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Abstract: The current paper presents the results of behavioural observations in a field 

experiment with automated shuttles in Oslo, Norway. Video observations were conducted 

at five fixed locations along a challenging 1.2 km automated shuttle line with varying traffic 

conditions. Observed interactions between vulnerable road users and automated shuttles 

were coded using a predefined codebook, which allowed a structured quantitative analysis. 

The paper identified several potentially risky types of situations in which the automated 

shuttles did not always behave according to the traffic rules. Generally, the automated 

shuttles failed to give way to pedestrians at pedestrian crossings in 26%–50% of the 

interactions. Right-turning shuttles failed to yield to cyclists going straight in 38% of the 

interactions at observation Site 1 (the only location where the automated shuttle takes a 

right turn). In majority of same direction interactions between cyclists and automated 

shuttles, the interactions resulted in the cyclist overtaking the automated shuttle, usually on 

the left-hand side. Generally, the paper found little evidence of road users trying to bully 

or otherwise take advantage of the defensive driving style of the automated shuttles and 

identified only a limited number of interactions in which a vulnerable road user behaved 

ignorant or aggressive towards the automated shuttles. In addition, the paper found very 

little indication of temporal effects that suggest changes in the interaction patterns over 

time. 

Keywords: automated shuttles, autonomous vehicles, driverless shuttles, road user 

interactions, vulnerable road users

1 Introduction 

Recent innovations in sensor technology, computing power and Artificial Intelligence are 

leading to rapid advances in the performance of autonomous, or ‘self-driving’, vehicles. 
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Autonomous vehicles have the long term potential to fundamentally alter transportation systems 

by reducing the number of severe crashes and by providing improved mobility to those who are 

not capable of driving a motor vehicle (Kyriakidis et al. 2019). Complementary trends towards 

ride hauling and ‘mobility as a service’ may lead to a shift from private car ownership to on-

demand services. These changes can in turn have major impacts on parking needs, land use 

patterns and trucking and other transportation activities (Fagnant & Kockelman 2015). 

A promising niche within the field of autonomous driving is autonomous shuttles (Ainsalu et 

al. 2018). The absence of a human driver could reduce the operational costs of public transport 

services. Autonomous shuttles could therefore allow serving lower-volume connections that are 

not economically viable today. New opportunities include first- and last-mile public transport 

solutions (for instance feeder lines to main public transport nodes) and connections within 

campuses, business parks, etc. (Hagenzieker et al. 2021; Zubin et al. 2021). 

However, before all road vehicles are fully automated, there will be a long transition period 

where fully autonomous vehicles, partly autonomous vehicles and manually driven vehicles 

will share the roads (Markkula et al. 2020). In addition, interactions with bicyclists, pedestrians 

and other types of vulnerable road users (VRUs) will likely continue to exist. For the 

introduction of autonomous vehicles into this traffic mix to be successful, safe and efficient, 

interactions with other road users are therefore critical (Domeyer et al. 2020). The decision 

making and behaviour of humans in interaction with autonomous vehicles has so far received 

little attention in the research community (Heikoop et al. 2020), despite being long called for 

by many experts in the field (Kyriakidis et al. 2019; Rasouli & Tsotsos 2018; Vissers et al. 

2016).  

While the performance of autonomous shuttles can (and should) to some extent be tested and 

optimized in laboratory conditions and using simulation, field experiments are of critical 

importance to investigate the performance of these shuttles in real traffic conditions, interacting 

with ordinary road users. The transport ecosystem is a complex environment that is governed 

by formal traffic rules, but that is also subject to informal traffic rules, negotiation between road 

users, human errors and violations, and infrastructural and conditional aspects that can affect 

road users’ behaviour (De Ceunynck et al. 2013; Björklund & Åberg 2005; Reason et al. 1990). 

The interaction between road users is often a form of negotiation in which the parties involved 

have to coordinate their actions to accomplish their goal, e.g. crossing an intersection without 

getting involved in a crash (Rasouli & Tsotsos 2018). Interacting with other road users is, 

therefore, a challenging task for autonomous vehicles, especially in complex areas such as 

urban environments (Ackermann et al. 2019). Informal communication cues will normally not 

be perceived and acted upon by autonomous vehicles. It is impossible to foresee all situations 

that autonomous shuttles could encounter and to predefine the optimal decisions in these 

various challenging conditions. A thorough investigation of the performance of autonomous 

shuttles in real-world conditions is therefore needed. 

Given the current state of the art, which usually involves vehicles that are not considered ‘fully 

autonomous’ (SAE level 4 or 5), we will use the term ‘automated shuttles’ for the remainder of 

the paper. In recent years, the number of field experiments with automated shuttles has 

increased exponentially, with 131 documented pilots and projects with automated shuttles by 

February 2021 (Hagenzieker et al. 2021). The results suggest a European lead on the number 

of experiments and manufacturers (Antonialli 2021). The majority of these pilots, however, 

were not investigated in-depth by independent researchers or authorities, and less than 10% led 

to published work in scientific journals (Hagenzieker et al. 2021). Earlier research on 

interactions with autonomous buses has largely focused on passengers, not on other road users.  



De Ceunynck et al. | Traffic Safety Research vol. 2 (2022) 000008 

3 

The current paper presents the results of behavioural observations in a field experiment with 

automated shuttles in Oslo, Norway. Video observations were conducted at five fixed locations 

along a challenging 1.2 km automated shuttle line with varying traffic conditions. Observed 

interactions between vulnerable road users and automated shuttles were coded using a 

predefined codebook, which allowed a structured quantitative analysis. 

2 Background 

2.1 Game theory 

When motor vehicles were first introduced in the early 1900s, poor communication and unsafe 

interactions between drivers and other road users generated resistance. Vehicle automation may 

lead to similar challenges when drivers are replaced by machines, potentially fundamentally 

changing or eliminating social behaviours that serve to smooth interactions between road users 

(Domeyer et al. 2020). Human road users typically communicate their intentions in traffic 

through lights (e.g. direction indicators), sounds (e.g. horn), eye contact and direction of gaze, 

bodily orientation, (change of) pace, gestures, etc. Some of these ways of communication can 

neither be generated nor easily interpreted by autonomous vehicles. 

