intervals; exact 
values 

7 or continuous 
variable 

Curves fitted to 
tabulated data and 
multivariate statistical 
model 

2 in multivariate 
model 

Hua et al., 2018 Australia Older drivers 
(75-) 

Self-reported Naturalistic 
driving data 

Mean values for 
intervals 

3 Curves fitted to 
tabulated data 

1 

Elvik, 2021 Norway Age 24 Self-reported Self-reported Exact values Continuous 
variable 

Multivariate statistical 
model 

4  
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driving distance. High-mileage drivers tended to overstate their driving 
distance. The true difference in driving distance between high-mileage 
and low-mileage drivers is therefore smaller than the self-reported dif
ference. Langford et al. (2008) argued that the errors were not large 
enough to eliminate the tendency for accident rate to decline with 
increasing annual driving distance. It was, however, large enough to 
create bias in any curve or coefficient fitted to describe this relationship. 
Af Wåhlberg and Dorn (2015) show that the test–retest reliability of self- 
reported data on mileage, violations and accidents is low. In other 
words, drivers do not, for example, always report the same driving 
distance when asked about it at intervals of 3 to 7 months. Therefore, 
data recorded by insurance companies or public authorities are 
preferred to self-reported data. In the studies relying on insurance data, 
the focus is on accidents, which means that other events that may be 
reported to insurance companies, such as theft or vandalism, are un
likely to be included in the data. 

Most of the “low-mileage bias” studies have only three data points 
(three intervals for driving distance). This means that a second-degree 
polynomial will fit the data points perfectly and always be preferred if 
different functional forms are assessed according to their goodness of fit. 
Most common functional forms – linear, power, logarithmic, exponen
tial or polynomial – will fit well when there are few data points. The 
parameters of these functions will be spuriously precise. 

Several factors influence the relationship between driving distance 
and accident involvement. In particular, low-mileage drivers and high- 
mileage drivers differ with respect to the traffic environments they do 
most of their driving in. Table 3 shows some the differences that have 
been found in some studies. 

Forsyth et al. (1995) found that male low-mileage drivers do 9 % of 
their driving on motorways. High-mileage drivers do 24 % of their 
driving on motorways. Since motorways have a low accident rate, part 
of the reason why high-mileage drivers have a lower accident rate than 
low-mileage drivers could be that they do more of their driving on the 
safest roads. 

Keall and Frith (2006) found that low-mileage drivers do more of 
their driving on urban roads in daytime than high-mileage drivers. The 
net effect of this on accident rate is not clear. On the one hand, accident 
rate tends to be lower in daytime than at night. On the other hand, urban 
roads have a higher accident rate than rural roads, at least with respect 
to less serious accidents. Hanson and Hildebrand (2011), like Forsyth 
et al. (1995), found that high-mileage drivers do more of their driving on 
highways (which presumably includes motorways) than low-mileage 
drivers. 

These differences between low-mileage and high-mileage drivers 
mean that it is important to control for type of traffic environment when 
estimating the effect of driving distance on accident involvement. Only 
studies based on multivariate statistical models can do this well. In 
studies based on cross-tabulation, drivers can be divided into groups 
which are homogeneous with respect to confounding variables, but this 
rapidly reduces sample size. 

Finally, the definition of risk and exposure in the “low-mileage bias” 
studies can generate a spurious negative relationship between the var
iables. Risk is estimated as the number of accidents per kilometre driven 

(A/B). Exposure is defined as the number of kilometres driven by each 
driver (B/C). In other words, risk equals A/B and exposure equals B/C. 

It is obvious that defining exposure and risk this way can generate a 
spurious negative relationship between exposure and risk. Consider 
what happens when B increases. All else equal, the value of A/B will 
decrease, i.e. risk is reduced. When B increases, the value of B/C in
creases, i.e. exposure increases at the same time as risk decreases. There 
is thus, by definition, a negative relationship between exposure and risk. 
Elvik (2013) generated random numbers for traffic volume and acci
dents for 159 junctions and showed that a negative relationship between 
exposure and risk could arise from these random numbers. 

