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Abstract
This paper derives an entrepreneur’s optimal switching between an idle and an 
active state under stochastic mean reverting output prices. The paper suggests a new 
categorisation of the effects of mean reversion. Mean reversion affects valuation 
and optimal entry and exit thresholds via the variance of output prices and expected 
future cashflows. High variance increases the value of optionality and enhances 
hysteresis effects. Changes to the expected cashflow path affect the attractiveness 
of the active relative to the idle state. In addition, changes to the moments affect 
the implicit risk discounting rate and thereby valuation and the optimal switching 
strategy.
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1 Introduction

A classical challenge of the real options literature is the derivation of a firm’s opti-
mal entry and exit strategy under uncertainty. Under what current condition and out-
look should an entrepreneur invest in a market entry and when is it time to with-
draw? In a seminal paper, Dixit [1] discusses the entry and exit problem of firms 
under output price uncertainty and shows how the value of flexibility creates hys-
teresis. Higher uncertainty increases the value to wait, which means that the spread 
between entry and exit price thresholds becomes wider. That is, the optimal entry 
threshold is higher than the variable cost plus the interest on the entry cost, and the 
optimal exit threshold is lower than the variable cost minus the interest on the exit 
cost.
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Mossin [2] too studies market switching under uncertainty. He works in a discrete 
time setting. Dixit solves the entry and exit problem in a continuous time geomet-
ric Brownian motion output price setting. Dixit’s continuous time perspective has 
inspired a large theoretical and applied literature.

A geometric Brownian motion specification may be a good approximation in 
the case that the expected return of an underlying asset can be characterised by a 
geometric trend, e.g. in the Black and Scholes [3] stock market setting. However, 
as discussed by Lund [4], the geometric Brownian motion is probably not a good 
description of the dynamics of goods and services prices. Higher output prices 
will typically trigger higher production via better utilisation of existing production 
units, investment in new production capacity and due to the entry of new firms and 
vice versa for lower prices. Gradual adjustment of supply in response to changes in 
demand, i.e. inelastic short-term and elastic long-run supply, creates mean reverting 
goods and service prices.

Dixit recognises that mean reversion in prices may be a reasonable assumption in 
the case that production is responding to changes in output prices. This is precisely 
the case when firms enter or exit the market under price uncertainty. He therefore 
suggests extending the basis model by letting output prices follow a mean reverting 
process, i.e. he suggests that prices follow the geometric mean reverting process:

where � governs the degree of mean reversion, P∗ is the fixed long-run equilibrium 
or mean level of output prices, and dBt is the increment of a standard Brownian 
motion.   However, Dixit does not derive a closed-form solution for the case that 
output prices following Eq. (1).

In Dixit’s basis model, the market agent is risk-neutral. Dixit suggests extending 
the model by introducing an output price process with a risk-adjusted trend. The risk 
adjustment of Dixit’s model is analytically fairly straightforward if modelled as a 
combination of the geometric random walk specification and classical capital asset 
pricing model (CAPM) assumptions.

Sarkar [5] discusses the impact of mean reversion on optimal entry. He follows 
Dixit and lets the mean reverting cashflow be described by process (1) above. Dixit 
and Pindyck [6] and Metcalf and Hassett [7] for similar optimal entry problems 
apply a slightly different geometric mean reversion output price process, i.e. the geo-
metric Ornstein–Uhlenbeck differential equation.

Tsekrekos [8] derives a closed-form solution to a Dixit-type entry and exit prob-
lem in the case that the output prices are mean reverting. Tsekrekos follows Dixit 
and Sarkar and assumes that the output price follows (1) above and uses CAPM 
arguments to incorporate market pricing of risk. More precisely, he makes the 
assumption that the market price of risk is constant and that the correlation between 
the change in the output price and the return of the market portfolio is constant. That 
is, he follows Bhattacharya [9] both as regards the choice of stochastic price process 
and the pricing of risk.

In a consumption CAPM setting, only under restrictive assumptions are a con-
stant market price of risk and a constant correlation between the output price and 

(1)dPt = �
(
P∗ − Pt

)
dt + �PtdBt
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the market return mutually consistent. For example, the properties hold under 
time-additive constant relative risk aversion and normally distributed consumption 
growth rates and rate of asset returns. The extended Dixit and Tsekrekos models’ 
frameworks are therefore consistent with an implicit assumption that market agents 
have time-additive utility and constant relative risk aversion.

This article returns to the study of a risk-averse firm’s entry and exit decision 
under uncertainty and mean reverting output prices. The switching problem is 
solved for the geometric mean reversion process of Laughton and Jacoby [10] under 
log utility. See Schwartz [11] and Smith and McCardle [12] for early applications 
of the process. As will be evident below, the choice of utility function is favourable 
from a technical point of view and makes it easy to separate the different effects of 
mean reversion on valuation and optimal switching strategies. A more general speci-
fication of preferences would be preferable, but the choice is a sacrifice in order to 
obtain closed-form solutions that are a prerequisite for the economic analysis.