The studies on human response and interaction with self-driving vehicles that exist have until 

recently predominantly focused on trust and acceptance of such transport modes (Haque & 

Brakewood 2020; Kassens-Noor et al. 2020), often applying theories and models of trust in 

technology, such as the ‘Unified theory of acceptance and use of technology’ or the 

‘Technology Acceptance Model’ (Nordhoff et al. 2018; Madigan et al. 2017; Vissers et al. 

2016). 

Game-theoretic approaches have gained more popularity in road transport research during 

recent years, particularly concerning interactions with autonomous vehicles (Heikoop et al. 

2020; Thompson et al. 2020; Camara et al. 2018). Evolutionary game theory may be able to 

explain why certain patterns of interaction develop, are sustained or disappear (Bicchieri 2005). 

This has also been demonstrated in traffic situations, e.g. when road users meet at crossroads 

and must decide who will yield, i.e. give way to the other road user (Bjørnskau 2017). The 

mechanism behind the outcome predicted by game theory is that in interactions in road traffic, 

where road users are on crossing paths, it is assumed that road users generally prefer the 

opponent to yield and not to yield themselves. However, both actors also have a common 

interest to avoid a collision. Thus road traffic interactions are mixed-motive games where the 

actors both have common interests (no collision) and conflicting interests (best not to yield). 

Credible information about the other road user’s intention is thus crucial. Game theory has been 

used to predict that over time self-driving vehicles will meet severe challenges in mixed traffic 

since other road users will eventually learn that self-driving vehicles are ‘committed to’ stop 

and give way in conflict situations, and hence might try to take advantage of that (Millard-Ball 

2018). A temporal effect might be expected where road users more and more go first in an 

interaction with an self-driving vehicle, regardless of the yielding rules that apply (Bazilinskyy 

et al. 2021). This could result in a final outcome where automated shuttles are severely 

obstructed in traffic and not be able to operate properly (Markkula et al. 2020; Camara et al. 

2018; Millard-Ball 2018). The problem has also been addressed in more general terms—that 

autonomous vehicles might be ‘bullied’ by other road users (Liu et al. 2020; Madigan et al. 

2019). 

When road user interactions are modelled as games, the preferences of the road users are 

highlighted as very important driving forces for the solutions reached. In general, we find it 

reasonable to assume that road users prefer to drive or ride without unnecessary stops. This is 
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in a way the essence of travel—we want to get from A to B, and to avoid obstacles. Thus, we 

prefer green to red traffic lights, we prefer to speed up when the road is good, to avoid rush-

hour traffic, if possible, etc.   

Hence, at intersections, we believe the same motives apply, and that road users normally prefer 

not to stop, i.e. not to be the one giving way. However, to give way may not be very costly, and 

is of course preferred to having a collision. In our opinion, the preferences in traffic are in 

general explained according to what is known as a ‘Leader game’, i.e. to give way is preferred 

to a stalemate situation where the road users are unsure as to who shall drive and who shall 

yield. To yield and let the other drive first is in fact the second-best solution when interactions 

are modelled as a Leader game. This is not the case in the more famous ‘game of Chicken’ (out 

of pride, no one wants to yield) that has often been used to model road user interaction, e.g. 

between pedestrians and autonomous vehicles (Camara et al. 2018; Millard-Ball 2018). 

Many studies of road user interactions do not highlight the motives, preferences or expectations 

of the road users involved, and focus mainly on the critical time gaps between road users on 

conflicting paths (Johnsson et al. 2018; Laureshyn et al. 2017a; Laureshyn et al. 2017b; Silvano 

et al. 2016; Räsänen & Summala 2000; Hydén 1987). Both Räsänen & Summala (2000) and 

Silvano et al. (2016) found that high speed of approaching cars contributed to the drivers not 

yielding to cyclists in roundabouts. These findings are consistent with Leader game 

preferences—when a bicyclist meets a car on a crossing path in a roundabout, and the car 

approaches in high speed, the bicyclist will be unsure to whether the driver will or can stop, and 

hence stop him/herself. 

As argued by several authors (Bjørnskau 2017; Goffman 2010; Sugden 2005; Schelling 1960), 

in Leader (and similar) games commitment to a specific action, by for instance entering an 

intersection in high speed, can be seen as a strategic move in the game resulting in being the 

one not having to stop. 

2.2 Studies about automated vehicle interactions 

Human responses to automated vehicles are complex and not straightforward (Rovira et al. 

2019). Little is known yet about how VRU behave around automated shuttles (Pelikan 2021). 

Therefore, there is a strong need for more research into the results of pilot projects and field 

experiments involving automated shuttles. The few available studies primarily focus on the 

interaction with pedestrians rather than cyclists (Ezzati Amini et al. 2021; Haque & Brakewood 

2020; Heikoop et al. 2020; Rehrl & Zankl 2018). Nuñez Velasco et al. (2020) and Vlakveld et 

al. (2020) are exceptions, but these studies investigate cyclist interactions with automated 

passenger cars, not shuttles, and in virtual and animated environments rather than in real life. 

Other studies target the design and evaluation of eHMIs for communication between VRU and 

automated shuttles (Berge et al. 2022; Merat et al. 2018). Few real-life behavioural observation 

studies have been reported so far, with a few exceptions that are included in the next subsection 

(Beauchamp et al. 2022; Pelikan 2021; Pokorny et al. 2021; Madigan et al. 2019).  

Thompson et al. (2020) used two experimental conditions to explore how autonomous vehicles, 

human-operated vehicles and cyclists might interact based on the introduction of flawlessly 

performing autonomous vehicles. The results showed that, although flawlessly performing 

autonomous vehicles might initially reduce total conflicts, human adjustment to the behaviour 

and risk presented by autonomous vehicles could create new sources of error that offset some 

of the autonomous vehicles’ assumed safety benefits. 

A significant body of research has investigated communication between autonomous vehicles 

and other road users. Results indicate that advanced communication interfaces, using sound or 

signs to indicate what to expect, can provide helpful cues for other road users when interacting 
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with autonomous vehicles (Hagenzieker et al. 2021; Lee et al. 2020; Kyriakidis et al. 2019; 

Merat et al. 2018). A lot of research on interactions between autonomous vehicles and other 

road users took place in controlled environments (Thompson et al. 2020; Hagenzieker et al. 