There does not have to be a negative relationship between driving 
distance and accident rate; the result stated above applies only if A (the 
number of accidents) and C (the number of drivers) are kept constant 
while B (kilometres per driver) increases. However, to avoid ambiguity, 
it is better to estimate accident involvement as the number of accidents 
per driver per unit of time. This definition of accident involvement is 
consistent with the use of count regression models, like negative bino
mial regression, in developing statistical models to explain variation in 
the number of accidents between units of observation (drivers, road 
sections, bridges, etc.). Furthermore, it may be noted that the count of 
accidents usually has a known statistical distribution (Poisson, negative 
binomial, Poisson-lognormal, etc.) in a sample of drivers, whereas ac
cident rates (accidents per mile) have no known distribution. 

In sum, the problems associated with the “low-mileage bias” studies 
support rejecting these studies as potentially erroneous because of un
reliable data, few data points, poor control of confounding variables and 
an unsuitable definition of the variable measuring accident involve
ment. The synthesis of evidence therefore only includes studies 
employing multivariate count regression models. 

4. Data extraction from studies included in synthesis 

The studies that are candidates for a formal synthesis of their findings 
by means of meta-analysis are Maycock and Lockwood (1993), Forsyth 
et al. (1995), Massie et al. (1997), Ferreira and Minikel (2012), Boucher 
et al. (2013), Antin et al. (2017) and Elvik (2021). All these studies have 
the following characteristics:  

1. A multivariate statistical model was developed to explain variation 
in accident involvement, controlling for at least some of the con
founding factors that may influence the relationship between driving 
distance and accident involvement.  

2. The mathematical formulations of the models are similar or allow for 
similar interpretations of the regression coefficients.  

3. Driving distance was included as a continuous variable, which can 
take on any positive value. 

Whether these similarities are sufficient to make the estimated 
regression coefficients for driving distance comparable is discussed in 
the next section. From each of the studies, one or more regression co
efficients referring to driving distance, and the standard error of the 
coefficient, were extracted. 

Table 2 
Example of tabulated data. Taken from Forsyth et al., 1995.    

Annual mileage 

Year of driving Females < 1000 1000–2999 3000–4999 5000–6999 7000–9999 10000–14999 15,000 or more 

First Accidents per year 0.101 0.145 0.162 0.195 0.197 0.279 0.260  
Accidents per million miles 202.0 72.5 40.5 32.5 24.3 22.3 13.0 

Second Accidents per year 0.055 0.093 0.119 0.128 0.139 0.175 0.227  
Accidents per million miles 110.0 46.5 29.8 21.3 17.4 14.0 11.4 

Third Accidents per year 0.055 0.082 0.091 0.099 0.147 0.172 0.175  
Accidents per million miles 110.0 41.0 22.8 16.5 18.4 13.8 8.8  
Annual mileage (midpoints) 500 2000 4000 6000 8000 12,500 20,000  
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Maycock and Lockwood (1993) fitted a model with the following 
form, using accidents per driver per year as the dependent variable: 

Accidents per driver per year = β0 • Mileageβ1 • e(
∑n

i=1
βn• Xn) (1) 

This model formulation is common and, with minor differences, used 
by all multivariate studies reviewed below. Mileage is raised to a power, 
estimated by β1. This coefficient can be interpreted as an elasticity, i.e. it 
shows the percentage change in the number of accidents per driver per 
unit of time when driving distance increases by one percent. The effects 
of the confounding variables are captured by the exponential function (e 
raised to the expression in parenthesis). The strength of the model 
developed by Maycock and Lockwood is that it controls for many con
founding variables: age, gender, driving experience, socio-economic 
group, driving in darkness, driving on motorways and driving on rural 
roads. The weakness is that both accidents and mileage were self- 
reported. One regression coefficient (0.279) and its standard error 
(0.016) were extracted from the study. 

