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A B S T R A C T

The petroleum industry is a high-hazard industry depending on reliable technical solutions. The industry tends to
use increasingly advanced technologies including machine learning technology with increased diculties or end
users to keep abreast o how these technologies work. Thus, our research question was: How are end users
involved in the development and implementation o cognitive technologies in the Norwegian petroleum industry
to contribute to sae and reliable technical solutions? We used a qualitative explorative approach, with semi-
structured interviews with 31 inormants rom 10 companies. Thematic analysis revealed the categories ‘tech-
nology ocus’, ‘understanding o end-user involvement versus end users’ actual involvement’, ‘lack o access to
end users’, ‘lack o human actors methods in early phases’, and ‘lack o ocial rules and regulations’. Findings
show that during the earlier phases o designing algorithms and training data, end users are hardly involved.
Regarding later phases with oshore testing, implementation, use, and improvement, end users are much more
integrated in the process.

1. Introduction and background

Technological optimization and the automation o operations and
maintenance are strategies used to increase eciency, productivity, and
saety in the oshore petroleum industry. Over the past decade, the
development o advanced and complex technology designed to support
or replace human tasks has increased and has thereby increased the
saety and eciency o operations and maintenance. For example, the
aim o such technology can be to reduce the workload or control room
operators by automating manual tasks that require high levels o con-
centration rom operators (e.g., Aniowose et al., 2019; Chen et al.,
2014; Hoske, 2021; Lordejani et al., 2018). Technology can also have
aster response rates than humans, which can increase security and
productivity (Mario et al., 2020; Sharma et al., 2015; Stephan, 2019).

To increase eciency and maintain saety, developers need to know,
during development, how increasingly advanced technologies will
interact and unction as part o existing sociotechnical systems (Leveson,
2012; Woods, 2016). Several authors nd that the earlier the design
stage in which human actors are considered, the greater the savings and
infuence on saety will be (e.g. Szymberski, 1997; RIF, 2019). Thus, or

example, designers should consider ideally in the conceptual design
phase which unctions should be perormed by humans and which by
machines, and how this might need to vary with situation or context (e.
g. Challenger et al., 2013; de Winter & Dodou, 2014). Developers need
to consider early on how users will understand new technologies in the
context o their work situation, what technological suggestions and ac-
tions are based on, and how the computer processes input variables
(Bainbridge, 1983).

Challenges arising rom the interplay between humans and tech-
nology, and their organization, must be understood and addressed to
realize the potential advanced and complex technologies oer. I not,
suboptimal technologies might be developed or operations in high-risk
contexts, and in worst case, error traps. For example, one case in which
the end users were not included in the early design phases led to the
months-long evacuation and a shutdown in production o an oil and gas
platorm (Sætren et al., 2016). Ultimately, the designers could not ully
understand how the technology would be used without understanding
how the work was done, and the end users trusted the designers to un-
derstand their work environment and work processes (Sætren & Lau-
mann, 2015). Extensive research has shown that to prevent such
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challenges, end users must be involved in the early phases o the design,
development, and implementation o advanced technologies (e.g.,
Bennett & Flach, 2019; Carayon, 2006; Endsley, 2019; Gualtieri et al.,
2005; Johnsen et al., 2017, Nemseth, 2004).

A rather recent technological development in this industry concerns
cognitive technologies – programmed solutions and systems that are
capable o collecting data through sensors, process this inormation,
decide, and act and then learn rom their perormance in response to
their actions (Walch, 2019). The types o tasks cognitive technologies
can perorm, or support, depend on the businesses in which they are
deployed and the problems they are designed to solve. Many companies
in the petroleum industry show great interest in cognitive technologies
because they seemingly contribute to critical tasks being perormed in a
more ecient, reliable, or sustainable way (Gressgård et al., 2018;
Johnsen et al., 2020). Nevertheless, as the petroleum industry is a high-
hazard industry, there is an increasing need to understand the saety
implications o cognitive technologies or the increasingly complex
systems into which they are being introduced (Iversen et al., 2012;
Woods, 1986).

Recent technological developments raise new issues concerning
human operators working alongside cognitive technologies, or the
development o operators’ attention to or understanding o the tech-
nological suggestions or actions. As long as a human is let with the nal
responsibility in an operation, it is problematic i a cognitive technol-
ogy’s complexity removes rom the human operator the ability to saely
interact with the surrounding ecosystem (Woods et al., 2017). For
instance, automated error-identication assistance has been ound to
decrease users’ eectiveness in identiying and resolving errors in the
system that the technology misses (Fleury et al., 2014). Cognitive
technologies can never perectly represent or be responsible or the
dynamic ecologies in which they are situated; thus, humans with richer
experiences o the surrounding systems are best placed to intervene and
manage anomalies in those systems (Homan &Woods, 2011; Santio de
Sio & van den Hoven, 2018). In designing sae systems, it is thereore
essential to account or the eect o cognitive technology on human
users’ understanding o the ‘ecology’ being managed (Flach, 2017).
Then, accepting that designers o cognitive technology are rarely, i
ever, experts in the dynamic ecosystems in which the technology ulti-
mately will be operated, it is essential that end users are involved in the
design and iterative development o cognitive technologies (Norman,
1993).