2019). In understanding how humans might adjust to new technologies in transport, not only 

controlled experiments, but real-world studies are necessary (Thompson et al. 2020).  

2.3 Previous empirical observation studies about interactions between VRU and 

automated shuttles 

Madigan et al. (2019) analysed 22 hours of video footage from two automated shuttle 

demonstrations in France and Greece. Results indicated that road infrastructure and road user 

factors had a major impact on the type of interactions that arose between automated shuttles 

and other road users. Where possible, pedestrians and cyclists appeared to leave as much space 

as possible between their trajectories and that of the automated shuttle. However, in situations 

where the infrastructure did not allow for the separation of traffic, risky behaviours were more 

likely to emerge. In particular, cyclists appeared to ride closely alongside the automated 

shuttles. The types of interaction varied considerably across socio-demographic groups. 

Pelikan (2021) reports on initial findings from a demonstration project in Linköping, Sweden, 

in which self-driving shuttles by two different manufacturers were tested on the university 

campus and its surroundings. The paper highlights the complexity of interaction and 

coordination between self-driving shuttles and other road users. The author states that 

automated shuttles face difficulties when interacting with other road users, both on the regular 

road and in the mixed-traffic campus environment. This is particularly the case when the 

shuttles are overtaken by cars and cyclists, often resulting in an unnecessary sudden brake when 

a car or cyclist pulls in in front of the shuttle. Such situations continued to take place during the 

full duration of the experiment.  

Pokorny et al. (2021) explore encounters between automated shuttles approaching a T-

intersection and other road users in Norway. Videos of 83 encounters were analysed using video 

analysis software. Several types of risk and behavioural patterns were identified, such as road 

users misusing the defensive driving style of the automated shuttles or cyclists riding in the 

bicycle lane not being sure about the automated vehicle’s intention. Frequent hard stops of the 

shuttles were identified in interactions with a right-turning automated shuttle and a cyclist in 

the adjacent bicycle lane going straight through. None of these hard stops were necessary to 

prevent a crash. This could be a safety risk to vehicle occupants and might increase the risk of 

rear end crashes as well. 

Beauchamp et al. (2022) used surrogate measures of safety to analyse the interactions between 

road users and automated shuttles in Canada during two pilot projects in 2019. The results 

indicate that these automated shuttles behave generally more safely than regular motorized 

vehicles following similar paths: their speeds and accelerations are lower and their interactions 

are characterized by higher (i.e. safer) Time-to-Collision and Post-Encroachment Time values, 

and lower speed differences. 

2.4 Related publications 

The current study builds on an earlier study within the same research project (Bjørnskau et al. 

forthcoming). The paper investigated whether game-theoretic predictions of ordinary road 

users’ interaction with automated shuttles are supported by real-life experience, making use of 

field interviews. According to the game-theoretic reasoning, it was expected that after some 

time, other road users would be aware of the defensive driving style and take advantage of this. 

Consequently, they would be increasingly assertive in their behaviour towards the shuttle, 
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infringing upon the shuttle’s right of way, and perhaps even showing ‘bullying’ behaviour. The 

interview results provided mixed evidence related to this hypothesis. In Oslo, cyclists self-

reported a tendency towards more ignorant behaviour towards automated shuttles. However, 

no such tendency was present in the responses of pedestrians, nor among pedestrians or cyclists 

at another research site (the city of Kongsberg). In general, road users reported behaving 

considerately towards automated shuttles. Results show that pedestrians and bicyclists 

generally are positive to automated shuttles. The latter finding is in line with research by 

Rahman et al. (2021). 

The current paper focuses on interactions between VRU and automated shuttles. Interactions 

between automated shuttles and other motorized vehicles were collected and analysed as well, 

but these are the focus of a separate paper (Johnsson et al. forthcoming). 

3 Research questions and hypotheses 

This study investigates how vulnerable road users interact with automated shuttles in different 

traffic environments, and whether the way these road users interact changes over time. Research 

questions include the following: 

• What types of interactions between automated shuttles and VRU are frequently 

observed in different road environments? 

• How does the yielding process between VRU and automated shuttles take place? And 

does it differ from that between VRU and other motor vehicles? 

• Is ignorant/aggressive behaviour by VRU towards automated shuttles observed?  

• Can any changes over time be observed? 

4 Methodology 

4.1 Vehicles and research site 

This study analyses interactions between vulnerable road users and automated shuttles in real-

world traffic conditions. Two Navya automated shuttles operated on a 1.2 km stretch of road in 

the city of Oslo, Norway (approx. 1 million inhabitants).  

Some of the technical parameters and technological equipment of the automated shuttles are 

the following: 

• Capacity: 8 passengers 

• SAE level: 3 

• Max speed: 18 km/h 

• Dimensions: 4.75 m long, 2.11 m wide and 2.65 m tall 

• LIDAR (4 front and 4 back sensors) for detecting objects, obstacles and landmarks 

within and established security radius around the shuttle 

• Global Navigation Satellite System (GNSS) providing positioning, navigation and 

timing 

• Odometer for measuring distance travelled 

• An inertial measurement unit which measures acceleration, orientation, angular rates 

and other gravitational forces 

Data from the various sensors are merged and interpreted by deep learning programs. This way, 

the autopilot of the vehicle interprets its surroundings, the road users within it, and their 

anticipated actions. In addition to these interpretations, a security radius around the shuttle is 

guarded, i.e. there must always be a minimal clear area around the vehicle. Should the autopilot 
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detect a potential risk of a collision, either because of interpretations of the surroundings or the 

anticipated actions of other road users, or because of a breach of the security radius around the 

vehicle, the vehicle takes an evasive action to mitigate the hazard. In this project, the shuttle 

could only slow down or stop (controlled or emergency braking) as an evasive action; swerving 

or deviations from the programmed path were not allowed. 