The model developed by Forsyth et al. (1995) had the same mathe
matical form as that of Maycock and Lockwood (1993). It controlled for 
age, gender, driving experience, trip frequency and driving in rain. Data 
on accidents and mileage were self-reported. One regression coefficient 
(0.572) and its standard error (0.039) were extracted from the study. 

Massie et al. (1997) developed models predicting accident rates 
(accidents per million miles driven). Three models were developed: one 
for fatal accidents, one for injury accidents and one for property-damage 
accidents. The models were fitted to groups of drivers formed according 
to age (63 groups), gender (2 groups) and time of driving (day vs night; 2 
groups). Thus, each model was fitted to a data set consisting of 63 • 2 • 2 
= 252 observations. One observation was lost because there were no 
travel data for females aged 85 or older. Travel data were taken from the 
national household travel survey. Accident data were taken from official 
statistics. The coefficients for mileage in these models show risk elas
ticities. They were converted to accident elasticities by adding 1. Stan
dard errors were assumed not to be affected by this transformation. The 
models controlled for age, gender and time of driving and included 
interaction terms between these variables. Three regression coefficients 
(0.6585; 0.5049; 0.5398) and their standard errors (0.0336; 0.0354; 
0.0324) were extracted from the study. 

Ferreira and Minikel (2012) developed models based on pay-as-you- 
drive insurance data for the state of Massachusetts. The data set included 
more than 2.8 million car insurance years. All data were taken from 
insurance records. The final model included mileage and dummies for 
territory and insurance class. Insurance class was based on driver 
characteristics and type of use of the car. Unfortunately, the standard 
errors of regression coefficients are not reported, but it is stated that in a 
model including only mileage, the coefficient was significant at the 2 •
10− 16 level. This suggests a very low standard error. As an approxima
tion, it has been assumed to equal the standard error of the number of 
claims used in the analysis, divided by the number of claims. This gives 
an estimate of 0.0025 for the standard error. The data on mileage in this 
study are presumably correct, as they come from pay-as-you-drive in
surance. Minor damage may not be reported to the insurance company, 
but otherwise the claims data should also be accurate. One regression 
coefficient (0.40) and the estimate of its standard error (0.0025) were 
extracted from the study. Although the accuracy of the standard error is 
unknown, it is considerably smaller than in the other studies reviewed in 
this section, consistent with having a low p-value. 

Boucher et al. (2013) also relied on pay-as-you-drive insurance data 

Fig. 1. Example of curves fitted to tabulated data. Female drivers in their second year of driving.  

Table 3 
Differences between low-mileage and high-mileage drivers with respect to 
traffic environment.    

Percent of driving (by time or distance) done in 
different traffic environments 

Study Group Driving 
environment 

Lowest 
mileage 
group 

Highest 
mileage 
group 

Forsyth et al., 
1995 

Males Motorways 9 24   

Quiet parts of 
towns or cities 

29 15  

Females Motorways 6 22   
Quiet parts of 
towns or cities 

30 13 

Keall and Frith, 
2006 

15–19 
year olds 

Urban roads in 
daytime 

49 36  

25–64 
year olds 

Urban roads in 
daytime 

46 29  

65 or 
older 

Urban roads in 
daytime 

62 24 

Hanson and 
Hildebrand, 
2011 

All Major or urban 
highways 

10 18  
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in their analysis. The data are limited to drivers below the age of 40. The 
models developed controlled for age, gender, car age, and if the car is 
parked in a garage. Four regression coefficients (0.4188; 0.4903; 
0.5505; 0.4908) and their standard errors (0.0418; 0.0389; 0.0967; 
0.0860) were extracted from the study. 

Antin et al. (2017) fitted models to data for participants in the SHRP- 
2 naturalistic driving study. The data both on mileage and accidents are 
presumably accurate and complete in this study, as cars participating in 
the naturalistic driving study were fitted with instruments recording 
driving distance and accidents. The models used accident rate as 
dependent variable. The coefficient for mileage in the model for total 
accidents has been converted to an accident elasticity by adding 1. The 
study controlled for age group and gender. One regression coefficient 
(0.48) and its standard error (0.12) were extracted from the study. 