For an overview of alternative output price specifications in the literature, see 
Dias et al. [13]. A few articles study the effect of mean reversion in other types of 
underlying variables. For example, Dias and Shackleton [14] study hysteresis effects 
caused by mean reverting interest rates, i.e. they solve a switching problem for a 
Cox–Ingersoll–Ross stochastic process. Tsekrekos and Yannacopoulos [15] study 
optimal switching under mean reverting stochastic volatility. Kwon [16] studies the 
entry and exit problem under the assumption that prices deteriorate over time due to 
competition and new technologies. This approach may be a useful alternative to the 
mean reversion specifications.

The article is organised as follows: Sect.  2 introduces an entry and exit model 
for a geometric mean reverting output price. Section  3 adds a utility function to 
the Dixit model. Section 4 discusses the mean reverting switching model’s proper-
ties and suggests a new categorisation of the effects of mean reversion on optimal 
switching strategies. Section 5 discusses possible applications and extensions of the 
model. Section 6 concludes.

2  A Model of the Firm’s Entry and Exit Decision Under Risk Aversion 
and Mean Reverting Output Prices

Let an output price Pt    be given by a geometric mean reversion process, i.e. let

Here, 𝜅 > 0 governs the degree of mean reversion; � represents the fixed long-run 
equilibrium or mean level of output prices on a logarithmic form, i.e. � may take neg-
ative values; and 𝜎 > 0 is the standard deviation of the relative change of the output 
price. Let Pt > 0 for any t. The moments of the output price process are easily cal-
culated; see Tvedt [17]. The log of the output price follows an Ornstein–Uhlenbeck 
differential equation. For later use, note that the conditional expectation and variance 
of the log of the price process are   

(2)dPt = �
(
� − ln Pt

)
Ptdt + �PtdBt
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where Ft is a filtration of available information up to time t. The conditional expec-
tation of the log of the price process converges towards a fixed number � −

�2

2�
 , and 

the conditional variance of the log of the price process converges towards a fixed 
number �

2

2�
 for high �.

The entrepreneur has preferences for future consumption. Let the entrepreneur 
receive a nondurable endowment at any time t that can be turned into w units of 
consumption at the same period of time t. As an alternative to consuming w, the 
entrepreneur may use the endowment to produce one unit of output, which is sold 
in the market at the output price Pt . The entrepreneur will then, at any time t, use 
the cashflow from the sale to buy and consume Pt units of the consumption good. 
The cashflow if the entrepreneur’s firm is actively producing is then uncertain and 
given by the dynamics of output price Pt . The endowment may be interpreted as 
an input factor, and the units of consumption, w, may alternatively be interpreted 
as the variable cost of production in the active case.

In this model setup, there is no direct inter-temporal substitutions. However, 
let there be a sunk investment cost or sunk cost of commencing production, kentry , 
and a sunk cost of closing down production, kexit . That is, these costs are neces-
sary sacrifices for achieving an optimal consumption path, which is given by the 
optimal switching between the fixed level w in the idle state and the uncertain 
level Pt in the active state.

Let the entrepreneur’s preferences be given by a von Neumann–Morgenstern 
utility function, which in the case that the entrepreneur optimally exercises the 
options to enter and exit the market under output price uncertainty can be charac-
terised by the following value function:

where the entrepreneur’s instantaneous utility in the active state at time t is given by 
�lnPt and in the idle state by �lnw . Ia is an indicator function, which takes the value 
1 in the active state and 0 in the idle state. � is a constant discount factor that reflects 
time preferences. The controls � are given by � =

(
�1, �2,… , �N ;�1, �2,… , �N

)
 , 

where �j is the time of control j and �j is the direction of the move at control j, i.e. 
either an entry or an exit from the market.

The optimisation problem is similar to that of Dixit except for the output price 
process and the specification of risk preferences. The autonomous property of the 
problem suggests that the optimal output price thresholds for entry and exit, Phigh 
and Plow , respectively, are fixed for given parameter values.

(3)E
[
lnP� |Ft

]
= e−�(�−t)ln Pt +

(
� −

�2

2�

)(
1 − e−�(�−t)

)

(4)Var
[
ln P� |Ft

]
=

�2

2�

(
1 − e−2�(�−t)

)

(5)

Φ(p) = max
�

E

[
∫

∞

t

e−�s�lnPsIads + ∫
∞

t

e−�s�lnw
(
1 − Ia

)
ds −

∑N

j=0
e−��j k�j |Ft

]
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Due to the time homogenous property of value function (5), it is natural to try a 
solution of the form Φ

(
pt
)
= e−�tV

(
pt
)
 . For the controls to be optimal, the dynamics 

of value function (5) in the case that the firm is in an idle state and in an active state, 
respectively, should then satisfy the following partial differential equations:

Requirement (6) implies that the instantaneous return on the value of staying idle 
and at an optimal time exercising the real option to entering into the active state 
should be equal to the change in the value function from the change in the out-
put price plus the instantaneous utility of the fixed consumption in the idle state. 
Requirement (7) implies that the instantaneous return on the value of being in the 
active state and optimally in the future switch between the active and the idle states 
should be equal to the change in the value function from the change in the output 
price plus the instantaneous utility of consumption in the active state.

Define a variable z = �

�2

(
∝ −

�2

2�
− lnp

)2

 . It then follows that the homogenous 
parts of Eqs. (6) and (7) reduce to.