A safety steward was on board the shuttles to assist passengers and to take over control of the 

vehicle if necessary. The route ran along Akershusstranda (waterfront) in the city centre from 

bus stop Vippetangen to the town hall (Kontraskjæret). The route operated in both directions, 

resulting in a total route length of 2.4 km. The route consisted of different traffic environments. 

Video footage was collected at five points along the route. The shuttle route and observation 

points are shown in Figure 1. The ‘beaks’ indicate the camera direction. The camera views of 

the five observation sites are shown in Table 1. 

 

Figure 1 Shuttle route with video recording sites indicated. Source: GoogleMaps image with own 

additions 

4.2 Video observations 

Data were collected from 20 May 2019, immediately when the automated shuttles started to 

operate, till 1 November 2019. Video footage was collected by temporary cameras (Miovision 

Scout) installed at a height of approximately 6 m to allow a good overview. Recordings have a 

low resolution (720 x 480 pixels) and a speed of 30 frames per second. The low resolution in 
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combination with the height ensure that persons cannot be identified, nor licence plates be read. 

Information signs were installed near the cameras to inform passers-by about the recordings 

and where they can find additional information and contact details. This approach has been 

cleared with the Norwegian Data Protection Authority. Recordings took place with the 

permission of the Oslo Harbour Authority (Oslo Havn AS) and Ruter, the transport agency 

operating the autonomous shuttles. 

Table 1 Camera views and description of the observation sites 

Site 1 is a right-hand priority intersection. The 

departure (Vippetangen) of the route is located in the 

side road on the left side of the picture. The automated 

shuttles turn left onto Akershusstranda. The left turn 

manoeuvre is not fully automated but needs a 

confirmation from the on-board safety steward and is 

therefore not analysed. The right-turn manoeuvre on 

the way back, however, is fully automated. 

Akershusstranda is an ordinary two-way street with 

cycle lanes and sidewalks. The intersection has 

crossings for pedestrians (who have priority when 

crossing) and for cyclists.  The volume of motorised 

traffic is relatively low. Since Akershusstranda is one 

of the busiest cycle commuting routes to the city 

centre, the volume of cyclists is high.  

 

Site 2 is another right-hand priority intersection, 

between Akershusstranda and Kongens gate. The 

shuttle drives straight through on Akershusstranda, but 

it needs to yield to vehicles from the side road when 

driving towards Site 3 (away from the camera) 

(priority to the right). On the way back, the shuttle has 

priority over vehicles merging in from the side road. 

The bicycle lanes stop at the intersection. After the 

intersection, cyclists merge with motor vehicles. The 

volume of motorized traffic that continues to follow 

Akershusstranda after this site is limited. The 

maximum speed of the automated shuttle is 18km/h 

here. 
 

Site 3 is located at the cruise terminal. Although the 

infrastructure still looks like an environment for 

motorized traffic, the volumes of motorized traffic are 

low and the volumes of vulnerable road users (cyclists, 

e-scooterists and pedestrians) are high. A pedestrian 

crossing is present at the entrance of the terminal. The 

shuttles have a bus stop in both directions. In the 

direction of Site 4, the stop is near the end of the visible 

area of the camera (downstream); in the direction of 

Site 2, the stop is immediately after the pedestrian 

crossing. The maximum speed of the automated 

shuttle is 18 km/h here.    
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Table 1 cont. 

At Site 4, the road environment is starting to look like 

a shared space environment, although the direction of 

movement is mostly linear for all road users (resulting 

in mostly same direction and face-to-face interactions 

with the automated shuttle). The volumes of motorized 

traffic are very low, given the fact that access to the 

square further down is blocked by extendable bollards. 

The volumes of VRUs are high. At this site, the 

maximum speed of the automated shuttle is 10 km/h.  

 

Site 5 is a true shared space environment, dominated 

by VRU (cyclists, pedestrians and e-scooterists). It is 

located at the waterfront close to the town hall and 

attracts a lot of tourists. No motorized traffic is allowed 

here except for the autonomous shuttles. The path of 

the shuttle is near the edge of the square. At this site, 

the maximum speed of the automated shuttle is 7 km/h.  

 

All interactions between automated shuttles and other road users were registered by trained 

coders using a predefined codebook, leading to a data set of several thousand interactions. The 

codebook consisted of several variables that describe the interaction, such as involved road 

users, type of interaction, driving direction and action of the involved road users, the location 

and time of the interaction, and (if applicable) whether the yielding process took place 

according to the traffic rules. The work was divided between two coders. Each interaction was 

coded by one coder. Regular consistency checks as well as discussions of edge cases and 

deviant situations between the two coders ensured the consistency and reliability of the dataset. 

In order to limit the margin for error, all variables were categorical with a limited number of 

choice options. 

The possibility to apply traffic conflict (near-crash) indicators to assess the safety of automated 

shuttles was considered. The use of traffic conflict indicators from video data is a valid 

surrogate safety approach, with near-crash events being much more common than actual 

crashes, yet with similar characteristics, allowing to investigate the possible causes of crashes 

without having to observe actual crashes (Johnsson et al. 2018; De Ceunynck 2017; Laureshyn 

2010; Hydén 1987). However, due to the low speed and conservative settings of the automated 

shuttles, the occurrence of situations with critical indicator values was very rare and therefore 

did not allow further investigation. 

Due to numerous arrangements and construction work along the route, the route was sometimes 

shortened, and the autonomous shuttles were not continuously operating due to technical issues 

and maintenance. The dates of video footage collection differed between locations due to 

limitations based on available material and resources. While all interactions between VRUs and 

automated shuttles were registered, the results will zoom in on the types of interactions that 

took place frequently enough to draw meaningful conclusions. 
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5 Results 

5.1 Interactions with pedestrians 

5.1.1 Interactions between pedestrians crossing at the pedestrian crossing and automated 

shuttles (Site 1 and Site 3) 

At Site 1, pedestrian crossings are present at the intersection, both on the main road 

(Akershusstranda) and the side road. The automated shuttle is, as all motor vehicles, required 

to yield to crossing pedestrians at pedestrian crossings. 