Finally, Elvik (2021) fitted a model to a sample of 24-year old 
drivers. Mileage and accidents were self-reported. The model controlled 
for age, gender, county, and how urbanised the place of residence was. 
One regression coefficient (0.193) and its standard error (0.028) were 
extracted from the study. 

5. Exploratory meta-analysis 

To determine whether a formal synthesis of the regression co
efficients extracted from the studies makes sense, four issues must be 
resolved:  

1. Determining the comparability of the regression coefficients  
2. Assessing the potential presence of publication bias  
3. Assessing the degree of heterogeneity in coefficient estimates  
4. Assessing the potential presence of outlying data points. 

5.1. Comparability of regression coefficients 

Card (2012) argues that a formal synthesis of regression coefficients 
only makes sense if the regression models are identical in all respects, i. 
e. have the same mathematical form and include identical sets of vari
ables, identically measured. His main reason for imposing this restric
tion is that estimates of regression coefficients are often sensitive to the 
variables included. Hence, two regression coefficients may differ, not 
because the underlying effect differs, but because different sets of vari
ables were included in the models. 

Hauer (2010) proposes a solution to the problem identified by Card 
(2012). If several regression models, including different variables, have 
been fitted to a data set, the estimates of the coefficient for a specific 
variable can be compared across the different model specifications. If 
the estimates do not differ much, they are comparable. Stability of the 
value of a regression coefficient across different model specifications 
suggests that the coefficient is robust with respect to confounding, i.e. its 
estimated value is not much influenced by which potentially con
founding variables a model includes. Elvik and Bjørnskau (2017) show 
examples of how regression coefficients can be compared across 
different model specifications. It should be noted that comparing 
different models developed in a single study is analogous to comparing 
different studies, each of which developed only a single model. An 
advantage of comparing different models developed in the same study, is 
that these models are based on the same data. One may therefore rule 
out the possibility that variation in the estimates of a regression coeffi
cient for a certain variable is attributable to differences in the data used 
to estimate the coefficient. 

Unfortunately, most of the studies discussed above include just a 
single version of the regression model. Comparing the regression coef
ficient of principal interest, the coefficient for mileage, across models is 
therefore not possible for all studies. However, some studies permit a 
comparison between curves fitted to tabulated data and regression co
efficients estimated in multivariate models. The curves fitted to 

tabulated data control for fewer confounding variables than the multi
variate statistical models. 

To illustrate this approach, consider the study by Maycock and 
Lockwood (1993). In addition to the multivariate statistical model, the 
study presents tabulated data of accidents per driver per year for drivers 
belonging to different intervals for driving distance. Based on these data, 
power functions like the one shown in Fig. 1 can be estimated. The 
power coefficients can then be compared to the estimate of power in the 
multivariate model. Fig. 2 shows four estimates of power estimated from 
tabulated data in the study of Maycock and Lockwood, the weighted 
mean value of these estimates and the coefficient estimated in the 
multivariate model. 

Fig. 2 shows 95 % confidence intervals surrounding each estimate of 
power. It is seen that the confidence intervals for the estimates based on 
tabulated data are much wider than the confidence interval based on the 
multivariate model. Each of the estimates based on tabulated data 
control for one confounding variable only: gender. The multivariate 
model controls for several confounding variables. 

To evaluate the comparability of the estimates of power, the 
following comparisons have been made: 

Difference in estimates = Estimate based on tabulated data – esti
mate based on multivariate model. 

Standard error of difference of estimates =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SE2
i + SE2

m

√

Thus, the first coefficient listed in Fig. 2 had a value of 0.256. The 
coefficient estimated in the multivariate model had a value of 0.279. The 
difference in value is 0.256 – 0.279 = –0.023. The standard errors of the 
coefficients were, respectively, 0.056 and 0.016. Hence, the standard 
error of the difference between the coefficients is 0.058 
(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.0562 + 0.0162

√
). The difference divided by its standard error is. 