That is, the equations reduce to Kummer’s equations with known solutions.
A solution to the inhomogenous part of Eq. (6) is simply the net present value of 

the log of future consumption in the idle state, i.e. 
∞∫
0

e−�s�lnwds =
�lnw

�
 . Adding 

together the solutions to the homogenous and inhomogenous parts gives the follow-
ing solution to Eq. (6), i.e. the value function in the idle (zero) state:

where M(a, b, z) is Kummer’s function. See Abrawomitz and Stegun [18]. To make 
the expression somewhat more compact, a constant 

√
�

�
 , which is a factor of the solu-

tion’s z1−b =
√
�

�

�
∝ −

�2

2�
− lnp

�
 , is included in the constant B0 . The same applies to 

the constant B1 in Eq. (11).
The solution to the homogenous part of Eq.  (7) has the same structure as the 

solution to Eq. (6), but with constants A1 and B1 instead of the constants A0 and B0 . 
Note that Vo(p) represents the value of the flexibility to switch between the active 
and idle states plus the fixed utility of staying in the idle state forever. A reasonable 
assumption is therefore that the inhomogenous part of Eq. (7) represents the value 

(6)−ρV0 + �(� − lnp)pV
�

0
+

1

2
�2p2V

�

0
+ �lnw = 0

(7)−ρV1 + �(� − lnp)pV
�

1
+

1

2
�2p2V

�

1
+ �lnp = 0

(8)−
�

2�
V +

(
1

2
− z

)
V � + zV �� = 0

(9)
Vo(p) = A0M

(
�

2�
,
1

2
,
�

�2

(
∝ −

�2

2�
− lnp

)2
)

+B0

(
∝ −

�2

2�
− lnp

)
M

(
�+�

2�
,
3

2
,
�

�2

(
∝ −

�2

2�
− lnp

)2
)
+

�lnw

�
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of being active without any utilisation of switching options. That is, a solution to the 
inhomogenous part of Eq. (7) is simply the discounted value of the expected future 
instantaneous utility of always being active. Given that the first and second moments 
of the log of the output price is finite, it follows that

A solution to Eq. (7), i.e. the value function in the active (one) state, is then.

In the case that the output price approaches zero, the constants A0 and B0 of rela-
tion (9) should be related in such a way that it makes the value of the switching 
option in the idle state approaching zero. Note that when p → 0 , then z → ∞ . Using 
the asymptotic property of Kummer’s function, lim

z→∞
M(a, b, z) =

Γ(b)

Γ(a)
ezza−b , the 

requirement that V0 −
�lnw

�
→ 0 for p → 0 implies that.

In the case that the output price gets infinitely high, the value of the active state 
should approach the value of the future utility of the cashflows in the active state 
only as the value of the option to exit should approach zero. Note that if p → ∞ , 
then 

√
−z → ∞ and z → ∞ . Due to the asymptotic property of Kummer’s function 

and letting V1 −
��

�(�+�)

(
� −

�2

2�

)
−

�lnp

�+�
→ 0 for p → ∞ , the relation between the two 

constants A1 and B1 in (10) is given by.

The value functions in the idle (zero) or active (one) states can then be written in 
terms of the output price, the parameter values and two constants A0 and A1:

(10)

E

⎡⎢⎢⎣

∞

∫
0

e−�s�lnPsds�F0

⎤⎥⎥⎦p0=p
=

∞

∫
0

e−�sE
�
�lnPsds�F0

�
=

��

�(� + �)

�
� −

�2

2�

�
+

�lnp

� + �

(11)

V1(p) = A1M

(
�

2�
,
1

2
,
�

�2

(
∝ −

�2

2�
− lnp

)2
)

+B1

(
∝ −

�2

2�
− lnp

)
M

(
�+�

2�
,
3

2
,
�

�2

(
∝ −

�2

2�
− lnp

)2
)
+

��

�(�+�)

(
� −

�2

2�

)
+

�lnp

�+�

(12)B0 = −

√
�

�

Γ
�

1

2

�

Γ
�

�

2�

�
Γ
�

�+�

2�

�

Γ
�

3

2

� A0

(13)B1 =

√
�

�

Γ
�

1

2

�

Γ
�

�

2�

�
Γ
�

�+�

2�

�

Γ
�

3

2

� A1

(14)

V0(p) = A0

⎛
⎜⎜⎜⎜⎝

M

�
�

2�
,
1

2
,
�

�2

�
∝ −

�2

2�
− lnp

�2
�

−

√
�

�

Γ
�

1

2

�

Γ
�

�

2�

�
Γ
�

�+�

2�

�

Γ
�

3

2

�
�
∝ −

�2

2�
− lnp

�
M

�
�+�

2�
,
3

2
,
�

�2

�
∝ −

�2

2�
− lnp

�2
�
⎞
⎟⎟⎟⎟⎠
+

�lnw

�
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Let the high price that represents the optimal threshold for entry be pMR
high

 and let 
the low price that represents the optimal threshold for exit be pMR

low
 under the geomet-

ric mean reversion (MR) output price process. For these thresholds to be optimal, 
the value matching (16) and (17) and smooth pasting (18) and (19) conditions must 
be satisfied. See Dixit [19]:

Equations (16) to (19) determine the constants A0 and A1 and the optimal execu-
tion of the real options to switch between idle and active states in terms of the high 
entry price pMR

high
 and the low exit price pMR

low
.