Seventy-eight interactions with crossing pedestrians have been observed (see Figure 2). The 

majority of the interactions (N = 63) involved yielding to pedestrians that were crossing the side 

road while the automated shuttle was turning right. The other interactions (N = 15) were 

yielding situations at the pedestrian crossing of the main road. In 58 interactions the shuttle 

yielded correctly (74%), in 20 interactions the shuttle did not yield (26%). The results were 

very similar for both crossings and are therefore only shown combined. The yielding rate does 

not differ significantly between the three periods [χ2 (2, 78) = 0.483; p = 0.785]. 

 

Figure 2 Interactions between automated shuttles and crossing pedestrians (Site 1) 

At Site 3, a pedestrian crossing is present on the road section near the entrance of the cruise 

terminal. The number of interactions is relatively low (N = 32), and the results should therefore 

be interpreted with caution (see Figure 3). It is, nevertheless, noteworthy that the shuttle only 

yields to pedestrians in 50% of the situations at this crossing. The yielding rate is significantly 

worse at Site 3 compared to Site 1 [χ2 (1, 110) = 6.115; p = 0.013]. The yielding rate at Site 3 

does not differ significantly between the periods May and June (Fisher’s Exact test: p = 0.433). 

An additional analysis was done to compare the yielding rate of automated vehicles with regular 

motor vehicle drivers. For both sites, a random sample of 8h of video data was selected, and all 

interactions between regular motor vehicles and crossing pedestrians were analysed. For both 

sites, the conclusion is that the rate of yielding to crossing pedestrians did not statistically 

significantly differ between automated shuttles and regular motor vehicle drivers1. 

 
1 Site 1: N = 81; driver yields = 56 (69%), driver does not yield = 25 (31%); χ2 (1, 159) = 0.534; p = 0.465 
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Figure 3 Interactions between autonomous shuttles and pedestrians crossing (Site 3) 

5.1.2 Face-to-face interactions between pedestrians and automated shuttles 

At the shared space Sites 4 and 5, approximately 200 face-to-face interactions between 

pedestrians and automated shuttles could be observed. In more than 90% of the interactions, 

the pedestrian moved out of the way of the shuttle. In other words, pedestrians behaved 

cooperatively to handle the interaction. However, in quite some cases, pedestrians reacted 

slowly. Consequently, the automated shuttle slowed down or stopped in around 40% of these 

interactions.  

5.1.3 Same direction interactions between pedestrians and shuttles 

At the shared space Sites 4 and 5, a total of 53 interactions were observed in which the shuttle 

approaches one or more pedestrians from behind. In 45 of these interactions (85%), the 

pedestrian moved out of the way to allow the shuttle to pass them, while in 8 (15%) of the 

interactions, the pedestrian took no action.  

5.2 Interactions with cyclists 

5.2.1 Interactions between right-turning shuttles and cyclists going straight through (Site 1) 

When returning to the Vippetangen bus stop (Site 1), the automated shuttle turns right at the 

intersection. While doing so, the shuttles are required to yield to cyclists going straight. The 

results are shown in Figure 4. In total, 61 interactions between a right-turning shuttle and a 

cyclist going straight through were observed. Of these interactions, in 38 cases (62%) the 

automated shuttle yielded correctly to the cyclist. In 23 interactions (38%), the shuttle did not 

yield and cut in front of the straight going cyclist. 

Looking at the different periods, the shuttles yielded better to cyclists in the first period (May) 

than in the second (June) and third period (October). The period effect is statistically significant 

at the 95% confidence level [χ2 (2, 61) = 6.101; p = 0.047]. 

Based on a sample of 8 hours of video footage, an additional analysis was performed again to 

compare the rate of yielding towards cyclists going straight through of automated shuttles with 

regular motor vehicle drivers. The difference between automated shuttles and regular motor 

 
  Site 3: N = 82; driver yields = 41 (50%), driver does not yield = 41 (50%); χ2 (1, 114) = 0.000; p = 1.000 
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vehicle drivers is not statistically significant, but the number of interactions with regular motor 

vehicle drivers was low (N = 9)2. 

 

Figure 4 Interactions between right-turning autonomous shuttles and cyclists going straight through 

5.2.2 Cyclists riding in the same direction as automated shuttles 

Since the automated shuttles are driving relatively slowly (maximum speed of 18 km/h, but 

considerably slower at Sites 4 and 5), many cyclists were observed to ride faster than the 

automated shuttles. The vast majority of same direction interactions between cyclists and 

automated shuttles involve a cyclist catching up with and/or overtaking an automated shuttle. 

The number of interactions where an automated shuttle catches up with a cyclist is very low 

and will therefore not be analysed.  

At Site 1 and at the southern part before the intersection at Site 2, cycle lanes are present. 

Situations involving a cyclist and an automated shuttle are not included here, since both road 

users are using separate infrastructure and are therefore not interacting. As a result, the analyses 

include same direction interactions between shuttles and bicycles at Site 2 (the northern part 

without cycle lanes) and Sites 3, 4 and 5. The results are shown in Figure 5. Note that for Site 

3 (cruise terminal), an additional analysis is made of a similar type of interaction where the 

shuttle is blocking the cyclist’s path by stopping (usually at the bus stops on the road that are 

visible within the camera view). 

Very similar results are found at Sites 2, 3 and 4. At all sites, a clear majority of the cyclists 

overtake the automated shuttle. A low number of situations is observed where the cyclists only 

follow the shuttle but do not overtake it (21%, 5% and 6% of the interactions, respectively). In 

the vast majority of the interactions, the cyclists overtake the automated shuttle on the left side 

(64%–77% of the interactions), usually immediately (i.e. without riding behind the shuttle for 

a while first before overtaking). The share of overtaking manoeuvres on the right-hand side is 

limited (15%–30%). The findings for the interactions at Site 3 where the shuttle is blocking the 

cyclist’s path are in line with (and even slightly more pronounced than) the regular same 

direction interactions. 

 
2 N = 9, driver yields = 7 (78%), driver does not yield = 2 (22%); χ2 (1, 70) = 0.819; p = 0.366 
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Figure 5 Same direction interactions between automated shuttles and cyclists 

The findings at Site 5 show a slightly different picture, with only 33% of interactions leading 

to an overtaking manoeuvre on the left side of the shuttle, compared to 58% of interactions 

leading to an overtaking manoeuvre on the right side of the shuttle. This is a shared space area, 

and consequently, the interaction patterns are in general less structured than at other observation 

sites. It should be noted, however, that the number of observations at Site 5 is low (N = 30), and 

these results, therefore, need to be interpreted with caution.  