In this study, we explored the specic development and imple-
mentation phases o cognitive technology. We investigated how com-
panies integrate end users in the development and implementation o
cognitive technology. We aimed to answer the research question: How
are end users involved in the development and implementation o
cognitive technologies in the Norwegian petroleum industry to
contribute to sae and reliable technical solutions?

To answer this, the research analyses data rom a study o how 10
companies integrate end users in the development and implementation
o cognitive technology.

2. Theoretical framework

2.1. Cognitive technology

Rather than being interested in articial general intelligence, com-
panies are interested in new technologies that can improve operational
eciencies and/or saety by perorming cognitive tasks that previously
only humans could perorm. Drawing on terminology rom cognitive
psychology, cognitive tasks can be said include elements o perceiving,
learning, reasoning, planning and/or executing (Atkinson & Shirin,
1968; Reitman, 1965; Shannon & Weaver, 1963; Beetz et al., 2007).
Because companies are interested in how technology can improve per-
ormance o denable cognitive tasks, the term cognitive technology is
preerable to the broader term artifcial (general) intelligence (Walch,

2019).
Automation and the technological optimization o operations and

maintenance are seen as ways to increase productivity and saety in the
petroleum industry (e.g., Chen, et al., 2014; Mario et al., 2020; Patro
et al., 2021; Sharma et al., 2014). Technological possibilities have
increased rapidly with increasing digitalization and data transer ca-
pacities, making possible increasing combinations o sensors and com-
puters (Hoske et al., 2021; Khosravanian & Aadnøy, 2021). Driven by
the industry’s need or eciency and saety, these developments have
led to increasing technological complexity in wells and on deck, large
amounts o data, and reduced access to subject-matter experts (Chen
et al., 2014). To realize automation and achieve technological optimi-
zation o the petroleum industry, there is a need or technology that can
learn rom experts to develop dynamic data models, which can then be
used to process data rom real-time sensor measurements and generate
“expert” inormation or actions. Technology must also enable more
ecient interactions between human decision makers and improve the
capacity to source, analyze, and lter big data (Quesada, 2016).

Cognitive technology’s processing capabilities lie in the data model,
which can be viewed as analogous to the human brain (Atkinson &
Shirin, 1968). A data model can be developed using theoretical
knowledge and/or derived rom data analysis (e.g., using machine
learning algorithms). Experts understand how physics-based data
models process input and provide output. Data-driven models, on the
other hand, can be dicult to interpret but provide inormation about
an operation that would be unavailable using physics-based modelling
(e.g., because o a lack o sensors deep in the well). Combined, physics-
based and data-driven data models provide a more comprehensive and
nuanced depiction o the operation. This increased understanding o the
operation enables sophisticated computer systems to carry out both
advanced monitoring o the operation (perception and prediction) and
the automation o operational processes (perception, prediction, and
decision-making). The output o such technology derives rom a seem-
ingly higher cognitive unction and is thereore called cognitive tech-
nology, a technology that can handle large amounts o data, either to
support and improve human execution o tasks or perorm tasks that
previously required human operators (Wang et al., 2022).

Cognitive technology oten learns rom incoming data, captured by
sensors or input by experts, to develop its own data model. This process
is called machine learning (ML), and the model that is developed is
called an ML model (Aniowose et al., 2019). Such data models can in-
crease saety, or instance, by using a model to interpret signals rom the
well to determine whether they are early signs o uncontrolled kicks.
Cognitive technology oten perorms tasks with human actors. Such
collaboration can consist o cognitive technology using sensors to
observe an operation in the eld and presenting an image to one human
actor who interprets it and decides what action to take based on the
inormation provided. As cognitive technology becomes more sophisti-
cated, the inormation presented to the human actor can become more
elaborate. This can make it easier or the human actor to understand
what is happening in the eld but, at the same time, more dicult to see
why and how the cognitive technology produces the inormation. Thus,
it becomes more eective or technical actors to take over several human
unctions, such as understanding and deciding what happens in the eld.
Consequently, the human tasks are increasingly shited to automated
technical processes.

We dene cognitive technology as ollows: A technical system that
(a) perceives (input), (b) calculates or processes, and (c) proposes or
implements actions (output), where the calculation is based on ML
models and people are aware and involved. Cognitive technology can
perorm three types o tasks: perception (e.g., well monitoring), pre-
diction (e.g., predictive maintenance based on the comparison o his-
torical data to real-time data), and planning (e.g., operational
optimization, autonomous remotely operated vehicles [ROVs], or robots
on deck). A cognitive system thus consists o several cognitive compo-
nents, such as a cognitive technology and a human being (Woods &
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Hollnagel, 2006). Additionally, a central aspect o a cognitive system is
its ability to adapt to changes.

A limited number o cognitive technologies and ML models are used
in the Norwegian oshore oil and gas industry. Most are in the concept
development phase (Ernstsen et al., 2021). Consequently, operational
experience with using ML models in the oshore petroleum industry is
limited, and this was the ocus o this study. To speciy, this concerns
oshore operations including maintenance, process, and drilling such as
automated directional drilling, calculation o mud type and volume,
early kick detection.