3  A Dixit Model with Log Utility

In order to create a benchmark for comparing the mean reversion model to the Dixit 
specification, a few minor changes to the Dixit model are useful. It is straightforward 
to introduce log utility in the Dixit model. The differential equations for the idle and 
active states in the Dixit model are, respectively, as follows:

where � is the geometric trend and � is the standard deviation of the relative change 
of a geometric Brownian motion and w is an operation cost. Mathematically, the 
optimal threshold levels of the Dixit model are not affected if the Dixit model’s 
operation cost, w, is redefined as a fixed cashflow in the case of idleness. That is, by 

(15)

V1(p) = A1

⎛
⎜⎜⎜⎜⎝

M

�
�

2�
,
1

2
,
�

�2

�
∝ −

�2

2�
− lnp

�2
�

+

√
�

�

Γ
�

1

2

�

Γ
�

�

2�

�
Γ
�

�+�

2�

�

Γ
�

3

2

�
�
∝ −

�2

2�
− lnp

�
M

�
�+�

2�
,
3

2
,
�

�2

�
∝ −

�2

2�
− lnp

�2
�
⎞
⎟⎟⎟⎟⎠

+
��

�(�+�)

�
� −

�2

2�

�
+

�lnp

�+�

(16)Vo

(
pMR
high

)
= V1

(
pMR
high

)
− kentry

(17)V1

(
pMR
low

)
= V0

(
pMR
low

)
− kexit

(18)V
�

o

(
pMR
high

)
= V

�

1

(
pMR
high

)

(19)V
�

o

(
pMR
low

)
= V

�

1

(
pMR
low

)

(20)−ρV0 + �pV
�

0
+

1

2
�2p2V ��

0
= 0

(21)−ρV1 + �pV
�

1
+

1

2
�2p2V ��

1
+ p − w = 0
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removing w from Eq. (21) and adding it as a positive part in Eq. (20), the optimal 
switching strategy is not affected.

In order to introduce a risk-averse entrepreneur in the Dixit model, let the 
entrepreneur’s preferences be given by an instantaneous log utility, i.e. the same 
preferences as in the mean reversion model above. By moving the cost compo-
nent w from Eqs. (20) to (21) and redefining w from a cost in the active state to 
a fixed income in the idle state, a closed-form solution is available in the case of 
instantaneous log utility.

In the idle and active states, respectively, the optimal switching strategies must 
satisfy the following differential equations:

The homogenous parts of Eqs. (22) and (23) are identical to the Dixit model, 
i.e. Euler equations with p > 0 . Solutions to the inhomogenous parts of Eqs. (22) 
and (23) are given by a constant and a linear function of lnp , respectively. Solu-
tions to Eqs. (22) and (23), given the same endpoint conditions as in Dixit, are 
then

where

High contact and smooth pasting give four optimality conditions for determin-
ing the two threshold values for an optimal switching strategy under log utility 
(LU) and a geometric random walk, i.e. for determining the optimal high entry 
price pLU

high
 and the optimal low exit price pLU

low
 , and the two constants A and B, 

given fixed entry and exit costs.

(22)−ρV0 + �pV
�

0
+

1

2
�2p2V ��

0
+ �lnw = 0

(23)−ρV1 + �pV
�

1
+

1

2
�2p2V ��

1
+ �lnp = 0

(24)V0 = BP�̃ +
�lnw

�

(25)V1 = AP−�̃ +
�lnP

�
+

�
(
� −

1

2
�2

)

�2

(26)
β̃ =

1 −
2�

�2
+

((
1 −

2�

�2

)2

+
8�

�2

) 1

2

2

(27)
∝̃ =

−1 +
2�

�2
+

((
1 −

2�

�2

)2

+
8�

�2

) 1

2

2
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4  Optimal Switching Strategies Under Mean Reversion and Random 
Walk

The literature recognises three effects on optimal switching from a change in the 
degree of mean reversion: (a) the ‘variance effect’, (b) the ‘risk discounting effect’ 
and (c) the ‘realised price effect’:

a) Increased mean reversion reduces the (long-run) variance, which typically reduces 
the value of the option to wait — i.e. the ‘variance effect’ reduces the spread 
between the thresholds and moves them closer to the Marshallian levels, i.e. the 
operation cost plus the interest on the cost of switching.

b) Increased mean reversion reduces the systematic risk of future cashflows, which 
increases the certainty equivalent net present value. The risk discounting effect 
typically lowers both the entry and the exit thresholds as the active volatile state 
becomes relatively more attractive compared to the idle state.

c) Mean reversion impacts the likelihood that a given level of the output price will 
be reached within a specified period of time. The direction of the realised price 
effect depends to a large degree on the present level of the cashflow relative to 
the long-run mean level.

The variance and realised price effects are discussed in Metcalf and Hassett. The 
risk discounting effect is recognised by Sarkar for the optimal entry case. Tsekrekos 
concludes that the findings of Sarkar also extend to entry and exit switching models. 
He finds that the variance and risk discounting effects affect the switching thresh-
olds, whereas the realised price effect only affects the likelihood that the switching 
thresholds will be reached — not the level of the thresholds. As discussed above, in 
Tsekrekos, the market price of risk and the correlation between changes in Pt and 
the market portfolio are assumed constant, which may affect the impact of changes 
to the output price mean reversion compared to a model where preferences are spec-
ified directly.