For each site, a significance test is performed to see if any statistically significant seasonal 

effects can be found. The results are the following: 

• Site 2, same direction interactions: χ² (8, 265) = 17.347; p = 0.027. The test shows that 

there are statistically significant differences between the different observation periods. 
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However, the variations do not show any systematic trend. No conclusions can be 

drawn. 

• Site 3, same direction interactions: χ² (2, 114) = 1.068; p = 0.586. The test shows that 

there are no statistically significant differences between the different observation 

periods. 

• Site 3, shuttle blocking cyclist’s path interactions: χ² (1, 432) = 0.328; p = 0.567. The 

test shows that there are no statistically significant differences between the different 

observation periods. 

• Site 4, same direction interactions: χ² (4, 212) = 7.268; p = 0.122. The test shows that 

there are no statistically significant differences between the different observation 

periods. 

• Site 5, same direction interactions: not tested due to low sample size. 

5.3  Interactions with e-scooters 

The number of interactions between e-scooters and automated shuttles was substantially lower 

than the number of interactions with pedestrians and cyclists. The following types of situations 

were frequent enough for quantitative analysis (see Figure 6). At Site 3, the number of 

interactions where an automated shuttle blocked the e-scooter’s path (usually by stopping at the 

bus stop) was sufficiently high to analyse (N = 52). At Site 4 and Site 5, same direction 

interactions between automated shuttles and e-scooters where the e-scooter was riding behind 

the automated shuttle could also be analysed (N = 30 and N = 29, respectively). 

 

 

Figure 6 Same direction interactions between e-scooter riders and automated shuttles 
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The results at Site 3 show that an automated shuttle that is blocking an e-scooter’s path is always 

overtaken. In the majority of cases, the overtaking takes place immediately (without following 

the shuttle first), and on the left of the vehicle. We see a somewhat different picture for same 

direction interactions at Sites 4 and 5, though overtaking on the left is still more common. 

Next, we checked whether the overtaking behaviour of e-scooter riders in these interactions 

differs from the behaviour of cyclists in the same interactions. This was tested by use of chi-

square tests and we tested the distributions of three types of behaviour: no overtaking, 

overtaking on the left, and overtaking on the right. The significance tests gave the following 

results: 

• Shuttle blocking the path at Site 3 (cyclist vs. e-scooter): χ2 (1, 484) = 5.773; p = 0.016. 

It can be observed that, at Site 3, e-scooter riders that are confronted with an automated 

shuttle blocking their path have a relatively higher probability of overtaking the shuttle 

on the right-hand side compared to cyclists. The blocking situations mostly occur 

because the automated shuttle stops at a bus stop at this site. This is potentially safety-

relevant behaviour since shuttle passengers access and egress the shuttles on the right-

hand side and they might therefore have an increased risk of getting involved in a crash 

with an e-scooter rider compared to a cyclist. 

• Same direction interaction at Site 4 (cyclist vs. e-scooter): χ2 (2, 242) = 0.635; p = 0.728 

• Same direction interaction at Site 5 (cyclist vs. e-scooter): χ2 (2, 62) = 5.101; p = 0.078 

5.4 Ignorant and aggressive behaviour of VRUs towards the automated shuttles 

The codebook included a checkbox to mark ‘ignorant or aggressive behaviour’ of the VRU 

towards the automated shuttles. These are remarkable forms of behaviour that could not be well 

delineated in advance, but that suggest that the defensive driving style and/or the novel nature 

of the automated shuttle could lead to abnormal behaviour of VRUs. This involves amongst 

others taking advantage of the defensive driving style, for instance by stepping/riding in front 

of a shuttle that is already very close and that possibly has the right of way, deliberately trying 

to provoke an emergency stop of the automated shuttle or other forms of bullying or abuse.  

Over all observation sites and all periods combined, only 21 instances of ignorant or aggressive 

behaviour were registered. The highest number of instances is observed at Site 5, which is a 

shared space environment with a high number of interactions with VRU.  

Some observed examples of ignorant and aggressive behaviour included pedestrians who 

deliberately took a step in front of the automated shuttle, cyclists who aggressively approach 

the shuttle head-on and swerve late, and an e-scooter rider who rode a circle around the bus. 

The operator of the shuttle reported that for some time one particular cyclist repeatedly ‘bullied’ 

the shuttle by intentionally riding closely past it almost every day, forcing the shuttle to stop. 

This anecdotal situation took place outside the observed periods and is therefore not shown in 

the data. 

It can be concluded that ignorant and aggressive behaviour of VRU towards autonomous 

shuttles is quite uncommon. The low numbers do not allow us to make an inference on the 

temporal effect.  

6 Discussion 

6.1 Discussion of results 

Generally, the automated shuttles fail to yield to pedestrians at pedestrian crossings quite often, 

i.e. the automated shuttles do not stop to let a pedestrian cross while they are required to do so. 
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At Site 1, they fail to yield in 26% of all interactions according to our annotation. At Site 3, the 

yielding is significantly worse and automated shuttles fail to yield to pedestrians 50% of the 

time. While it could not be confirmed whether this level of yielding is worse than for regular 

motor vehicle drivers, for automated shuttles we should expect that they violate traffic rules 

rarely if ever. Not yielding to pedestrians waiting at, or even already walking on, a pedestrian 

crossing is a clear violation of the traffic rules. This is an important issue to address for 

automated shuttle manufacturers. 

In face-to-face interactions between pedestrians and automated shuttles in shared space 

environments (Sites 4 and 5), in more than 90% of the interactions, the pedestrian moved out 

of the shuttle’s way. Similarly, in same direction interactions where the automated shuttle 

approaches one or more pedestrians from behind, the pedestrian(s) move out of the way in 85% 

of the interactions. This was to be expected since the automated shuttles are programmed to 

drive a fixed path and they can therefore not swerve in an interaction. It seemed like most 

pedestrians that did not move out of the way in face-to-face interactions, did not understand this 

limitation to the behaviour of the automated shuttle. In most same direction interactions, it 

seemed that the pedestrian(s) did not notice or hear the (electric) shuttle approaching. 