2.2. Human-centered design

A human-centered design is characterized by the ocus on active and
systematic interaction with end users and stakeholders during the entire
process o designing and developing new technology (Pascal et al.,
2013). Bringing the human in center is shown to provide higher pro-
ductivity (Beuscart-Zéphir, 2007), improve user satisaction (Vreden-
burg et al., 2002) and reduce costs, as making changes in a planning
stage is less costly than making changes ater producing and imple-
menting technology.

In act, several accidents have been partly attributed to poor human-
centered design; or example, Boeing 737 Max Crash (Endsley 2019,
NTSB, 2019), the Deepwater Horizon accident (National Commision,
2011), The Tesla accident (Banks et al., 2018), and the collision between
Sjøborg supply ship and Statjord A (Petroleumstilsynet, 2019). Cogni-
tion challenges were key in all these accidents. Correctly introducing
human actors expertise into the design process o these systems could
have prevented the accidents.

Not having the human in the centre or design could cause accidents
as root causes or accidents are ound to be related to design (Kinnersley
& Roelen, 2007; Moura et al., 2016) For instance, Lootz et al. (2012)
ound that hydrocarbon leakage was due to design errors in 30–40% o
the accidents rom 2002 to 2009 on the Norweigan shel. Thus,
including human actors methods in design processes are o importance.

Human-centered design relies on the basic assumption that a socio-
technical system (Trist & Baumort, 1950) exists, with the social and
technical aspects o work being symbiotic. Yet the term ‘technical’ is
becoming increasingly broad with advances in computer science and
inormation technology. This has led to a divided view o the ‘cyber’ 
aspect o human-centered design resulting in a cyber-socio-technical
system (Patriarca et al., 2021), or a system in which cyber, social, and
technical actors work together, as required in complex operations such
as exploration and the production o oil and gas. This is a continuation o
the traditional socio-technical system, with the intention o emphasizing
the sotware part o the system. Although the technical components o
the system have long been dependent on sotware, the increased use o
ML models and autonomy makes it appropriate to have a ramework
where ‘cyber’ is emphasized. Regarding the cyber-social-technical
perspective, implementing the cyber context within the phase in
which human actors is included seems necessary or the saest possible
development process.

As ML models increase in complexity, the potential arises or the
black box dilemma to emerge (Zednic and Boelsen, 2021). ML models
can yield accurate predictions without calculations being understand-
able to the user. The lack o understanding why a prediction has been
made makes it dicult to improve perormance, interpret the pre-
dictions, and identiy why such a prediction has been made. It also
makes it dicult to identiy and quality assure against bias in the
development o the ML model, called algorithmic bias. The black box
problem occurs when an ML model’s calculations, proposals, or imple-
mented actions are dicult to explain, interpret, or understand. This
oten occurs when ML algorithms are trained and developed into
advanced models and the end user is not involved in the design at an
early stage.

Because the black box dilemma decreases the transparency o the

decisions machines make, including end users in the earliest processes is
considered evenmore important than previously. This is both or the end
users to gain knowledge o how the machines they operate work and or
the developers to gain knowledge about how the machines will be used.
The relationship between ML model complexity and end-user re-
quirements can be visualized in the matrix set out in Table 1.

2.3. Human actors methods and general technological development

The term “human actors in design” reers to how the design o
technological systems and the work environment aects people’s ability
to perorm saely and reliably, without endangering their health and
well-being (Mc Leod, 2015). Another way to view human actors is to
recognize their role in developing new systems that prioritize saety and
usability (Boring & Bye, 2009). Selecting the best analysis method or a
given project requires an understanding o the analysis’s specic goals
(Leonard, et al., 2004). Some human actors issues may only require
basic methodological interventions, while more complex issues may
require planning and preparation to determine which methods to
combine. Technological development projects may need to go through
multiple iterations o the method selection process (Stanton et al.,
2013).

Previous studies have urther ound that human actors within
technology development in the petroleum industry seem to be lacking in
earlier development phases (Johnsen et al., 2017; Sætren et al., 2016).
However, diculties arise due to conficts between demands driven by
technology and the integration o human unctions; or example, con-
ficts between human cognition and action capacities, and human op-
erators’ limitations and needs (Wilpert, 2005), and the variation in
designers (Kim & Ruy, 2014). One way o dealing with this is to center
the human rather than the algorithms in the design process (Schnei-
derman, 2020).

To ensure human reliability when designing technology in the oil,
gas, and process industries, it is recommended to conduct human actors
analyses (Jernæs et al., 2005; McLeod, 2015; Norsok, 2004; PSA, 2011).
However, despite the importance o these analyses, reports indicate that
they are typically conducted at a later phase in the process (Ernstsen
et al., 2021; Jærnes et al., 2005). Technical saety is prioritized in
technological development projects, and technical analyses are deemed
essential, whereas analyses ocused on human actors and human reli-
ability are ound not be considered natural part o risk analyses in the
oshore oil and gas industry in the same way (Aas & Skramstad, 2010;
Skogdalen & Vinnem, 2011; Sætren, et al., 2016; van de Merwe, Øie, &
Gould, 2012).

There are many human actors methods that can be used to design
new technology, depending on the specic goals, constraints, and
context o the design project. Suggested human actors methods includes
or instance task analysis (Kirwan & Ainsworth, 1992; Wickens et al.,
2016) user-centered design (Begnum, 2021; ISO 9241), and human error
analysis (Reason, 1990; Stanton et al., 2013).