For completeness, in this section, the effect of volatility and risk aversion is dis-
cussed first, before turning to the question of mean reversion. To make the compari-
son with the existing literature easy, in most cases, parameter values from Dixit’s 
paper are applied.

Let the cashflow in the idle state w = 1 . In the standard Dixit model, this rep-
resents a normalisation of prices. In the models with log utility, this implies that 
utility in the idle case is zero. Let the fix entry cost kentry = 4 and the fixed exit cost 
kexit = 0 . Let the discount factor � = 0.025 . Let the volatility parameter � = 0.1 . Let 
the utility parameter � = 1 . For the Dixit model and the Dixit model with log utility, 
let � = 0.

Figure 1 shows the effect on the entry and exit thresholds in the Dixit model and the 
Dixit model with log utility from changing the standard deviation parameter � . Given 
the base case parameters, the optimal thresholds in the Dixit model are plow = 0.77 and 
phigh = 1.47 and in the model with log utility pLU

low
= 0.78 and pLU

high
= 1.51 . In the Dixit 

model, the spread between the switching thresholds is 0.70 and in the Dixit model with 
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log utility 0.73. A stronger preference for risk-free income implies that the entry and 
exit thresholds are higher in the model with log utility than in the standard Dixit model 
with risk neutrality.

For the Dixit model with log utility, the classical result of the Dixit model holds, i.e. 
higher � increases the spread between the optimal switching thresholds, i.e. the classi-
cal hysteresis effect. If the volatility parameter � is increased from 0.1 to 0.2, then the 
spreads between the switching thresholds increase to 1.13 and 1.22, respectively, for the 
Dixit model and model with log utility. That is, the spread difference between the mod-
els increases from 0.03 to 0.09. Risk aversion adds to the traditional hysteresis effect on 
the entry threshold as the higher volatility makes the cashflow in the active state less 
attractive than the stable income in the idle state. However, a less attractive cashflow 
in the active state makes the entrepreneur more inclined to exit to the idle state, which 
pushes the optimal exit threshold upwards. That is, the direct effect of higher volatility 
for a risk-neutral entrepreneur is a higher entry threshold and a lower exit threshold. In 
addition, for the risk-averse entrepreneur, the higher volatility increases the risk dis-
counting of the volatile income in the active state, which pushes both the entry and exit 
thresholds upwards.

The conditional expectation of the geometric Brownian motion (GBM) can be 
defined by one parameter only and the variance by two parameters, i.e. � and � and � , 
respectively:

(28)E
[
PGBM
�

|Ft

]
= PGBM

t
exp(�(� − t))

Fig. 1  Effects on the thresholds for the Dixit model and the Dixit model with log utility from changes to 
the volatility parameter σ
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By setting � = 0 , as in the base case, the value of � defines the variance of the 
process (29) for any � . Figure 1 is therefore a representative illustration of the effect 
of higher volatility, measured in terms of the standard deviation of the relative 
change in the output price, on the entry and exit thresholds — both for the Dixit 
model and the Dixit model with log utility.

For the geometric mean reversion process, the links between parameter values 
and the moments are more complex. The conditional expected value and the vari-
ance of the geometric mean reverting price process can be expressed in terms of the 
expectation and variance of the log of the process as given by Eqs. (3) and (4). That 
is, from the property of a lognormally distributed variable, the conditional expecta-
tion of the output price is

And the conditional variance of the process is

Both the expected value and the variance depend on the three parameter values � , � and 
� . The long-run expected level of the output price is given by lim

�→∞
E
[
P� |Ft

]
= exp

(
� −

�2

4�

)
 . 

For a given � , the log of the long-run average is lower for higher � and for lower � . There-
fore, a change in � or �  does not only change the variance of the price process, but also the 
expectation. A change in the value of one parameter may have a rather complex impact on 
option values and the optimal switching strategies.

Figure 2 shows optimal entry thresholds for different levels of the long-run vari-
ance of the log of the price process and for the mean reversion parameter � at 0.075, 
0.25, 0.50 and 0.75. For all � and � , the value of � is adjusted in such a way that the 

long-run mean is stable at lim
�→∞

E
[
P� |Ft

]
= exp

(
� −

�2

4�

)
≈ 1.9344 in order to focus 

on the effect of changes to the variance — not the long-run mean. This stable mean 
(st. m.) is consistent with � = ln(2) , � = 0.1 and � = 0.075 . That is, on the horizon-
tal scale of Fig. 2, the long-run standard deviation of the log of the output price is 
given by different levels of � , whereas the threshold values are derived after adjust-
ing the long-run mean to the stable mean, i.e. after compensating for the effect on 
the mean of changes to �.

Figure 3 shows optimal exit thresholds for different levels of the long-run vari-
ance of the log of the price process for different values of �.