Right-turning shuttles often failed to yield to cyclists going straight at observation Site 1. More 

specifically, in 38% of the interactions, the automated shuttle did not yield and cut in front of 

the straight going cyclist. In other words, automated shuttles seemed prone to miss cyclists in 

the ‘classic’ blind spot at the right-hand side behind the vehicle. This, too, is a violation of the 

traffic rules. Given the low driving speed of the automated shuttle, many of these situations 

involved either a faster cyclist ‘undercutting’ the automated shuttle or a cyclist riding at a 

similar speed and therefore ‘hovering’ in this blind spot. Automated shuttles’ detection of 

cyclists in the blind spot when turning right should be improved. The analysis of this right-turn 

manoeuvre was one of the few that showed a statistically significant temporal effect. The results 

suggest that the shuttles yielded better to cyclists in the first period (May) than in the second 

(June) and third period (October). It is unclear why this is the case.  

The recent paper by Pokorny et al. (2021) looked more closely into a sample of interactions 

between automated shuttles and cyclists in the bicycle lane going straight, using the same 

automated shuttles at the same site (Site 1, Vippetangen) one year after the recordings discussed 

in the current paper (i.e. in 2020 instead of in 2019). The results of the study suggest that the 

automated shuttle yielded correctly more often in 2020 than in 2019, which could be the result 

of improvements to the self-driving functionalities of the automated shuttle in general or 

because of a finetuning of parameters specifically for this location. However, the shuttle often 

yielded by conducting hard stops, which could result in an increased risk of injuries for 

passengers inside the shuttle as well as rear-end crashes. Indeed, earlier research has indicated 

that automated vehicles are more likely to be struck from behind than conventional motor 

vehicles (Goodall 2021). Pokorny et al. (2021) also report several situations where both the 

shuttle and the cyclist stopped to yield to one another, which could indicate a lack of trust from 

the perspective of the cyclists, possibly because of experiences with the shuttles in 2019. The 

study did not find improvements in the automated shuttles’ yielding towards pedestrians at the 

pedestrian crossings, but the number of recorded interactions of this type was low.   

In the vast majority of same direction interactions between cyclists and automated shuttles, the 

interaction results in the cyclist overtaking the automated shuttle. Usually, the cyclists overtake 

the shuttle on the left side (64%–77% of the interactions, depending on the observation site at 

Sites 2, 3 and 4). Only at Site 5, which is a shared space environment, the number of cyclists 

overtaking the automated shuttle on the right-hand side is higher than the number of cyclists 

overtaking the automated shuttle on the left-hand side. 
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The number of interactions between e-scooters and automated shuttles was substantially lower 

than for other types of VRU, so not all possible types of interactions could be studied in 

sufficient detail. At Site 3, in situations where an automated shuttle blocks the path of an e-

scooter rider, the e-scooter rider is more likely to overtake the stopped shuttle on the right-hand 

side compared to a cyclist that is confronted with an automated shuttle blocking their path. At 

Sites 4 and 5, no statistically significant difference was found between e-scooters and cyclists 

in terms of overtaking behaviour.  

In other words, the low speed of the automated shuttle triggers a high number of overtaking 

manoeuvres from cyclists and e-scooterists that could indirectly lead to secondary (potentially 

hazardous) interactions, for example with oncoming traffic. This finding is in line with Pelikan 

(2021), and also with Johnsson et al. (forthcoming), who found a similar result for interactions 

between automated shuttles and regular motor vehicles.  

In summary, the current study identified several potentially risky types of situations in which 

the automated shuttles did not always behave according to the traffic rules. This suggests that 

the automated shuttles do not always behave as defensively as is generally assumed. While the 

paper by Pokorny et al. (2021) suggests some improvements over time, as can be expected from 

rapidly developing technology, many issues (most of which are reported in other empirical 

studies on automated shuttles as well) remain unsolved, and some new issues emerge as well.   

Although the findings could not always confirm whether this issue is more substantial for 

automated shuttles than for similar interactions involving regular (human-driven) motor 

vehicles and although it is uncertain whether the identified issues apply to automated shuttles 

from all manufacturers, it suggests that work is needed to improve the behaviour of automated 

shuttles when interacting with VRU. It is not acceptable that automated shuttles violate the 

traffic rules at such a high frequency as was observed in this study. However, it may also suggest 

that it is to be recommended that in future pilot projects, road users are informed about the fact 

that caution is needed when interacting with automated shuttles since they could (for the time 

being) make judgment errors and incorrect decisions just like regular drivers. These findings 

are in line with recent work by Pelikan (2021), whose initial findings in an observational study 

on self-driving shuttles in traffic suggest that the shuttles currently do not comply with cyclists’ 

expectations of social coordination in traffic. 

It can be concluded that the low speed of the automated shuttles triggers a high number of 

overtaking manoeuvres from cyclists and e-scooterists that could lead to secondary conflicts 

and might therefore be a safety risk. This finding is in line with Johnsson et al. (forthcoming), 

who analysed interactions between automated shuttles and motor vehicle drivers. They also 

found that motor vehicles drivers very often overtake the automated shuttles because of their 

low speed. It could be stated that the slow speed of the automated shuttles introduces turbulence 

into the traffic situation, which might lead to unexpected manoeuvres from road users and 

therefore might lead to secondary conflicts.  