Task analysis is a method that involves breaking down a complex
task or activity into its component parts, with the goal o identiying the
cognitive, physical, and environmental demands o the task. (Kirwan &
Ainsworth, 1992; Wickens et al., 2016). User centered design is an
approach that involves the active involvement o end-users in the design

Table 1
Development phases o ML models and recommended end user involvement.

ML Development Phase Implementation Phase

Interpretable
machine learning
(ML) models

The end user can be
involved in the training o
ML models.

The end user must be
involved in the
implementation phase.

Complex (black box)
ML models

The end user should be
involved in the training o
ML models.

The end user must be
involved in the
implementation phase.
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process. (Begnum, 2021; ISO 9241). Human error analysis is a method
that involves identiying and analysing the types o errors that humans
can make when interacting with the technology, with the goal o
reducing the likelihood and impact o these errors. (Reason, 1990;
Stanton et al., 2013).

Within petroleum industry, ISO 11064 has or many years been a
common guideline. ISO 11064 is a set o international standards or the
ergonomic design o control centers, such as command and control
rooms, process control rooms, and emergency control centres. The ISO
11064 standard consists o our parts, which cover various aspects o
control centre design and operation: ISO 11064–1 (2000): Principles or
the design o control centres, ISO 11064–2 (2000): Layout and di-
mensions o workstations, ISO 11064–3 (1999): Ergonomic principles
or the design o control centres – Control room layout, ISO 11064–4
(2013): Layout and dimensions o workstations or visual display
terminals.

Regarding AI and ML and cognitive technology, we explore phases
that are potentially carried out beore the methods described in
ISO11064 are employed. Programming algorithms are usually covered
by programming methods instead o human actors methods. In our
research it was investigated whether these methods should be better
integrated.

3. Methods

We used a qualitative approach and an explorative design in this
study. We conducted semi structured individual interviews and ocus
group interviews (Kvale, 1997; Brinkmann& Kvale, 2018) and based the
analysis method on thematic analysis (Braun & Clarke, 2006; 2022).

3.1. Researchers

The researchers in this project have varied proessional backgrounds.
One holds a PhD in Psychology with a ocus on saety in implementation
processes o automated drilling technology in the Petroleum industry
and has several years o research experience in the introduction o
automated technology and human actors in the automotive industry.
Another holds a PhD in Human Factors and has several years o expe-
rience as an engineer in the petroleum industry and research experience
in cognitive technologies and ML. Furthermore, another holds a PhD in
Biotechnology with in-depth expertise in the application o human
actors and sociotechnical and cognitive systems in various transport
industries. Another has a master’s degree in organizational psychology
and experience in human actors, with specialization in human–machine
interaction (HMI). In addition, one has several years o experience in
saety training and pedagogy in the petroleum industry, and holds a
master’s degree in pedagogy.

3.2. Context

In this project, the ocus was on how end users in the sharp end are
involved in the design, development, implementation, and use o
cognitive technologies. Because o the broad variety o technologies
being developed within the industry, we ocused on various technolo-
gies based on what each company participants worked at and what the
participants had experience with. The technologies revolved around the
topics o maintenance, processes, and drilling on Norwegian oshore
production platorms and the participants represented operator com-
panies, contractors, and drilling companies.

3.3. Participants

The study included 31 participants who represented 10 companies
within the oil and gas industry and companies involved in technology
development or this sector. The participants interviewed had varied
backgrounds: 14 were rom operator companies, 12 rom contractor

companies, and ve rom drilling companies. Everyone was involved in
one way or another in the design, development, introduction, or use o
cognitive technology in the petroleum industry. Participants were cho-
sen rom a group o organizations the Petroleum Saety Authority Nor-
way had selected based on their participation in technological
development and on developing cognitive technology and operating in
the sharp end with end users. Their roles spanned rom managers and
engineers to human actors experts and operators such as drillers.

3.4. Interviews

We conducted 15 semi structured interviews (Kvale, 1997), con-
sisting o nine individual interviews and six ocus group interviews. The
interviews were conducted in the period August–September 2021 and
lasted 45–60 min each. All interviews were conducted digitally due to
COVID-19 restrictions and inection control. Present during the in-
terviews were two to our researchers; one always had the main re-
sponsibility o taking notes, and the rest were either responsible or
directing the interview or had the opportunity to ormulate ollow-up
questions. Beore the interviews, topics and examples o questions
were sent to the participants. The interviews were not recorded due to
recording not being approved by participants and Petroleum Saety
Authority Norway. For this reason, no quotes are used in the result
section as the data are based on notes rather than recordings. Ater each
interview, the researchers who were present discussed the interview to
summarize what was discussed. These conversations among the re-
searchers were audio recorded, and the recordings were distributed to
everyone on the research team.

Dierent interview guides were developed or respondents rom
operator companies, contractor companies, and subcontractor com-
panies. The guides were based on various topics, including a description
o the design and development process, how and when end users were
involved, how procedures were developed, the training o end users, and
how the end users understood how the technology worked and how it
was designed. Questions included the ollowing:

• ‘Can you describe the development process?’  
• ‘What is your role in the design and development process?’  
• ‘How do you cooperate with the developers o the algorithms?’  
• ‘What competences do you demand rom the developers?’  
• ‘Which tests (including technological and human actors) do you
demand rom the developers?’  