–0.023/0.058 = –0.395. The conventionally applied critical value for 
regarding the difference as statistically significant is ± 1.96. The 
observed value is less than this. There is no statistically significant dif
ference between the coefficients. They are therefore regarded as com
parable. Repeating the procedure for the other coefficients listed in 
Fig. 2 leads to the conclusion that they can all be treated as comparable. 

Six coefficients, each controlling for gender and experience, were 
fitted to tabulated data based on the study by Forsyth et al. (1995). The 
differences between each of these coefficients and the coefficient esti
mated in the multivariate model were studied, applying the procedure 
explained above. Four of the six coefficients were found to be statisti
cally significantly different from the coefficient of the multivariate 
model. However, the comparison is problematic, as the coefficients do 
not refer to identically defined variables. The coefficients of the curves 
fitted to tabulated data refer to mileage. The coefficient estimated in the 
multivariate model refers to mileage plus driving frequency (number of 
trips per unit of time). 

The four models developed by Boucher et al. (2013) differ slightly 
from one another. Based on the four models, a weighted mean coeffi
cient was estimated and compared to the other four coefficients. No 
statistically significant differences were found. 

Antin et al. (2017) developed one model for all accidents and one 
model for at-fault accidents. There was no statistically significant dif
ference between the coefficients estimated in these two models. 

Finally, Elvik (2021) developed the model in four stages, at each 
stage adding another variable. The coefficients for mileage estimated in 
the three first stages were compared to the coefficient estimated in the 
final model. No statistically significant differences were found. 

In total, 18 comparisons of coefficients were made. In 14 cases, there 
were no statistically significant differences between the coefficients. In 
the four cases where a statistically significant difference was found, the 
coefficients did not refer to identically defined variables. It is concluded 
that the regression coefficients are sufficiently comparable for a formal 
synthesis of them to make sense. 
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5.2. Testing for publication bias 

Fig. 3 shows a funnel plot of estimates of regression coefficients. The 
axes have been defined as recommended by Sterne and Egger (2001). 
The horizontal axis shows the natural logarithm of the estimate of a 
regression coefficient. The vertical axis shows the fixed-effects standard 
error of each coefficient. Each data point is an estimate of a regression 
coefficient for mileage. 

If there is no publication bias, the distribution of the data points 
should resemble a funnel turned upside down, with the narrow end 
(small dispersion of data points) at the top and the wide end (large 
dispersion of data points) at the bottom. The data points in Fig. 3 do not 
quite have such a distribution. Moreover, the weighted mean estimate of 
the regression coefficients is strongly influenced by the uppermost data 
point in the diagram. This is the estimate from Ferreira and Minikel 
(2012), who did not state the standard error. A rough estimate was given 
above, consistent with their explanation that the coefficient had a very 

low p-value, which implies a low standard error. However, the accuracy 
of the estimate is unknown. 

Testing for publication bias by means of the trim-and-fill method 
(Duval and Tweedie, 2000a, 2000b; Duval, 2005) indicates a slight 
publication bias. Three data points were trimmed away. This had a 
negligible effect on the weighted mean estimate of the regression co
efficients, whose value changed only by 0.4 %. Stronger publication bias 
is indicated if the study by Ferreira and Minikel (2012) is omitted. 
However, the results are highly implausible as the value of trimmed 
weighted mean regression coefficient is the second lowest of the indi
vidual estimates. Again, a single study (Maycock and Lockwood, 1993) 
strongly influences results, because it has a much higher statistical 
weight than any of the other studies. The test that included all studies is 
regarded as best and it indicated that any publication bias had a negli
gible influence. 

The problem of a single study having a much larger statistical weight 
than any other study is reduced by adopting a random-effects model of 

Fig. 2. Comparison of estimates of power based on curves fitted to tabulated data and coefficient in multivariate model.  