Higher volatility, measured as the long-run variance of the log of the price process, 
increases the entry threshold and decreases the exit threshold. However, this relation 
does not hold for very low volatility and very strong mean reversion. In these cases, the 
option value of exit approaches zero. That is, A1 in Eq. (15) approaches zero for low 
� and high � . If the volatility is sufficiently low and the mean reversion force is suf-
ficiently strong, there is hardly any case for a future exit from the market. The problem 

(29)Var
[
PGBM
�

|Ft

]
= PGBM

t
exp(2�(� − t))

(
exp

(
�2(� − t)

)
− 1

)

(30)E
[
P� |Ft

]
= exp

(
E
[
lnP� |Ft

]
+

1

2
Var

[
lnP� |Ft

])

(31)
Var

[
P� |Ft

]
= (exp

(
2E

[
lnP� |Ft

])
)
(
exp

(
2Var

[
lnP� |Ft

])
− exp

(
Var

[
lnP� |Ft

]))
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Fig. 2  Effects on the entry thresholds of the mean reversion model from changes to the long-run volatil-
ity, for different values of the mean reverting parameter κ

Fig. 3  Effects on the exit thresholds of the mean reversion model from changes to the long-run volatility, 
for different values of the mean reverting parameter κ
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reduces to a question of optimal entry only. Besides this special case, the hysteresis 
effects of Dixit also hold for the mean reversion specification.

The easily derived moments and the direct specification of the risk preferences cre-
ate a fairly simple framework for studying the effect of mean reversion on the valuation 
of flexibility and optimal switching strategies. The effect on the variance of the log of 
the output price from a change in the mean reversion parameter � is given by

Higher mean reversion reduces the variance of the log of the output price process 

for high � . The effect converges towards 
d lim
�→∞

Var[lnP� |Ft]

d�
= −

�2

2�2 . This suggests that the 
mean reversion ‘variance effect’ on valuation is especially strong for low discount rates 
and for long investment horizons.

Define the ‘risk discounting effect’ as the effect on option valuation and optimal 
switching from changes in the stochastic discount factor caused by a change in the 
mean reversion parameter � . Define the stochastic discount factor, m�,t , as the inter-
temporal marginal rate of substitution in the active state, i.e.

By definition, in this model, there is no opportunity for inter-temporal substitution — 
besides the switching between the idle and active states. That is, Eq. (33) is an implicit 
discount factor, which is only consistent with the entrepreneur’s preferences if the con-
sumption path reflects an optimal inter-temporal substitution in a world where such sub-
stitution actually could take place.

From (33), it follows that the value of a bond, Q�,t , that pays unity with certainty at 
time � is given by

where rf�,t is the yield on a zero-coupon bond at time t with maturity � . The risk-free 
yield is then

Let the forward price of one unit of output at time � be given by PFW

�,t
= e

−�(�−t)

E
[
m�,t|Ft

]
= e

−�(�−t)
P�

 . The expected return at time t of holding the forward contract 
will then be

(32)
dVar

[
lnP� |Ft

]
d�

=
�2

�

(
e−2�(�−t)(� − t) −

1

2�

(
1 − e−2�(�−t)

))

(33)m�,t =
uc�

uct

=
Pt

P�

(34)Q�,t = e−r
f
�,t = e−�(�−t)E

[
m�,t|Ft

]

(35)

r
f

�,t = � − ln
(
E
[
m�,t|Ft

])
= � +

(
� −

�2

2�
− ��Pt

)(
1 − e−�(�−t)

)

(� − t)
−

�2

4�

(
1 − e−2�(�−t)

)

(� − t)

(36)r�,t = E
[
lnP� |Ft

]
− lnPt + � = � +

(
� −

�2

2�
− lnPt

)(
1 − e−�(�−t)

)

(� − t)
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If storage of the output good was an option, contrary to model assumptions, the 
expected return on storing the output at time t and selling at time � , rS

�,t
 , would be

From Eqs. (35) to (37), the spread between the expected return r�,t and the risk-
free interest rate rf�,t is given by

From Eqs. (36) to (37), it follows that lim
𝜏→∞

r𝜏,t = 𝜌 > 0 , whereas lim
�→∞

rS
�,t

= 0 . That 
is, in the long-run, the return on any hypothetical storage would be below the rate of 
time preference.

The risk discounting effect is related to changes in the expectation and variance 
of the output price. From the rate of return measures (35), (36) and (37), it follows 
that changes in the expected path of the output price from a change in � change the 
demanded compensation for risk. As the expected path of the output price is altered, 
the expected future utility levels are changed and thereby the implied expected risk 
discounting factor.

From Eqs. (14) to (15), it follows that the parts of the value functions that are 
related to optionality are functions of the current output price via the functions 
zt = z

(
Pt

)
 and 

√
zt . From Eqs. (4) to (37), it follows that

The effect on the option values from a change to the output price goes via the cur-
rent output price’s effect on the expected price path, i.e. via the long-run expected 
return, and on the standard deviation, i.e. via the implicit compensation for risk. The 
effect of a change in the mean reversion parameter �  on 

√
zt is

The direction of the effect on 
√
zt from a change in the mean reversion parameter 

� and thereby also the direction of the effect on the value of the entry and exit options 
depends on whether the log of the output price, lnPt , is high or low versus the long-run 
mean ∝ −

�2

2�
 . At lnPt =∝ −

�2

2�
 , the sign of the second part of the value functions (14) 

and (15) changes. This implies that if lnPt is on the low side of the long-run mean, 
then an increase in the mean reversion parameter generally increases the option value. 
The expected near-term outlook of switching to the active state is improved. The value 
effect of this together with the positive effect of reduced implicit risk compensation 
may dominate the negative option value effect of reduced volatility.