• ‘How well do you know the working conditions and work tasks o the
end user?’ 

3.5. Analysis

We conducted a thematic analysis o the interview data with an
inductive approach, based on refexivity (Braun & Clarke, 2019). The
concrete analysis was done by ollowing the six steps developed by
Braun and Clarke (2006). QSR NVivo (QSR NVivo, 2022) was used to
organize the analysis o the written data into categories. The fexibility
o the refexive thematic analysis makes it suitable or analysing
explorative qualitative research data. The themes were developed
through coding the data based on subjective constructions, thus the
researchers’ background are relevant or the results. This is because the
themes does not passively emerge rom the dataset, yet themes are
established through the interpretation o the researchers (APA 7, 2020;
Braun & Clarke, 2019; Byrne, 2022; Elliot et al., 1999).

Refexive thematic analysis consist o 6 phases (Braun & Clarke,
2006): 1) amiliarizing with the data, 2) generating initial codes, 3)
searching or themes, 4) reviewing themes, 5) dening and naming
themes, and last 6) producing a scientic research report. According to
the rst phase, we conducted the interviews, took notes, and ater all the
interviews had been completed, we met to discuss the common themes,
comparing notes, and identiying codes and categories. Ater this, we
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worked separately on urther analysis. Thus, we amiliarized ourselves
with the data both individually and collectively. This was to get in depth
knowledge o our dataset.

Second, we identied initial codes o the written material o the in-
terviews according to phase 2 o conducting thematic analysis. Examples
o codes rom this phase were “ competence demands rom provider”,
“competence demands or end user”, “ramework or technology
development”, and “involvement o end users”.

During this phase we also started an in-depth literature search based
on the themes o cognitive technology, human actors, high-risk in-
dustries, and technology development processes. This resulted in the
inclusion o theory based literature to the ndings. During this step o
the analysis, initial categories were established. However, the process o
conducting refexive thematic analysis is not linear and the process was
thus conducted somewhat back and orth. For instance, one interview
could have been preliminary coded beore conducting the next in order
to use the interviews to urther elaborate on our previous ndings.

The third phase consisted o organizing the data into meaningul
groups, and themes were interpreted. Examples o themes were “un-
derstanding o the end user” “unctionality or end user”, and ”change o
work tasks”.

In phase our, we were reviewing the themes, and ended up with the
nal ones. We discussed and agreed on these themes and dened what
they mean based on the data to ensure that the analysis was based on
empirical data rom the interview notes. This process resulted in one
overarching theme and our sub-themes presented in the result section.
The fexibility o the method gives the researchers room or interpreting
the levels o the themes depending on the content o the material rather
than the quantity o the material (Braun & Clarke, 2022). During phase
ve, thick description were made in addition to grounding the themes to
the data (Braun & Clarke, 2006; Braun & Clarke, 2022). The nal phase
was to write this paper.

3.6. Ethics

The topic o the project was not considered to be sensitive or the
participants in any health matter or other matter such as racial or reli-
gious. The project was approved by the Norwegian Centre or Research
Data (Sikt) to ensure the protection o participants’ personal
inormation.

4. Results

The ndings show that there is a basic use o cognitive technology in
the petroleum industry. However, there are several ongoing de-
velopments with the aim o advanced use o cognitive technology.

The ndings show limited development o cognitive technologies in
the petroleum industry and their limited use in operations. Additionally,
i they are used, they are outside the loop o operations as standalone
units that operators can choose to use or not. Even the most advanced
technologies in operations and development are typically very advanced
automated, physics-based deterministic technologies, and thus this is
what the results are based on. The analysis resulted in the main category
‘technology ocus’ and the subcategories ‘perception o end user
involvement versus actual involvement’, ‘lack o access to end users’,
‘lack o human actors methods or early phases’, and ‘lack o ocial
rules and regulations’. These categories are actors that infuence human
centered design and end user involvement in technology development in
Norwegian petroleum industry. This is presented in Table 2.

In the initial stages o integrating machine learning algorithms like
the Random Forest into the eld o cognitive technologies, a systematic
process is ollowed. The rst step involves clearly dening the specic
task and goals o the cognitive technology application. Next, a
comprehensive dataset is collected, containing relevant sensory inputs
and measurements. This dataset undergoes preprocessing, which in-
cludes tasks like cleaning up data, reducing noise, and handling missing

values. Aterward, the process o eature extraction and selection takes
place to identiy the key attributes that will be used as inputs or the
chosen algorithm, whether it’s the Random Forest or another suitable
one. For supervised learning scenarios, the dataset is labelled to enable
subsequent model training. The labelled dataset is then divided into
training and validation/test subsets, orming a solid basis or training
and evaluating the selected machine learning model within the context
o cognitive technologies.

The initial technological development phases are characterized by
development teams consisting o only people with a technological ocus
and no end users. Most participants reported that the earlier the
developmental phase o the technology, the lower the chance that the
person involved had been oshore or had an in-depth understanding o
the working conditions o the end users or which they were designing
the technology. For instance, one contractor depended on algorithms
being developed in India or use in their technological solutions deliv-
ered to the Norwegian oshore petroleum industry. Additionally, by
having only a technological ocus in the initial phases, the development
was ound to be based on developing data models beore nding out
what the data model could solve.