Fig. 3. Funnel plot of estimates regression coefficient for mileage in multivariate statistical models.  
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analysis. This is the appropriate model when the estimates to be syn
thesised are widely dispersed. The coefficient estimates for mileage are 
very heterogeneous. If estimates are weighted according to a random- 
effects statistical weight (see details in next section), no estimate con
tributes more than 10 % to the sum of the statistical weights. A trim-and- 
fill analysis relying on random-effects statistical weights indicates a 
slight publication bias. Three data points are trimmed away, and the 
value of the trimmed weighted mean estimate of the regression coeffi
cient for mileage is reduced by 9.5 %. 

5.3. Heterogeneity of coefficient estimates 

A formal synthesis of a set of estimates of an effect only makes sense 
if the estimates are not too heterogeneous. Unfortunately, there is no 
precise criterion or rule for determining when there is too much het
erogeneity in a data set (Elvik, 2018). 

In the inverse-variance technique for meta-analysis, each estimate of 
effect (each regression coefficient for mileage) is assigned a statistical 
weight, which is inversely proportional to its variance: 

Fixed − effect statistical weight = W =
1

SE2 (2) 

SE is the standard error of each regression coefficient. This statistical 
weight accounts for random sampling variation in estimates only, i.e. it 
assumes that there is only random variation between estimates. To 
determine whether this is correct, the following statistics are computed: 

Q =
∑g

i=1
Wi • Y2

i −

( ∑g
i=1Wi • Yi

)2

∑g
i=1Wi

(3) 

In formula (3) W is the fixed-effects weight assigned to each estimate, 
and Y is the estimate. The Q statistic measures variance. It is used to 
estimate a variance component (τ2) which is an estimator of the sys
tematic between-study variation in estimates. The variance component 
is estimated as follows: 

Variance component (τ2) =
Q − (g − 1)

C
(4) 

Q is defined above, g is the number of estimates. C is estimated as: 

C =
∑n

g=1
wi −

(∑n
g=1w2

i
∑n

g=1wi

)

(5) 

The random-effects statistical weight becomes: 

Random effects statistical weight =
1

SE2
i + τ2

(6) 

For the 12 regression coefficients included in this study, Q was 
estimated as 229.01 and τ2 as 0.0112. The I2 statistic (Borenstein et al., 
2009), which indicates the share of systematic variation in the data set, 
is 95.2 %. 

There is, in other words, great heterogeneity. The regression co
efficients range in value from 0.193 to 0.659. This range is not partic
ularly large. The coefficients all have the same sign, and all indicate that 
the number of accidents per driver increases less than in proportion to 
mileage. Perhaps the most comparable data set is the regression co
efficients summarised by Elvik and Goel (2019) in a study of safety-in- 
numbers. In that study, the regression coefficients for motor vehicle 
volume (which are comparable to the coefficients in the present study) 
ranged in value from 2.19 to − 1.16. The coefficients for cycle volume 
ranged from 0.87 to − 0.14. The coefficients for pedestrian volume 
ranged from 1.40 to 0.07. All these ranges are larger than the range of 
estimates in this study. It is concluded that it makes sense to synthesise 
the estimates of regression coefficients for mileage based on multivariate 
statistical models. 

5.4. Outlying data points 

To test for outlying data points, the summary estimate of the 
regression coefficient for mileage (random-effects model) was re- 
estimated by omitting one estimate at a time. If the summary estimate 
based on N – 1 was outside the 95 % confidence interval for the estimate 
based on N, the omitted estimate was classified as outlying. No outlying 
estimates were found. 

6. Synthesis of multivariate studies 

Table 4 presents five summary estimates of the coefficient for 
mileage, as estimated in multivariate statistical models. The two first 
estimates are the simple mean and median; these are not based on meta- 
analysis. The other three estimates are based on meta-analysis. 

All estimates are close to one another and close to the value of 0.5. A 
coefficient of 0.5 means that the number of accidents per driver per unit 
of time increases in proportion to the square root of distance driven. 

Fig. 4 shows the relationship between the coefficient for mileage and 
the number of confounding variables controlled for in statistical anal
ysis. There is a weak positive relationship. This means that the value of 
the coefficient for mileage increases slightly as studies control for more 
confounding variables. 