(37)rS
�,t

= E
[
lnP� |Ft

]
− lnPt =

(
� −

�2

2�
− lnPt

)(
1 − e−�(�−t)

)

(� − t)

(38)r�,t − r
f

�,t =
�2

4�(� − t)

(
1 − e−2�(�−t)

)
=

Var
[
lnP� |Ft

]
2(� − t)

(39)lim
�→∞

rs
�,t
(� − t)

�
2Var

�
lnP� �Ft

� =

√
�

�

�
∝ −

�2

2�
− lnPt

�
=
√
zt

(40)
d
√
zt

d�
=

1

2�
√
�

�
∝ −

�2

2�
− lnPt

�
+

�

�
2

3
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If lnPt is on the high side of the long-run mean, then an increase in the mean 
reversion parameter generally reduces the option value. The near-term outlook of 
switching to the active state is less bright. Volatility is reduced. Except for the posi-
tive effect on valuation of the reduced implicit risk compensation, the other factors 
contribute to reducing the option value.

Figures 4, 5 and 6 show the effect on the option value in the idle case for differ-
ent levels of the output price and different levels of the mean reversion parameter 
� . The base case parameter values are here the same as in Tsekrekos. That is, the 
standard deviation of the relative change of the output price � = 0.15 , the discount 
rate � = 0.04 , the fix entry cost kentry = 3 , the fixed exit cost kexit = 2 and the income 
in the idle state w = 1.

The figures show the option value of the Dixit model with log utility together 
with the option values for the mean reversion model with � = 0.02 , � = 0.05 and 
� = 0.1 . In Fig. 4, the long-run mean reversion parameter ∝= 0 , i.e. at a low level. In 
Fig. 5, ∝= ln(2.325) , i.e. at a medium level. In Fig. 6, ∝= ln(3) , i.e. at a high level. 
In all the cases, the optimal entry thresholds are around 2 or lower. Given identical 
parameter values, Figs. 4, 5 and 6 are directly comparable to Tsekrekos Fig. 2.

In the low long-run mean case and for a given level of the output price, higher 
mean reversion implies that the option value is reduced. However, this is only true 
for output prices above a certain minimum level. In the high long-run mean case and 
for a given level of the output price, a higher mean reversion implies that the option 
value increases for prices below the entry threshold.

Fig. 4  Effects of changes to the output price on the option value when idle, for different values of the 
mean reverting parameter κ and a low ∝= 0
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Fig. 5  Effects of changes to the output price on the option value when idle, for different values of the 
mean reverting parameter κ and a medium ∝= ln(2.325)

Fig. 6  Effects of changes to the output price on the option value when idle, for different values of the 
mean reverting parameter κ and a high ∝= ln(3)
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At certain levels of the output price, the direction of the mean reversion effect 
switches. Figure  5 illustrates this. Here, the long-run mean level is just right to 
create a switching of the direction at output price levels that are somewhat lower 
than the optimal entry threshold. For output prices below the switching threshold, 
increased mean reversion increases the option value. For output prices above the 
switching threshold, increased mean reversion reduces the option value.

Higher income in the idle state, w, makes it less attractive to move into the active 
state. The optimal entry threshold increases when w increases. Figure 7 shows the 
optimal entry threshold for different levels of w and for � = 0.02 , 0.05 and 0.075. 
Parameter values are as in the base case above.

The level of the income in the idle state, w, relative to the long-run average in the 
active state is important for the direction of the effect on the entry threshold from 
a change in the mean reversion parameter. If w is clearly below the long-run mean, 
then an increase in � implies that the entry threshold declines. Increased mean rever-
sion implies that the expected cashflow path for the active state will point more 
steeply upwards. The expectation effect makes the active state look more attractive 
versus the idle state. Both the expected cashflow and a lower implicit risk discount 
rate make the active state more attractive versus the idle state. The variance effect 
works in the same direction by reducing the value of waiting.

If w is clearly above the long-run mean, then an increase in � implies that the entry 
threshold becomes higher. The main factor is the expectation effect. Higher mean rever-
sion implies that the expected cashflow path points more steeply downwards. Both the 
expected cashflow and a lower implicit risk discount rate make the active state less 

Fig. 7  Effects of changes to the income in the idle state, w, on entry thresholds, for different values of the 
mean reverting parameter κ
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attractive relative to the idle state. The variance effect works in the opposite direction by 
reducing the value of waiting. In Fig. 7, the variance effect is not dominating.