4.1. Main category: technology ocus

That the development process had a oundation based on a tech-
nology ocus in the initial phases, infuenced the contribution the end
user could have. End users were hardly involved in initial development
phases. End-user involvement in later phases meant, that the input rom

Table 2
Factors infuencing human-centered design and end-user involvement in Nor-
wegian petroleum industry.
Main
Category

Subcategory Explanation

Technology
ocus

No end-user involvement in initial
development phases, which creates
oundation o technological rather
than human ocus; input rom end
users does not aect basic design
and development

Perception o end-user
involvement vs end-users’ 
actual involvement

Perception existed that end users
were heavily involved in
development o new technology
due to
ocus on training ater technology
was completed,
importance ascribed to end users’ 
comments on urther development
ater using the technology, and
including end users in process oten
reerred to as a continuous
improvement process
Few participants refected on that
inclusion o end users were
conducted in later rather than
earlier development phases

Lack o access to end users End users’ main task is to conduct
operations, leading to a shortage o
experienced end users as part o
extensive technology development

Lack o human actors
methods in early phases

Focus on mathematicians in early
phases o developing algorithms;
developers lack access to proper
human actors methods or
including operators unskilled in
this competence

Lack o ocial rules and
regulations

Rules and regulations do not exist
or involving end users in earliest
phases o technology development
in Norway, but exist or later stages;
creates the impression that
inclusion is unnecessary or earlier
phases
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end users infuenced only later phases and not early settings o unc-
tionality. The reasons developers did not ocus on human operators in
early phases were ound to be (a) the perceptions o end-user involve-
ment versus end users’ actual involvement, (b) a lack o human actors
methods in early phases, (c) a lack o access to end users, and (d) a lack
o ocial rules and regulations.

4.1.1. Subcategory 1: perception o end-user involvement versus end users’ 
actual involvement

The participants were condent that a great degree o end-user
involvement already existed. This was the case or both developers
and end users such as drillers who we interviewed. The respondents
mentioned three key ocus areas:

• Training and allowing end users to take part in learning how to use
the technology beore implementation by using simulators.

• Allowing end users to have a say in how the technology should look;
many participants emphasized the presentation o workshops during
the development processes, including sections on HMI.

• Including end users in the continuous improvement process by
encouraging them to provide eedback or adjustments ater the
technology has been implemented and used.

However, the ndings show signicant variance in end users’ de-
grees o participation throughout technology development. The inclu-
sion o end users did to a large degree increase as the development
process approached completion. During the earliest phases, during the
development o algorithms and planning, most did not consider
including any end users. Only one developer regularly included end
users during these phases as well, using the interactive machine learning
(IML) method to enable participants with dierent skills and compe-
tences to understand each other.

4.1.2. Subcategory 2: lack o access to end users
There are not sucient experienced end-users available or techno-

logical development processes. Many technologies need to be devel-
oped, and many contractors and subcontractors are involved in such
processes. When developers demand the inclusion o end users in their
development processes, the developers oten ocus on including expe-
rienced end users in the process. However, experienced end users are not
accessible to the degree that the technology development market seems
to need.

The end users’ main task is to operate the technologies. Most end
users do not have the training and education required or them to
participate in technology development. Furthermore, technology
development has to a certain degree reduced the number o end users,
giving rise to the question o whether end users should be used or op-
erations or all levels o technology development. Another reason or the
lack o experienced end users is that the technology being developed
demands such uture competencies that the end users do not exist today.
Finally, the analysis revealed that accessibility to end users also depends
on whether the company developing the technology has the authority to
demand the inclusion o end users because they own the platorm or
have end users as sta, or whether they are a smaller subcontractor
without such access to end users.

4.2. Subcategory 3: lack o human actors methods in early phases

Participants held a common understanding that it is challenging to
involve end users in the earliest phases o development because the
competence and skills o the mathematicians creating the algorithms
and the end users in the drilling cabin were so dierent that they would
have problems understanding each other. They argued that including
end users in earlier phases o development would increase the risk o
human error and incorrect programming due to a lack o understanding
o the programmers’ work. Nevertheless, when asked which human

actors methods were used throughout the development phases, most
participants did not name any specic methods used, an only one
mentioned IML method as previously mentioned.

4.2.1. Subcategory 4: lack o ofcial rules and regulations
No rules and regulations govern involving end users during the

earliest phases o technology development o algorithms in ML in Nor-
way, was mentioned by the participants. Thus, the industry seems to
interpret this as there being no need to involve end users in these phases.
The industry seems to be waiting or the authorities and the authorities
or the industry to develop best practices on the inclusion o end users in
the earliest phases o even more complex technological solutions andML
in the uture. Several participants mention human actors methods
specically articulated and easy to access, such as ISO-11064, regarding
end-user inclusion in later phases.

5. Discussion

Regulations have been implemented regarding increased user
involvement in the development and implementation o technologies in
high-risk environments, and recommended standards such as ISO 11064
on designing control rooms, provide useul insight on how to achieve
this. However, the growing o technology that increasingly learns by
itsel and makes its own decisions gives rise to key questions: How well
would the end user understand how the technology works, and how
should the end user be a part o the development process? Thereore, the
research question was: How are end users involved in the development
and implementation o cognitive technologies in the Norwegian petro-
leum industry to contribute to sae and reliable technical solutions? Our
study resulted in one main category, ‘technology ocus’, and the sub-
categories ‘perception o end-user involvement versus end users’ actual
involvement’, ‘access to end users’, ‘lack o human actors methods in
early phases’, and ‘lack o ocial rules and regulations’.