From a safety point of view, it is logical to use conservative settings and start operations with 

lower driving speeds and with very defensive interaction behaviour (e.g. slowing down or 

stopping often, unnecessary hard stops, etc.). However, it is unclear whether automated shuttles 

will (or should) maintain such conservative settings. At some point, it may be considered to 

make the settings of automated shuttles less conservative to more closely match the speed 

profile of the traffic they are operating in, and possibly to make the automated shuttles more 

‘assertive’ in their interactions, claiming their right-of-way and avoiding unnecessary stops and 

delays. This could lead to safety issues that are very different from the ones observed with 

todays’ automated shuttles. For example, higher driving speeds could lead to a higher crash risk 

and a higher probability of injury (Lubbe et al. 2022; Kröyer et al. 2014). It should be noted 
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that higher speeds of automated shuttles might also pose a safety risk to the occupants in non-

crash events. In case of emergency stops at higher speeds (be it justified emergency stops or 

false detections), there is an increasing risk of injury for shuttle occupants due to for instance a 

fall, loss of balance or being propelled from their seat. The importance of non-crash injuries 

should not be ignored, given the fact that research into injury events of traditional bus and coach 

occupants showed that non-crash injuries are an important share of all injuries of bus and coach 

occupants, and sudden stops are one of the main contributors (Björnstig et al. 2005).    

Generally, the paper found little evidence of road users trying to bully or take advantage of the 

defensive driving style of the automated shuttles and identified only a limited number of 

interactions in which the VRU behaved ignorant/aggressive towards the automated shuttles. In 

addition, the paper found very few indications of temporal effects. Important preconditions for 

these effects to emerge, in line with game theory, are that (a) the automated shuttle acts 

defensively, and (b) other road users learn this over time and therefore become more assertive. 

Based on the empirical findings of this study, we could argue that condition (a) is not fulfilled 

since the automated shuttles do not always behave defensively and that consequently condition 

(b) cannot be fulfilled either. This might explain why no evidence was found to support the 

hypothesis that road users will try to take advantage of the automated shuttles.  

6.2 Strengths, limitations and further research 

The main strength of the study is that it involves observed behaviour in real-world traffic 

conditions. This is a rather unique future in current research on automated vehicles since most 

research around human behaviour around automated shuttles makes use of stated preferences 

or takes place in highly controlled (laboratory) conditions. 

The size of the data collection is both a strength and a limitation of this study. The data 

collection was extensive, with weeks of video footage that have been analysed, including 

hundreds of interactions between automated shuttles and VRU at five observation sites. 

However, the observed interactions were very diverse, and when zooming into specific types 

of interactions, the data sizes often became small, limiting the possibilities to infer conclusions 

from them. This is also the case when analysing the different observation periods to look for 

temporal effects. This paper found very few indications of such effects. Consequently, the 

occurrence of behavioural changes over time in line with game-theoretic theory could not be 

confirmed. This is, however, a topic deserving further research, using larger sample sizes and 

longer observation periods to allow for longer-term behavioural adaptations. Additionally, 

future research could focus more strongly on specific situations in which other road users can 

have a stronger gain from taking advantage of the way automated shuttles behave, such as 

locations where many VRU are in a hurry. 

This paper made use of the observation of road user interactions. Some behavioural elements 

that were found could indicate potential safety hazards for VRU, such as the poor yielding 

behaviour of automated shuttles turning right towards cyclists going straight through and to 

pedestrians crossing at zebra crossings. Research suggests that even normal traffic events 

contain information that can be applied to make road safety assessments (Saunier & Sayed 

2007; Svensson 1998). However, to better assess the true impact on road safety, metrics that 

are more closely linked to crashes should be used (Johnsson et al. 2018; De Ceunynck 2017; 

Laureshyn 2010). Further research based on surrogate measures of safety (near-crashes, traffic 

conflicts) is therefore recommended. 

The use of an ‘external perspective’ in the form of site-based observations allows to collect 

some parameters of both the automated shuttles and the other involved road user in interactions. 

However, no vehicle data is used in this study, limiting for instance the possibilities to analyse 



De Ceunynck et al. | Traffic Safety Research vol. 2 (2022) 000008 

19 

detailed behavioural adaptations to traffic situations and also limiting the possibilities to infer 

the reason behind some of the observed behaviour. For example, while this paper has identified 

some interaction situations where the automated shuttles do not yield to VRU sufficiently well, 

based on our data we cannot infer why this is the case nor how this can be improved. 

Furthermore, the technical specifications of the vehicle, the overall performance of the autopilot 

as well as the site/project-specific parameters are constantly under development. This 

complicates comparisons between different projects, but also comparisons at different points in 

time within a project. The fact that the study by Pokorny et al. (2021), who observed one of our 

research sites one year later, found an improvement in yielding to cyclists in the adjacent bicycle 

lane when turning right (but at the expense of a high number of hard stops) illustrates this 

limitation. Additionally, automated shuttles from different manufacturers use different 

hardware set-ups and parameters and therefore findings related to the behaviour of the 

automated shuttles of one manufacturer cannot necessarily be transferred to vehicles from other 

manufacturers. This shows in our view that more empirical studies like the one at hand are 

needed in order to come to more generalizable conclusions. Longer-term projects can also 

benefit from analyses that are regularly repeated.         

This paper presents observations at one test route in Oslo, Norway. The effects are likely at 

least to some extent to be context-specific (i.e. affected by local factors related to the road 

infrastructure design and traffic culture). Further research about interactions between VRU and 

automated shuttles in real-world traffic conditions at other sites and in other countries is needed. 

7 Conclusions 

This paper identified several potentially risky types of situations in which the automated 

shuttles did not always behave according to the traffic rules. Generally, the automated shuttles 

fail to yield to pedestrians at pedestrian crossings quite often (26%–50% of the interactions). 

Right-turning shuttles failed to yield to cyclists going straight in 38% of the interactions at 

observation Site 1 (the only location where the automated shuttle takes a right turn). While it 

could not be confirmed whether these levels of yielding are worse than for regular motor vehicle 

drivers, for automated shuttles we should expect that they violate traffic rules rarely if ever. 

Therefore, these levels of yielding violations are not acceptable.  

In the vast majority of same direction interactions between cyclists and automated shuttles, the 

interaction results in the cyclist overtaking the automated shuttle, usually on the left-hand side. 

These overtaking manoeuvres often lead to unnecessary braking or stopping of the automated 

shuttle. 

Generally, the paper found little evidence of road users trying to bully or take advantage of the 

defensive driving style of the automated shuttles and identified only a limited number of 

interactions in which a vulnerable road user behaved ignorant/aggressive towards the shuttles. 

The paper also found very few indications of temporal effects that suggest changes in the 

interaction behaviour over time. 
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