As illustrated above, the effects of mean reversion work through the expecta-
tion and variance of the output price process. The effects that are independent 
of an entrepreneur’s risk attitude may be characterised as the direct expectation 
and variance effects, whereas the effects that follow from an entrepreneur’s risk 
aversion may be characterised as the expectation and variance risk discounting 
effects. This suggests a somewhat alternative way of categorising the effects of 
mean reversion on valuation and optimal switching strategies:

a) The variance effects

i) The direct variance effect: reduced variance from higher mean reversion reduces 
the hysteresis effect on the optimal switching thresholds of a risk-neutral agent, 
which pushes the entry and exit thresholds closer together and closer to the Mar-
shallian levels. That is, the entry level becomes lower and the exit level higher.

ii) The risk discounting effect: reduced variance reduces the risk discount rate, 
i.e. it reduces the risk compensation demanded by a risk-averse entrepreneur. 
The relative attractiveness of the volatile cashflow in the active state increases 
versus the certain cashflow in the idle state. That is, the entry level becomes 
lower and the exit level higher.

b) The expectation effects

i) The cashflow effect: a higher mean reversion makes the output price converge 
faster towards the long-run mean. If the output price is low relative to the 
long-run mean, higher mean reversion makes the outlook for the cashflow 
in the active state more favourable. The entry threshold will be lower (more 
favourable to leave the idle state) and the exit level lower as well (less favour-
able to enter the idle state). If the output price is high relative to the long-run 
mean, the effect of mean reversion will be the opposite given that the outlook 
for the cashflow in the active state will become less favourable.

ii) Risk discounting effect: the change in the expected output price path changes 
the expected utility path as well, which affects the implicit risk discount rate. 
When the cashflow outlook is improved, the demanded risk compensation of a 
risk-averse entrepreneur is reduced. A steeper upward output price path makes 
the entry threshold lower and the exit threshold higher and vice versa for a 
steeper downward path. That is, the risk discounting effect from a change in the 
expected output price path works in the same direction as the cashflow effect.

5  Potential Applications and Extensions

The mean reversion switching models are especially relevant for markets where sup-
ply only gradually adjusts to changes in demand, but there are no significant long-
run supply restrictions. In other words, the models may be relevant when markets are 
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characterised by inelastic short-term supply and elastic long-run supply. If long-run 
supply elasticity is restricted, e.g. the gold market, then the original Dixit model may 
be a better choice.

Schwartz [11] and Schwartz and Smith [20] criticise the use of the one-factor 
geometric mean reversion model for commodities and suggests two-factor mod-
els, i.e. combinations of the geometric mean reversion process and the geometric 
Brownian motion. Switching models inspired by the two-factor perspectives of 
Schwartz and Smith could be an area for future research.

In order to match industry-specific characteristic better, there is room for devel-
oping the mean reversion model further. For example, Brekke and Øksendal [21] 
extend the Dixit model by introducing resource extraction. A switching model 
with resource extraction and mean reversion may be a fairly good description of 
the optimal opening and closing problem of mining industries.

A number of stochastic processes have been suggested for approximating the noto-
riously volatile ocean freight rates. The papers of Mossin and Tvedt are discussed 
above. Dixit and Pindyck [6] apply the classical Dixit model on entry, exit and scrap-
ping in the oil tanker industry. Bjerksund and Ekern [22] suggest that the freight rate 
follows an Ornstein–Uhlenbeck process. Sødal et al. [23] suggest that the freight rate 
spread between dry bulk and tanker markets follows an Ornstein–Uhlenbeck process 
and derives the optimal switching strategies between these markets. In a general set-
ting, Suzuki [24] derives a solution to a somewhat similar switching problem and let 
the agent switch between three regimes.

In light of the shipping market literature, the framework of this paper may be 
useful for studying the classical ship layup problem. In the shipping context, ini-
tial entry, investment lags and scrapping may also be included. Methodically, the 
Dixit–Pindyck–Sødal discount factor approach may be a natural starting point in 
the case of mean reverting cashflows. See Dixit, Pindyck and Sødal [25] and Sødal 
[26].

In structure, the model of this paper is fairly close to a classical labour market 
switching problem. The entrepreneur’s endowment, at any time t, may be interpreted 
as hours available for work, which a worker can apply in two types of labour mar-
kets. That is, the idle state may be interpreted as a fixed salary job or leisure com-
bined with social benefits. The active state may be interpreted as a variable pay job or 
self-employment.

A key result of the paper is the link between the moments of the mean rever-
sion output price and the value of flexibility and the optimal switching strategy. 
The result partly hinges on the specification of preferences. A natural next step 
is to study the generality of this result. The large literature initiated by Kim and 
Omberg [27] and Campbell and Viceira [28] on optimal portfolio management 
under mean reverting stochastic risk premiums may give some guidelines to 
what utility specifications that may lead to closed-form solutions. The literature 
appears to suggest that to obtain closed-form solutions for general specifications 
of the representative agent’s preferences and relevant mean reverting price pro-
cesses is challenging.
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6  Concluding Remarks

An advantage of the mean reversion framework of this paper is the easily derived 
moments and a direct specification of the risk preferences of the entrepreneur. This 
makes it easier to derive analytical results.

The impact of the mean reversion on the value of flexibility and the optimal 
switching strategy goes via the expectation and variance of the underlying output 
price process. Both the expectation and variance work via two channels — the 
direct effect that is independent of the entrepreneurs’ risk attitude and the effect on 
the implicit risk discounting factor, which reflects the entrepreneurs’ risk aversion. 
Many commodity, consumer goods and services prices exhibit some degree of mean 
reversion. The paper’s categorisation of the effects of mean reversion may therefore 
be useful in a number of contexts that involve decision-making under uncertainty 
and optionality.
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