For long-term eciency, maximum saety, usability and other gains,
it is oten claimed that end users should be involved early in the
development and implementation o cognitive technology (e.g. Driscoll
et al., 2008). This claim is supported by extensive research in various
disciplines such as human actors and meaningul human control
(Nemseth, 2004), sociotechnical systems (Carayon, 2006), cognitive
systems (Gualtieri et al., 2005), and HMI (Bennett et al., 2019; Sætren
et al., 2016). Nevertheless, computer engineers and system developers in
various industries still produce designs that are more technology centric
than user centric (Challenger et al., 2013; Woods et al., 2016), a view
supported by our ndings. In general, our ndings show that user
involvement increases only during later development and implementa-
tion phases o technology in the Norwegian petroleum industry.
Including human actors expertise throughout the design phase, also in
the earliest phases o design o algorithms, might thus be benecial. This
is because machines learning models should have input by humans with
domain expertise to consider the quality and relevance o input data,
understanding the assumptions or the models as well as the interpre-
tation o the model training data (Endsely, 2023). The task o a human
actors expert could be to ensure presence o end users and unction as
an interpreter nding ways to increase understanding between a data
programmer and operational end users. Bringing in expertise on human
actors methods would increase a human centered design process as they
would understand how to ocus on identiying end users’ needs and how
to use the end users input in the design. Additionally, there is an
intensiying need in the petroleum industry to obtain oil and gas rom
areas that are harsher and harder to reach, which results in the priori-
tization o the development o increasingly advanced technological so-
lutions. Even though the scientic literature recommends user
involvement rom earlier phases, our ndings show that, in practice, this
does not occur.

First, there was a perception that end users were very much included
in the development process. Regarding later development phases, this is
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correct, with simulator training, workshops, HMI design, and so orth.
However, or earlier phases, including the development o algorithms,
end users are absent. This perception o participation might give end
users a sense o trust in the development process. The ndings thereore
shows a dierence between work as imagined and work as done (Holl-
nagel, 2017).

End users’ trust could also be based on other actors (Sætren et al.,
2015), such as condence in the mathematicians who develop algo-
rithms, because the end user lacks the competence to understand the
process. This may mean that trust is based on an inadequate under-
standing o the complexity o technology and an acceptable norm. From
a psychological perspective, thus, trust can be a substitute or under-
standing that makes end users accept something that they would not
have accepted i they had ully understood the complexity and risk
(Torbiörn, 2006).

The organizational and human challenges posed by cognitive tech-
nology are particularly demanding. Most human operators have so ar
had a basic understanding o how the technology they use works, but the
computer models that enable technology to perorm cognitive tasks can
become so complex that people have diculty understanding it (Bain-
bridge, 1983). This is problematic as long as human operators have the
ultimate responsibility or saety–critical operations (Santio de Sio &
van den Hoven, 2018).

Second, there is a shortage o end users or handling the demands o
both working in operations and working in technology development.
One solution could be to spread the competences, and limit involvement
in later phases and use these resources in earlier phases. However, this
might demand changes to rules and regulations.

Third, there seems to be a lack o well-designed human actors
methods to use in the early phases o the development o algorithms or
high-risk industries. Some methods exist, such as interactive machine
learning (IML) (Ware et al., 2001). Even though this method is designed
or commercial development and not validated or technology used in
high-risk operations, it could, or instance, be used as the basis or
urther method development or advanced cognitive technologies. The
developer must understand how the end user interacts with cognitive
technology so that they can orm eective situational awareness and
manage risks when critical situations arise (Homan et al., 2018). They
also need to understand how cognitive technology can generate data
that is interpreted dierently depending on the user and situation
(Carayon, 2005).

According to the ndings, one reason the industry does not involve
end users in the initial phases is that misunderstandings could increase
the risk or human error amongmathematicians i end users are involved
because end users lack the competence or this design phase. However,
this could be an argument or the opposite too, as the mathematicians,
sometimes situated in other countries such as India, which was
mentioned, do not understand the contextual actors related to the work
environment o end users in the Norwegian petroleum industry. This is a
reason the inclusion o human actors is recommended in the earliest
phases (Sætren et al., 2016).

Moreover, how humans and cognitive technologies can work
together to achieve the ‘cognitive fow’ necessary or successul man-
agement o processes in both routine and critical situations has been
questioned (Hollnagel et al., 2006). Santio de Sio and van der Hoven
(2018) pointed out, among other things, that cognitive technology must
always support people and that people in cognitive systems must always
understand situations so that quick decisions can be made to avoid un-
wanted and critical events.