Unfortunately, the studies that control for many confounding vari
ables rely on self-reported data about mileage and accidents. The studies 
that have high-quality data on mileage and accidents are Ferreira and 
Minikel (2012), Boucher et al. (2013) and Antin et al. (2017). The 
summary coefficient for mileage based on these studies is identical 
(0.492) to the summary coefficient based on studies that control for at 
least 8 confounding variables. 

7. Potential explanations of the relationship 

It is clear that driver accident involvement does not increase in 
proportion to distance driven. What can explain the tendency for each 
additional kilometre driven to become safer as more kilometres are 
driven? 

In principle, there are two types of explanation: methodological and 
substantive. A methodological explanation would be that poor data, e.g. 
unreliable data on mileage and accidents, or confounding variables, e.g. 
long-distance drivers doing a larger share of their driving on safe roads, 
explain the relationship. However, as noted above, regression co
efficients for mileage with values less than one have been found in all 
studies reviewed above. It does not seem to matter much whether the 
studies rely on self-reported data or on more objective data. Nor does it 
make much difference how well the studies control for confounding 
variables. It is clearly still possible that all studies could be wrong. A 
study based both on high-quality data and controlling for many con
founding variables does not exist. Hence, rejecting all studies is an 

Table 4 
Summary estimates of regression coefficient for mileage in multivariate statis
tical models.  

Summary estimate of power coefficient Best 
estimate 

Standard 
error 

Simple mean value of 12 coefficients estimated in 
multivariate models  

0.465  0.037 

Median value of 12 coefficients estimated in 
multivariate models  

0.491  0.037 

Random-effects mean value of 12 coefficients 
estimated in multivariate models  

0.457  0.034 

Random-effects mean value of 4 coefficients 
estimated in multivariate models controlling for 8 
confounding variables  

0.492  0.055 

Random-effects mean value of 6 coefficients 
estimated in multivariate models relying on high- 
quality data  

0.492  0.051  
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interpretation that can be defended. 
Nevertheless, there are studies suggesting substantive explanations. 

Driving can be regarded as a life-long process of learning, in which those 
who drive long distances get more occasions for learning than those who 
drive short distances. Elvik (2015) considers some implications of 
defining exposure as events, and notes that the number of events of a 
specific type, like encounters or simultaneous arrivals in junctions, tend 
to increase faster than traffic volume. Applied to driving distance, this 
means that long-distance drivers encounter more rare events than short 
distance drivers. 

Mitroff and Biggs (2014) and Biggs, Adamo and Mitroff (2014) note 
that events occurring very rarely are noticed less often than events 
occurring more frequently. They analysed big data from the Airport 
scanner game. In this game, players earn points by detecting forbidden 
items in luggage. Some of the items are easy to detect, others may be 
partly hidden beneath legal items. The forbidden items occurred with a 
frequency between 0.078 % and 4.14 %, i.e. they were all quite rare. It 
was found that items occurring with a frequency of<0.5 % were rarely 
detected. Items occurring with a frequency of 1 % or more were almost 
always detected. 

In traffic, events occur with varying frequency. However, the prob
ability that a driver will experience a rare event is not proportional to his 
or her driving distance. To see this, image than on a given trip, an event 
has a probability of 0.00078 of occurring (equal to the lowest proba
bility in the airport scanner game). On a given trip, the event either 
occurs or it does not. Each trip can be modelled as a binomial trial with 
two outcomes: event or no event. Suppose a low-distance driver makes 
300 trip per year. The probability that he or she will experience the rare 
event during these 300 trips (300 binomial trials) is shown in Table 5. 