Fourth, ocial rules and regulations are lacking or developing al-
gorithms. Even though there are regulations governing participation in
matters o importance or the working environment or that employees
shall contribute in the establishment, ollow-up and urther develop-
ment o management systems (Norwegian Framework Regulations §13;
§17; Working Environment Act), including change processes (Levin
et al., 2012) and thus could be interpretated to include technological

development, it does not occur or developing specic smaller parts o
larger technological systems or algorithms in particular or ML. Our
ndings show that as long as the interpretation rom responsible or
design processes are that there are no specic rules and regulations exist
regarding the earliest design phases, the industry will not include end
users in these phases. As cognitive technology develops so that it can
take over more o the operational and tactical responsibility than it
manages today, new demands are placed on the interaction between
person and cognitive technology. Operational and tactical responsibility
is about perorming the operation in addition to monitoring and
adapting immediate changes in and around the operation. The new re-
quirements that must be set are technical, to address the lack o data
transer capacity; organizational, to develop precise industry standards;
and based on a people-centered perspective o cognitive technology in
the petroleum industry to acilitate the interaction between humans and
cognitive technology (Carayon, 2006).

In interpreting these ndings, the reader should bear in mind that the
study is solely qualitative and limited to the petroleum industry in a
single country. The ability to generalize across situations other than
those studied here is thereore limited. Otherwise, the validity o our
study can be described in terms o ve actors that build trustworthiness
(Hayashi et al., 2019): 1) The researchers ocused intently on the study
during the study period, and they were all part o the process rom the
planning until completion o the project. 2) Data was organized based on
a deepening the understanding o the topic and based on well-
established methods. 3) Data coding was structured systematically
using thematic analysis o detailed notes taken by a dedicated scribe. 4)
By including a variety o organizations and levels in the supply chain o
technology development, we ensured the inclusion o several sources o
data; all researchers took part in analyzing and interpreting the data,
ensuring a broad view o the data collected. 5) Throughout the discus-
sion section, the study ndings are discussed according to the theoretical
ramework presented in the paper.

6. Conclusion

Based on the research question – How are end users involved in the
development and implementation o cognitive technologies in the Nor-
wegian petroleum industry to contribute to sae and reliable technical
solutions? - this study ound that user involvement increases during the
development and implementation phases. During the earlier phases o
designing algorithms and training data, end users are hardly involved.

Regarding later phases including testing and implementation
oshore, and the use and improvement phases, the end users are inte-
grated in the technological development process. The ndings suggest
that end users are more available during this phase, there are human
actors methods available, and there are ocial rules and regulations
that promote participation during testing and implementation.
Including end users in as early phases as developing algorithms or ML
technology, could be a benecial contribution to sae and reliable
technical solution. Such inclusion could or instance increase users’ 
understanding o the systems’ decisions and actions, gain a more
optimal distributed situation awareness, and have a more correct degree
o trust towards the technology.

Within the Petroleum industry and beyond, the understanding o the
unctions o human operator and technological operator is an implica-
tion ound. We propose re-evaluating the human operator’s strengths
and weaknesses relative to their computer counterpart when it comes to
allocating unctional responsibilities. Traditionally, system designers
have recognized the human operator being stronger in creative re-
sponsibilities, whereas they reserved what earlier used to be manual
tasks, or the computer. With the advance o cognitive technology,
computer agents can perceive and generate insight about what is
happening and predict more about what will happen. For some opera-
tions, designers should consider assigning the computer rather than the
human operator novel decision-making tasks when designing the
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system. This re-evaluation can have implications or design standards
that appreciate the human operator as the only creative agent.

The petroleum industry has not implemented complex ML models in
their operations. However, the technology develops rapidly, and oper-
ators are deeply involved in comprehensive research and development
projects that aims at using the capacity o ML models to carry out saer
and more ecient operations. As seen in other domains, there could be a
higher risk o accidents when rules and legislation do not keep up with
technological development.

There are regulations covering development work. The interpreta-
tion o this seems to be an assumption that this might not be covering
development o every component o a technology such as the earliest
stages o cognitive technologies and development o algorithms. Due to
the novelty o the research area, urther exploration regarding i and
how the ramework regulation ts developing algorithms or ML tech-
nology, seems important.

Consequences on perormance due to insucient human actors
methods during development phases, could be that the design is not
suited or the actual operation and that it could become a human error
trap. Additionally, the situation awareness or the operator could be
limited and decisions made on a misunderstanding. I the operator does
not understand how the technology makes decisions, the operator might
not know how to respond to its actions optimally.

The current research could drive the development o well-suited
human actors methods or the early phases o advanced algorithm
development in the petroleum industry. There is need or urther
research on this theme, including developing new human actors
methods or earlier development phases, evolving existing human ac-
tors methods or earlier phases, and exploring how to use end users’ 
competences optimally during development processes, as the latter is
considered a scarce resource. Although researchers argue or the early
involvement o end users, developers seem to have a dierent idea o
what end-user involvement means. While a ailure to involve end users
early on in true design and development activities could be due to the
increasing scarcity o end users, as our study implies, it could also be due
to a lack o readily available empirical evidence o the eects o ailing
to involve end users. Such evidence is needed to convince managers
investing in cognitive technologies o the long-term benets o involving
end users as ‘designers’ – and the potentially catastrophic consequences
o not doing so. Comparative evaluations o attempts at ecological
versus more traditional human–machine interace design could also
convince managers o the value o early end-user involvement.

Moreover, it is also important to urther examine the optimization o
the design processes o algorithms or equipment used in high-risk op-
erations or end users. Additionally, there is a need to develop appro-
priate rules and regulations and involvement rom the authorities,
which need urther research.
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