The probability that a driver making 300 trips per year will never 
experience the rare event is 0.791. The probability that he or she will 
experience the rare event at least twice is 0.023. Now consider a driver 
making 1500 trips per year. The probability that this driver will expe
rience the rare event at least twice is 0.326. While making only 5 times 
as many trips as the low-mileage (few trips) driver, the high-mileage 
(many trips) driver can expect to encounter the rare event at least 
twice almost 14 times as often as the low-mileage driver (see bottom of 
Table 5). This makes the rare event much more predictable and less 
surprising to the high-mileage driver than to the low-mileage drivers. 
One may reasonably assume that the high-mileage driver develops 
better skills, and thereby a lower risk of accident, in dealing with the 

rare event than the low-mileage driver. 
Conversely, low-mileage drivers may lose skills by not practising 

them often enough to retain them. Many of the skills involved in driving 
are of a “use-it-or-lose-it” quality. Skills that have become automated, 
may have to be re-learnt following a period of no or little driving. 
Naturalistic driving studies could shed light on this, e.g. by showing 
whether some types of mistakes or poorly executed tasks are made more 
often by low-mileage drivers than by high-mileage drivers. 

8. Discussion 

The most important factor influencing a driver’s accident involve
ment is his or her exposure to traffic risk, i.e. how often, how long and 
where a driver drives. Yet, obvious as this is, there are surprisingly few, 
and surprisingly poor, studies of how the number of accidents per driver 
per unit of time is related to the distance driven. Indeed, the literature 
survey made for this paper identified fewer studies than was found in a 

Fig. 4. Relationship between number of confounding variables controlled for and estimate of power.  

Table 5 
Increase in probability of experiencing a rare event as a function of the number 
of trips.  

Probability of a rare event per 
trip ¼ 0.00078 

Number of trips taken per year 

Probability of N (¼0,1,2, etc) 
rare events per year 

300 600 900 1200 1500 

0  0.791  0.626  0.495  0.392  0.310 
1  0.185  0.293  0.348  0.367  0.363 
2  0.022  0.069  0.122  0.172  0.213 
3  0.002  0.011  0.029  0.054  0.083 
4  0.000  0.001  0.005  0.013  0.024 
5   0.000  0.001  0.002  0.006 
6    0.000  0.000  0.001 
7      0.000 
Sum of probabilities  1.000  1.000  1.000  1.000  1.000 
Probability of at least two rare 

events  
0.023  0.081  0.156  0.241  0.326 

Probability of at least three rare 
events  

0.002  0.012  0.034  0.069  0.114 

Relative distance per year  1.000  2.000  3.000  4.000  5.000 
Relative probability of at least 

two rare events  
1.000  3.444  6.686  10.284  13.953 

Relative probability of at least 
three rare events  

1.000  6.779  19.343  38.775  64.245  
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similar review of studies of safety-in-numbers (Elvik and Goel, 2019). 
Although some studies may have been missed, the survey at least in
cludes all the best-known and most cited studies from the past 30 years. 

Distance driven is of course not the only factor influencing driver 
accident involvement. Accident involvement is related to age, gender, 
experience, and the type of traffic environment where driving takes 
place. To identify the specific contribution of distance, a study should 
control for the effects of all the other factors. Few studies do so. 

All the studies belonging to the “low-mileage-bias” tradition were 
rejected. These studies all rely on self-reported data of unknown accu
racy and do not employ multivariate methods for analysis. There are few 
studies relying on high-quality data about driving distance and accident 
involvement. However, such data sets, which can be quite large, are 
increasingly available as a result of pay-as-you-drive insurance schemes. 
Although traditional insurance remains dominant, it is not too bold to 
predict that pay-as-you-drive insurance will become more widespread. 
This will improve the quality of the data used to study the relationship 
between driving distance and accident involvement. 

The study reported in this paper should be repeated a few years from 
now, when better data are likely to be available on a wider scale. 

9. Conclusions 

The main results of the research presented in this paper can be 
summarised as follows:  

1. There are few studies of the relationship between a driver’s annual 
driving distance and his or her accident involvement.  

2. Most studies rely on self-reported data of unknown accuracy and fail 
to control for confounding factors.  

3. Studies employing multivariate statistical models, and relying on 
high-quality data, suggest that the number of accidents per driver per 
unit of time increases roughly in proportion to the square root of 
distance driven.  

4. The probability that a driver will encounter a rare event during 
driving increases much faster than the number of kilometres driven. 
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